
International Journal of Artificial Intelligence, Data Science, and Machine Learning

Grace Horizon Publication | Volume 1, Issue 1, 1-10, 2020

ISSN: 3050-9262 | https://doi.org/10.63282/30509262/IJAIDSML-V1I1P101

Original Article

A Comprehensive Analysis of Deep Learning Algorithms for

Computer Vision Applications: Challenges, Trends, and

Future Directions

Vaitheeswaran

Independent Researcher, USA.

Abstract - Deep learning has revolutionized the field of computer vision, enabling significant advancements in various

applications such as image classification, object detection, semantic segmentation, and more. This paper provides a

comprehensive analysis of deep learning algorithms for computer vision, focusing on the challenges, trends, and future

directions. We begin by reviewing the foundational concepts of deep learning and their application in computer vision.

We then delve into the current state-of-the-art algorithms, discussing their strengths and limitations. The paper also

explores the challenges faced in the field, including data scarcity, model interpretability, and computational efficiency.

Finally, we highlight emerging trends and propose potential future directions for research and development in deep

learning for computer vision.

Keywords - Deep Learning, AI, CNN, Computer vision, Data Augmentation

1. Introduction
Computer vision, a specialized subfield of artificial intelligence, is dedicated to enabling machines to interpret and

understand visual information from the world, much like human vision. This field encompasses a wide range of tasks, from simple

image recognition to complex scene understanding and analysis. Over the past decade, deep learning has revolutionized the way

these tasks are approached and solved. Deep learning models, particularly convolutional neural networks (CNNs), have become the

cornerstone of modern computer vision due to their exceptional ability to capture and interpret intricate patterns within visual data.

Convolutional neural networks, inspired by the structure of the human visual cortex, are composed of layers of neurons that

process input data in a hierarchical manner. Each layer detects increasingly complex features, starting from basic edges and colors,

to more sophisticated shapes and objects. This hierarchical feature extraction is crucial for tasks such as image classification, where

the model must accurately identify the category of an object in an image; object detection, which involves locating and identifying

multiple objects within a scene; and semantic segmentation, where the goal is to classify each pixel in an image into a specific

category, such as labeling different parts of a scene in a self-driving car application.

The success of deep learning in computer vision has led to significant advancements in various industries. For example, in

healthcare, CNNs are used to diagnose diseases from medical images with high accuracy. In autonomous vehicles, they help in

real-time decision-making by recognizing traffic signs, pedestrians, and other vehicles. In retail, deep learning models assist in

inventory management by automatically recognizing and tracking products on shelves. These applications not only demonstrate the

versatility of deep learning but also highlight its potential to transform how machines perceive and interact with the visual world.

2. Foundational Concepts of Deep Learning for Computer Vision
Deep learning has become a cornerstone of modern computer vision, enabling systems to automatically learn from large

datasets and achieve remarkable performance in tasks that traditionally required human intervention. At its core, deep learning uses

neural networks with multiple layers of interconnected nodes, mimicking the structure of the human brain. These neural networks

are designed to learn complex patterns in data by progressively extracting higher-level features through each layer. As a result,

deep learning models can handle large, unstructured datasets, such as images and videos, and identify intricate patterns that are

difficult for traditional algorithms to recognize. This approach has revolutionized computer vision, allowing systems to perform

tasks like image classification, object detection, and face recognition with unprecedented accuracy.

2.1 Deep Learning Overview

Deep learning is a subset of machine learning that involves the use of neural networks with many layers—hence the term

"deep" learning. These layers, called hidden layers, allow the model to learn hierarchical features, where the lower layers detect

basic features like edges and textures, and the higher layers capture more abstract patterns like objects or even entire scenes. This

https://doi.org/10.63282/30509262/IJAIDSML-V1I1P101

Vaitheeswaran / IJAIDSML, 1(1), 1-10, 2020

2

hierarchical feature extraction process enables deep learning models to generalize well across various types of visual tasks. Deep

learning has shown significant advantages over traditional machine learning techniques in computer vision, particularly when

dealing with large datasets and complex tasks that involve unstructured data.

2.2 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are the foundation of deep learning in computer vision. CNNs are specifically

designed to process data that has a grid-like topology, such as images. Unlike traditional fully connected networks, CNNs use a

specialized architecture that includes convolutional layers, pooling layers, and fully connected layers, which together help the

model learn spatial hierarchies of features.

• Convolutional Layers: These layers apply a set of learnable filters (or kernels) to the input image, performing convolution

operations that help extract important features like edges, textures, and shapes. Each filter is capable of detecting different

features, and as the image passes through successive convolutional layers, more complex and abstract patterns are

detected.

• Pooling Layers: Pooling layers are used to down-sample the spatial dimensions of the feature maps, reducing the

computational complexity and the number of parameters in the model. This also introduces some level of translation

invariance, meaning the model becomes less sensitive to small translations or shifts in the image. The most common

pooling operation is max pooling, which selects the maximum value from a region of the image.

• Fully Connected Layers: These layers connect the high-level features extracted by the convolutional and pooling layers to

the final output, such as class labels in classification tasks. The fully connected layers interpret the features and make the

final decision based on the learned representations.

• CNNs are particularly well-suited for computer vision because they can effectively learn spatial relationships in images

and efficiently process large-scale visual data.

2.3 Transfer Learning

Transfer learning is a technique in which a model trained on one task is reused for a similar task with less data. In the

context of deep learning for computer vision, transfer learning often involves using a pre-trained CNN model, such as one trained

on the large ImageNet dataset, and fine-tuning it on a smaller, task-specific dataset. The pre-trained model has already learned

useful features, such as edges, textures, and patterns, from the large dataset, and these features can be transferred to the new task.

Fine-tuning typically involves adjusting the weights of the later layers of the model to suit the new dataset, while keeping the early

layers frozen to retain the learned features. Transfer learning not only reduces the need for extensive training on smaller datasets

but also improves model performance by leveraging the knowledge gained from large, well-curated datasets.

2.4 Data Augmentation

Data augmentation is a technique used to artificially increase the size of the training dataset by applying various

transformations to the existing data. In computer vision, common augmentation techniques include rotation, flipping, scaling, and

cropping. These transformations generate new, modified versions of the original images, thus expanding the diversity of the

training data and improving the model’s ability to generalize. Data augmentation helps prevent overfitting, which occurs when a

model learns to memorize the training data rather than learning the underlying patterns. By presenting the model with a more

varied set of examples, data augmentation encourages the model to learn more robust features, making it more resilient to

variations in real-world data, such as changes in orientation, size, or lighting. This technique is especially useful in scenarios where

labeled data is limited, as it helps make the most of the available training set.

3. State-of-the-Art Algorithms for Computer Vision
The field of computer vision has advanced rapidly in recent years, with the development of highly efficient and

sophisticated deep learning algorithms. These algorithms have enabled machines to achieve near-human-level performance in

various tasks such as image classification, object detection, semantic segmentation, and image generation. Below are some of the

leading algorithms in these areas.

3.1 Image Classification

Image classification is the foundational task in computer vision, where the goal is to assign a label to an input image based

on its content. Several deep learning models have been developed to tackle this problem, each contributing to significant

improvements in accuracy and efficiency:

• AlexNet: Introduced in 2012, AlexNet was one of the first deep convolutional neural networks (CNNs) to achieve

remarkable success, winning the ImageNet Large Scale Visual Recognition Challenge (ILSVRC). The model is composed

of five convolutional layers followed by three fully connected layers. AlexNet’s success is credited with popularizing

deep learning, particularly CNNs, in image classification tasks.

Vaitheeswaran / IJAIDSML, 1(1), 1-10, 2020

3

• VGGNet: VGGNet, introduced in 2014, is known for its simplicity and effectiveness. It utilizes smaller 3x3 convolutional

filters across many layers to progressively capture more complex features in the data. Despite its relatively simple

architecture, VGGNet has been a highly influential model due to its high accuracy in image classification and its

straightforward design.

• ResNet: Introduced in 2015, ResNet addresses the vanishing gradient problem that arises in very deep networks. The key

innovation in ResNet is the use of residual connections, which allow the network to learn identity mappings. This means

that the network can "skip" layers when needed, making it easier to train deeper networks. ResNet has demonstrated

superior performance on a range of tasks, including image classification.

• InceptionNet: InceptionNet, also introduced in 2015, takes a unique approach by using parallel convolutional filters of

different sizes within the same layer. This allows the model to capture features at multiple scales simultaneously. The

multi-scale processing of InceptionNet enables the model to handle varying object sizes and spatial configurations,

making it particularly effective for complex image datasets.

• EfficientNet: EfficientNet, introduced in 2019, introduces a novel approach to scaling deep neural networks. Instead of

arbitrarily increasing the depth or width of the network, EfficientNet balances the scaling of width, depth, and resolution

to optimize performance with fewer parameters. This makes EfficientNet highly efficient and effective, achieving state-of-

the-art performance with fewer computational resources compared to other models.

3.2 Object Detection

Object detection is a critical task in computer vision that involves not only identifying objects in an image but also

localizing them by drawing bounding boxes around them. Key deep learning models for object detection include:

• R-CNN (Region-based Convolutional Neural Network): R-CNN was one of the first successful deep learning models for

object detection. It uses selective search to generate region proposals (potential object locations) and then applies a CNN

to classify each region. Although effective, R-CNN is computationally expensive due to the need for independent CNN

processing for each region proposal.

• Fast R-CNN: Fast R-CNN improves upon R-CNN by eliminating the need for repetitive CNN processing. Instead, Fast R-

CNN applies a single CNN to the entire image and then uses a region of interest (RoI) pooling layer to extract features

from the region proposals. This significantly reduces computation time and increases efficiency.

• Faster R-CNN: Faster R-CNN introduces a Region Proposal Network (RPN), which is a deep neural network that

generates region proposals directly. This makes the process of generating region proposals much more efficient,

eliminating the need for external algorithms like selective search. Faster R-CNN is considered one of the most powerful

and efficient object detection algorithms.

• YOLO (You Only Look Once): YOLO revolutionized object detection by framing it as a single regression problem. The

model divides an image into a grid and predicts bounding boxes and class labels for each grid cell in a single forward pass

of the network. This makes YOLO much faster than R-CNN-based models, making it suitable for real-time applications.

• SSD (Single Shot MultiBox Detector): Similar to YOLO, SSD is designed to detect objects in a single forward pass.

However, SSD improves on YOLO by using a multi-scale feature map, enabling it to detect objects at various sizes and

scales. SSD is known for its balance between speed and accuracy, making it an efficient model for object detection tasks.

3.3 Semantic Segmentation

Semantic segmentation involves classifying each pixel in an image into a predefined category, such as background,

person, car, etc. This task is more complex than image classification because it requires spatial awareness and precise delineation

of object boundaries. Notable deep learning models for semantic segmentation include:

• U-Net: U-Net is a U-shaped architecture that consists of an encoder and a decoder. The encoder captures high-level

features through successive down-sampling, while the decoder gradually up-samples the feature maps to produce a

segmentation map. U-Net also uses skip connections to combine features from the encoder and decoder, ensuring that

fine-grained details are preserved in the output segmentation map.

• DeepLab: DeepLab uses atrous convolutions (also known as dilated convolutions) to capture multi-scale context while

preserving the spatial resolution of the input image. This allows DeepLab to capture broader context around each pixel

while retaining fine details for precise segmentation. DeepLab’s encoder-decoder structure further refines the

segmentation results, making it effective for semantic segmentation tasks.

• PSPNet (Pyramid Scene Parsing Network): PSPNet employs a pyramid pooling module, which aggregates contextual

information at multiple scales, enhancing the model’s ability to recognize both local and global context in images. This

improves segmentation performance by capturing a wider range of spatial information, making PSPNet particularly

effective for scene parsing tasks.

Vaitheeswaran / IJAIDSML, 1(1), 1-10, 2020

4

3.4 Generative Models

Generative models aim to generate new images or modify existing ones, often with the goal of creating realistic synthetic

images. Some of the key deep learning models for generative tasks include:

• GANs (Generative Adversarial Networks): GANs consist of two networks: a generator that creates images and a

discriminator that evaluates their authenticity. The generator creates synthetic images, while the discriminator tries to

distinguish between real and fake images. The two networks are trained simultaneously, with the generator improving its

ability to create realistic images and the discriminator becoming better at identifying fake ones. This adversarial process

leads to the generation of high-quality images.

• CycleGAN: CycleGAN is a variant of GANs that is particularly useful for image-to-image translation tasks where paired

training data is not available. For example, it can translate images from one domain (e.g., photos) to another (e.g.,

paintings) without needing paired examples of corresponding images. CycleGAN uses a cycle consistency loss function to

ensure that images can be translated back and forth between domains.

• StyleGAN: StyleGAN is a GAN variant that allows for fine-grained control over the generated images. StyleGAN

introduces a novel style-based architecture, which enables users to control various aspects of the generated images, such

as the overall appearance or specific details like hair texture or background. This allows for high-resolution image

generation with greater flexibility in image manipulation.

Table 1: Comparison of State-of-the-Art Image Classification Models

Model Year Architecture Accuracy (Top-1) Parameters (M)

AlexNet 2012 5 Conv, 3 FC 57.0% 61

VGGNet-16 2014 13 Conv, 3 FC 71.5% 138

ResNet-50 2015 48 Conv, 1 FC 76.1% 25.6

InceptionV3 2015 42 Conv, 2 FC 78.0% 23.8

EfficientNet-

B0
2019 15 Conv, 1 FC 77.1% 5.3

Table 2: Comparison of State-of-the-Art Object Detection Models

Model Year Architecture mAP Parameters (M)

R-CNN 2013 CNN + SVM 53.7% 138

Fast R-CNN 2015 CNN + RoI Pooling 66.9% 138

Faster R-

CNN
2015 CNN + RPN + RoI Pooling 73.2% 138

YOLOv3 2018 Single Stage 57.9% 61

SSD 2016 Single Stage 74.3% 23.8

Table 3: Comparison of State-of-the-Art Semantic Segmentation Models

Model Year Architecture mIoU Parameters (M)

U-Net 2015 Encoder-Decoder 77.5% 31

Vaitheeswaran / IJAIDSML, 1(1), 1-10, 2020

5

DeepLabV3 2017 Atrous Conv + ASPP 82.1% 47

PSPNet 2017 Pyramid Pooling 81.3% 60

4. Challenges in Deep Learning for Computer Vision
While deep learning has significantly advanced the field of computer vision, there are still several challenges that

researchers and practitioners must address to improve the robustness, efficiency, and applicability of these models. These

challenges span various areas such as data availability, model transparency, computational demands, model generalization, and

security concerns. Below are some of the key obstacles that hinder the widespread adoption and effectiveness of deep learning in

computer vision.

4.1 Data Scarcity and Annotation Costs

One of the most pressing challenges in deep learning for computer vision is the need for large and well-annotated datasets.

Deep learning models, particularly those based on convolutional neural networks (CNNs), require vast amounts of labeled data to

effectively train and generalize. In domains such as medical imaging, satellite imagery, and specialized industrial applications,

gathering sufficient labeled data can be a time-consuming and expensive process. For example, annotating medical images often

requires expert knowledge, which further increases the cost. The scarcity of annotated data in specialized fields leads to overfitting,

as the models struggle to generalize well when exposed to limited or biased training sets. Furthermore, for many tasks, labeled data

is not readily available, which can make it difficult to train robust models. To address this, researchers are exploring techniques

such as semi-supervised learning and unsupervised learning, where models can learn from unlabeled data, and synthetic data

generation, where data is artificially created using methods like GANs (Generative Adversarial Networks) to supplement real-

world data.

4.2 Model Interpretability

Another significant challenge in deep learning for computer vision is the lack of interpretability of the models. Deep

neural networks are often described as "black boxes" because their decision-making processes are not easily understood by

humans. This opacity can be particularly problematic in critical applications like healthcare, autonomous driving, and finance,

where transparency and accountability are essential. For example, in the medical field, if a deep learning model misidentifies a

tumor or a medical condition, understanding why the model made that decision is crucial for both clinicians and patients. The

inability to explain the model's reasoning can hinder trust and limit adoption in safety-critical applications. To address this,

researchers are working on explainable AI (XAI), which focuses on developing techniques that can provide insights into how

models arrive at their decisions. Methods such as saliency maps, which highlight the parts of an image that influenced the model’s

prediction, and attention mechanisms are examples of approaches designed to improve interpretability.

4.3 Computational Efficiency

Training and deploying deep learning models for computer vision can be highly computationally intensive. Modern deep

learning models require significant resources in terms of processing power, memory, and storage. For instance, training a deep

neural network on a large dataset often requires access to specialized hardware such as GPUs (Graphics Processing Units) or TPUs

(Tensor Processing Units). This can be a barrier for individuals or organizations without access to such infrastructure, particularly

in resource-constrained environments such as mobile devices, edge computing, and embedded systems. Furthermore, deploying

complex models in real-time applications, like autonomous vehicles or augmented reality, requires efficient models that can

process data and make decisions swiftly. As deep learning models continue to grow in complexity and size, the energy

consumption and environmental impact associated with training large-scale models are also becoming concerns. To address these

issues, there is ongoing research into developing more computationally efficient models, such as model pruning, quantization, and

distillation, which aim to reduce the size and computational requirements of deep learning models without significantly

compromising performance.

4.4 Overfitting and Generalization

Overfitting is a common problem in deep learning, where a model learns to memorize the training data rather than

generalize to new, unseen data. This is especially problematic when the training dataset is small, noisy, or unrepresentative of the

real-world distribution. Overfitting leads to poor performance when the model is deployed in real-world scenarios, as it fails to

adapt to new variations in data. Deep learning models, particularly those with many parameters, are prone to overfitting if the

training data does not cover a wide range of possible input variations. Techniques such as regularization, dropout, and data

augmentation can help mitigate overfitting by forcing the model to learn more generalized features and reducing its dependence on

specific patterns present in the training data. However, these techniques do not always guarantee good generalization, particularly

Vaitheeswaran / IJAIDSML, 1(1), 1-10, 2020

6

when there is a significant discrepancy between the training data and real-world conditions. Researchers are investigating new

strategies, such as few-shot learning, where models learn to generalize from a small number of examples, and meta-learning, where

models can adapt to new tasks with minimal data.

4.5 Adversarial Attacks

Adversarial attacks represent a significant security challenge for deep learning models in computer vision. These attacks

involve making small, imperceptible perturbations to an input image that cause the model to make incorrect predictions. For

example, a carefully crafted adversarial image might cause a self-driving car’s computer vision system to misclassify a stop sign as

a yield sign, leading to potentially catastrophic consequences. The vulnerability of deep learning models to adversarial attacks

poses a serious risk, particularly in safety-critical applications like autonomous vehicles, surveillance systems, and security

applications. The effectiveness of adversarial attacks is rooted in the high sensitivity of deep learning models to small changes in

the input, which can lead to a significant shift in their outputs. To defend against adversarial attacks, researchers are exploring

techniques such as adversarial training, where models are trained with adversarial examples to increase their robustness, and

defensive distillation, which aims to make the model more resistant to perturbations by simplifying its decision boundaries.

However, the ongoing arms race between attackers and defenders in the realm of adversarial machine learning means that ensuring

model robustness in real-world applications remains a significant challenge.

5. Emerging Trends and Future Directions
As deep learning continues to shape the field of computer vision, several emerging trends and future directions hold the

promise of enhancing the capabilities and practicality of these models. Researchers and practitioners are exploring new

methodologies to tackle existing challenges, such as data scarcity, interpretability, computational efficiency, and model robustness.

These advancements aim to unlock new possibilities for deep learning in real-world applications.

5.1 Few-Shot Learning

Few-shot learning is an emerging paradigm that seeks to enable deep learning models to learn from a limited number of

labeled examples. Traditionally, deep learning models require vast amounts of labeled data to achieve high performance. However,

in many real-world scenarios, obtaining a large, labeled dataset is difficult or expensive. Few-shot learning seeks to overcome this

challenge by training models to generalize from just a few examples of a given class. Techniques like meta-learning, where models

are trained to learn how to learn, and transfer learning, where pre-trained models are fine-tuned on smaller datasets, are being

leveraged to improve few-shot learning performance. This approach has great potential for applications such as medical imaging,

where annotated data may be limited, and personalized applications like facial recognition, where individual data may be scarce.

5.2 Explainable AI

As deep learning models become more complex, ensuring transparency and accountability in their decision-making

processes has become a critical concern, particularly in sensitive areas like healthcare, autonomous driving, and finance.

Explainable AI (XAI) focuses on developing techniques to make these "black box" models more interpretable. By providing

human-understandable explanations for model predictions, XAI helps build trust and enables users to validate and challenge model

decisions. Methods like attention mechanisms and saliency maps highlight the regions in an image that influenced a model's

decision, providing valuable insights into the model's reasoning process. Rule-based systems and hybrid approaches, which

combine the power of deep learning with more interpretable models like decision trees or logic rules, are also being explored to

improve model transparency. These advancements could significantly improve the adoption of deep learning models in safety-

critical domains, where understanding how and why a model makes a decision is crucial.

5.3 Efficient and Lightweight Models

As deep learning models become increasingly complex, there is a growing need for efficient and lightweight models that

can operate in resource-constrained environments. Deep learning models typically require powerful hardware and significant

computational resources, making them challenging to deploy in mobile devices, edge computing, and Internet of Things (IoT)

applications. To address this, techniques such as model pruning, which removes unnecessary weights and connections from a

trained model, quantization, which reduces the precision of model weights to save memory and computation, and knowledge

distillation, which transfers the knowledge from a large model to a smaller one, are gaining attention. These methods aim to reduce

the computational and memory requirements of deep learning models without sacrificing performance. Efficient models are crucial

for applications in areas like augmented reality, autonomous vehicles, and healthcare, where real-time processing on resource-

limited devices is often necessary.

Vaitheeswaran / IJAIDSML, 1(1), 1-10, 2020

7

5.4 Federated Learning

Federated learning is an innovative approach that allows multiple devices or organizations to collaboratively train a

machine learning model while keeping their data decentralized and private. In traditional machine learning, data is typically

gathered in a central location for model training, which can raise privacy concerns, particularly in sensitive fields like healthcare

and finance. Federated learning solves this problem by training models on data stored locally on individual devices (e.g.,

smartphones, IoT devices) and only sharing model updates, not raw data, with a central server. This decentralized approach ensures

that sensitive data never leaves the device, thereby enhancing privacy. Federated learning also helps mitigate data scarcity issues

by leveraging the collective data from multiple devices without the need for a central dataset. As privacy concerns become more

prevalent in today’s digital world, federated learning could play a significant role in enabling privacy-preserving AI applications.

5.5 Multi-Modal Learning

Multi-modal learning involves integrating data from multiple sources or modalities, such as images, text, and audio, to

improve model performance. By leveraging diverse types of information, models can develop a more comprehensive

understanding of complex scenarios. For instance, in tasks like image captioning, video understanding, and cross-modal retrieval,

combining visual data with textual or auditory data can lead to more accurate and nuanced predictions. Multi-modal learning is

particularly useful in applications like autonomous driving, where a vehicle must process visual, auditory, and sensor data

simultaneously to make safe decisions. Research in multi-modal learning is focusing on developing models that can seamlessly

integrate and process these diverse data types while improving efficiency and accuracy. This trend has the potential to significantly

enhance the capabilities of AI systems in real-world applications that require a multi-faceted understanding of the environment.

5.6 Robustness and Security

As deep learning models become more widely deployed in real-world applications, ensuring their robustness and security

is becoming a top priority. Adversarial attacks, where small, imperceptible perturbations to input data can cause models to make

incorrect predictions, pose a serious risk, particularly in safety-critical domains like autonomous vehicles, healthcare, and security

systems. Researchers are exploring techniques such as adversarial training, where models are exposed to adversarial examples

during training to improve their resilience, and robust optimization, which focuses on making models less sensitive to small

variations in input data. Additionally, secure aggregation methods are being developed to ensure that model updates in federated

learning systems remain confidential and protected from attacks. Improving the robustness and security of deep learning models is

critical to ensuring their safe deployment in real-world applications.

6. Conclusion
Deep learning has already revolutionized the field of computer vision, enabling impressive advancements in image

recognition, object detection, and other applications. However, challenges such as data scarcity, model interpretability,

computational efficiency, and security continue to hinder the full potential of deep learning in practical scenarios. Emerging trends

such as few-shot learning, explainable AI, and federated learning hold great promise for addressing these challenges and improving

the accessibility, transparency, and efficiency of deep learning models. By focusing on the development of more efficient, robust,

and interpretable models, the future of deep learning in computer vision looks promising. Continued innovation in these areas will

unlock new opportunities and applications, making deep learning an even more integral part of technological advancement in the

years to come.

References
[1] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks.

Advances in Neural Information Processing Systems, 25, 1097-1105.

[2] Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556.

[3] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (pp. 770-778).

[4] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015). Going deeper with

convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1-9).

[5] Tan, M., & Le, Q. V. (2019). EfficientNet: Rethinking model scaling for convolutional neural networks. In International

Conference on Machine Learning (pp. 6105-6114).

[6] Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic

segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 580-587).

[7] Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards real-time object detection with region proposal

networks. Advances in Neural Information Processing Systems, 28, 91-99.

[8] Redmon, J., & Farhadi, A. (2018). YOLOv3: An incremental improvement. arXiv preprint arXiv:1804.02767.

Vaitheeswaran / IJAIDSML, 1(1), 1-10, 2020

8

[9] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., & Berg, A. C. (2016). SSD: Single shot multibox

detector. In European Conference on Computer Vision (pp. 21-37).

[10] Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional networks for biomedical image segmentation. In

International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 234-241).

[11] Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L. (2018). DeepLab: Semantic image segmentation with

deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 40(4), 834-848.

[12] Zhao, H., Shi, J., Qi, X., Wang, X., & Jia, J. (2017). Pyramid scene parsing network. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (pp. 2881-2890).

[13] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2014). Generative

adversarial nets. Advances in Neural Information Processing Systems, 27, 2672-2680.

[14] Zhu, J. Y., Park, T., Isola, P., & Efros, A. A. (2017). Unpaired image-to-image translation using cycle-consistent adversarial

networks. In Proceedings of the IEEE International Conference on Computer Vision (pp. 2242-2251).

[15] Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2019). A style-based generator architecture for generative adversarial networks.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 4401-4410).

Algorithm 1: ResNet-50 Architecture

def ResNet50(input_shape, num_classes):

 input = Input(shape=input_shape)

 # Initial Convolution

 x = Conv2D(64, (7, 7), strides=(2, 2), padding='same', activation='relu')(input)

 x = BatchNormalization()(x)

 x = MaxPooling2D((3, 3), strides=(2, 2), padding='same')(x)

 # Residual Blocks

 x = residual_block(x, 64, 3, downsample=False)

 x = residual_block(x, 64, 3, downsample=False)

 x = residual_block(x, 64, 3, downsample=False)

 x = residual_block(x, 128, 3, downsample=True)

 x = residual_block(x, 128, 3, downsample=False)

 x = residual_block(x, 128, 3, downsample=False)

 x = residual_block(x, 128, 3, downsample=False)

 x = residual_block(x, 256, 3, downsample=True)

 x = residual_block(x, 256, 3, downsample=False)

 x = residual_block(x, 256, 3, downsample=False)

 x = residual_block(x, 256, 3, downsample=False)

 x = residual_block(x, 256, 3, downsample=False)

 x = residual_block(x, 256, 3, downsample=False)

 x = residual_block(x, 512, 3, downsample=True)

 x = residual_block(x, 512, 3, downsample=False)

 x = residual_block(x, 512, 3, downsample=False)

 # Global Average Pooling

 x = GlobalAveragePooling2D()(x)

 # Fully Connected Layer

 x = Dense(num_classes, activation='softmax')(x)

 model = Model(inputs=input, outputs=x)

 return model

def residual_block(x, filters, kernel_size, downsample=False):

 if downsample:

Vaitheeswaran / IJAIDSML, 1(1), 1-10, 2020

9

 stride = 2

 shortcut = Conv2D(filters, (1, 1), strides=stride, padding='same')(x)

 shortcut = BatchNormalization()(shortcut)

 else:

 stride = 1

 shortcut = x

 x = Conv2D(filters, kernel_size, strides=stride, padding='same', activation='relu')(x)

 x = BatchNormalization()(x)

 x = Conv2D(filters, kernel_size, padding='same')(x)

 x = BatchNormalization()(x)

 x = Add()([x, shortcut])

 x = Activation('relu')(x)

 return x

Algorithm 2: U-Net Architecture

def UNet(input_shape, num_classes):

 input = Input(shape=input_shape)

 # Encoder

 c1 = Conv2D(64, (3, 3), activation='relu', padding='same')(input)

 c1 = Conv2D(64, (3, 3), activation='relu', padding='same')(c1)

 p1 = MaxPooling2D((2, 2))(c1)

 c2 = Conv2D(128, (3, 3), activation='relu', padding='same')(p1)

 c2 = Conv2D(128, (3, 3), activation='relu', padding='same')(c2)

 p2 = MaxPooling2D((2, 2))(c2)

 c3 = Conv2D(256, (3, 3), activation='relu', padding='same')(p2)

 c3 = Conv2D(256, (3, 3), activation='relu', padding='same')(c3)

 p3 = MaxPooling2D((2, 2))(c3)

 c4 = Conv2D(512, (3, 3), activation='relu', padding='same')(p3)

 c4 = Conv2D(512, (3, 3), activation='relu', padding='same')(c4)

 p4 = MaxPooling2D((2, 2))(c4)

 # Bottleneck

 c5 = Conv2D(1024, (3, 3), activation='relu', padding='same')(p4)

 c5 = Conv2D(1024, (3, 3), activation='relu', padding='same')(c5)

 # Decoder

 u6 = Conv2DTranspose(512, (2, 2), strides=(2, 2), padding='same')(c5)

 u6 = concatenate([u6, c4])

 c6 = Conv2D(512, (3, 3), activation='relu', padding='same')(u6)

 c6 = Conv2D(512, (3, 3), activation='relu', padding='same')(c6)

 u7 = Conv2DTranspose(256, (2, 2), strides=(2, 2), padding='same')(c6)

 u7 = concatenate([u7, c3])

 c7 = Conv2D(256, (3, 3), activation='relu', padding='same')(u7)

 c7 = Conv2D(256, (3, 3), activation='relu', padding='same')(c7)

 u8 = Conv2DTranspose(128, (2, 2), strides=(2, 2), padding='same')(c7)

 u8 = concatenate([u8, c2])

 c8 = Conv2D(128, (3, 3), activation='relu', padding='same')(u8)

 c8 = Conv2D(128, (3, 3), activation='relu', padding='same')(c8)

Vaitheeswaran / IJAIDSML, 1(1), 1-10, 2020

10

 u9 = Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same')(c8)

 u9 = concatenate([u9, c1])

 c9 = Conv2D(64, (3, 3), activation='relu', padding='same')(u9)

 c9 = Conv2D(64, (3, 3), activation='relu', padding='same')(c9)

 # Output Layer

 output = Conv2D(num_classes, (1, 1), activation='softmax')(c9)

 model = Model(inputs=input, outputs=output)

 return model

