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Abstract: Federated Learning (FL) has emerged as a practical approach to training machine learning models 

collaboratively across multiple institutions, especially in domains like healthcare where patient data is highly 

sensitive. By allowing data to remain local while only model updates are shared, FL addresses a critical balance 

between innovation and privacy. This paper explores FL’s growing relevance in medical AI particularly its role in 

improving diagnostic models, patient management, and regulatory compliance. Key contributions include a 

breakdown of FL's interaction with healthcare systems, a look at privacy-preserving techniques like differential 

privacy and homomorphic encryption, and real-world use cases in oncology, cardiology, and radiology. We present 
experimental results, challenges with interoperability, and a vision for FL's evolution in secure global healthcare 

collaboration. 
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1. Introduction 
1.1 Emergence of Federated Learning in Medical AI 

The integration of Federated Learning (FL) into 

medical AI reflects a timely response to the sector’s dual 

need for innovation and privacy. As medical institutions 

grapple with enormous volumes of patient data, FL offers a 

unique way to build powerful predictive models without 

compromising data security. Rather than transferring raw 

data, which can raise ethical and legal concerns, institutions 

can train models locally and contribute to a shared global 

model. This shift has sparked meaningful progress in 

medical AI, allowing distributed learning to flourish even 

under strict data protection laws. 

 

 
Figure 1: Emergence of Federated Learning in Medical AI 

 

 Data Privacy and Security Concerns in 

Healthcare: The main factor that has made 

Federated Learning widely implemented in medical 

AI is the issue of data security. These ideas are 

rather cosy because data in health care is private, 

and owing to the large data sets that are usual in 

machine learning models, one of the biggest 

concerns is data leaks and user information fraud. 
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Federated Learning deals with this challenge so that 

the data is never transmitted to the central server. 

Still, only updates are sent to add to the aggregated 

update from the central server. This way, patients’ 

privacy remains protected, but the data can be 
shared between institutions to enhance the creation 

of a better generalized AI. 

 Collaboration Across Distributed Institutions: AI 

in the medical space usually requires a large and 

varied amount of patient data to create models that 

can be used on various patients with various 

diseases. Unfortunately, the institutions that operate 

in the realm of medicine are bound by legal and 

ethical guidelines that do not allow for the exchange 

of information. FL assists integration in different 

facilities, such as hospitals, clinics, and research 

institutions. FL enables the training of models using 
the local data from the institutions and includes only 

reporting model parameters like weights and 

gradients that can be exchanged safely between 

institutions. This is especially crucial in areas like 

medical imaging, genomics, and patient record 

analytics, where variants to develop AI systems 

serve different populations of patients. 

 Improved Model Generalization and 

Performance: Therefore, Federated Learning 

improves model generalization as a valuable benefit 

of medical AI. Because FL serves multiple 
institutions and uses decentralised datasets to train 

the models, the model is not overtrained in a given 

dataset. This results in improved results on a large 

sample size, demographics, disease type and patient 

conditions, making the model more effective in 

real-world situations. It also helps to create models 

for the AI, which would improve its accuracy when 

dealing with medical conditions and imaging 

information, thereby coming up with better 

predictions and diagnoses in practice. 

 Regulatory and Ethical Compliance: According 
to different reports compiled by numerous 

authorities, the healthcare sector is one of the most 

strictly supervised sectors in the world. It also 

maintains the validity of the patient’s records by 

setting up stringent guidelines, for example, in the 

United States: Health Insurance Portability and 

Accountability Act (HIPAA) or the European 

Union: General Data Protection Regulation 

(GDPR). However, due to the Federated Learning 

approach, the data remains in its original place; 

hence, it becomes easier to follow these regulations 

since the raw patient data does not have to travel to 
different places. This regulatory compliance makes 

it appealing to healthcare providers interested in 

implementing AI in their systems without 

compromising on legal aspects of privacy. 

 Real-world Applications and Advancements: FL 

is starting to be used in real-world medical AI 

challenges. For instance, medical imaging is being 

used for collaborative training of deep learning 

models for procedures such as brain tumor 

segmentation or chest X-ray analysis with no need 

for transferring personal sensitive patient 

information to a central location. Federated learning 

has another potential use in predictive health care, 

where EHRs located in different institutions have to 
be used to predict patient outcomes. These 

examples evidence the application of the Federated 

Learning paradigm on large-scale use cases and its 

effectiveness in breaking silos that have been setting 

back significant advancements in medical Artificial 

Intelligence. 

 Future Potential and Challenges: However, there 

are some limitations to employing Federated 

Learning in medical AI. Of course, as it has been 

noted, there are certain challenges within the 

concept. Factors such as data distribution may be 

categorized as data heterogeneity; they may be data 
collected and stored from various institutions and 

may not be homogenously distributed or labeled in 

the same manner. Also, acquiring updates of these 

models and distributing them to clients and servers 

consumes time, given that large models may be 

involved. Mitigating these challenges will help 

achieve the full benefit of federated learning in 

transforming medical artificial intelligence and 

enhance the development of privacy-preserving 

artificial intelligence systems in healthcare. So, in 

identifying Federated Learning in Medical AI as the 
main topic of discussion, this paper denotes these 

insights: Therefore, it is suitable for the healthcare 

sector because it can protect data privacy when used 

by large datasets, and further developments in 

encryption, secure aggregation and improvement of 

communication protocols would only promote the 

future capabilities of blockchain solutions. 

 

1.2 Importance in Healthcare 

Healthcare data is structurally complex since it is a 

large collection of information that can be correctly 
described as heterogeneous; it includes radiology images, 

EHRs, genomics data, and patient medical history, among 

others. Every healthcare institution gathers data in its own 

format that may vary in the set of protocols and standards. 

This heterogeneity resulted in the inability of the models that 

would have been developed to generalize well across the 

population. But, as mentioned earlier, Federated Learning 

(FL) can solve this problem because learners only train 

models on local data, and all of them contribute to 

developing a general model without sharing their databases. 

[5,6] This makes FL train the model on various data sets of 

medical conditions, patient data types and disease 
progression rates, making the model versatile. This is 

particularly important in medical applications of artificial 

intelligence, where it is crucial to account for the variance of 

some features in the population to make accurate predictions 

of an outcome, such as disease probability, where the early 

warning signs vary significantly from patient to patient.  

 

However, most health-related data are very sensitive 

and require much more protection than any other data, and 
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many laws regulate the way they should be collected and 

stored, such as the HIPAA in the US and the GDPR in the 

EU. Interoperability of the raw patient data at the cabinet 

level between the institutions is quite perilous as it includes 

cumbersome chances of data leaks and privacy infringement. 
FL addresses all these issues because no sensitive 

information is transmitted outside the local institution during 

the process. Patients’ information cannot be disclosed; only 

the changes in the model are shared in the network, while the 

models reside in a local database on the personal computer. It 

also has the advantage of protecting patient data and 

enabling legal and ethical compliance in organizations. 

Specific examples of FL include applications that deal with 

images: radiology and pathology, genetics (genome), and 

personalized medicine to address patients’ behavior and 

responses to different treatments or prognoses of outbreaks 

and patients’ conditions. Given that FL is capable of 
combining decentralized, structurally unrelated data and, at 

the same time, protecting data privacy, FL is set to become a 

revolutionary enablement technology for the advancement of 

AI-assisted healthcare. 

 

2. Literature Survey 
2.1 Federated Learning Fundamentals 

Federated Learning was first popularized through 

the FedAvg algorithm, which allowed devices or institutions 

to train a shared model collaboratively without sending raw 

data to a central server. This innovation laid the foundation 

for secure, decentralized learning an ideal match for sensitive 

sectors like healthcare. Over time, several adaptations of this 

approach emerged: FedProx added a regularization term to 

stabilize training across non-IID environments, while FedBN 

used local batch normalization layers to improve consistency 

in heterogeneous datasets. Scaffold tackled another core 

issue client drift by applying control variates. These variants 
have helped FL mature into a more adaptable and reliable 

framework. 

 

2.2 FL in Medical Imaging 

Medical imaging has been one of the earliest and 

most promising use cases for Federated Learning. In one of 

the pioneering efforts, researchers successfully trained 

models to segment brain tumors from MRI scans collected at 

different hospitals without ever transferring the actual patient 

images. The results were nearly on par with centralized deep 

learning systems, demonstrating that high performance 
doesn’t always require centralized data access. These early 

successes have since inspired extensions into other 

diagnostic tasks and modalities, confirming FL's value in 

real-world clinical settings where data sharing is limited by 

law or patient consent. 

 

2.3 Privacy Techniques in FL 
In order to strengthen privacy assurance in FL, 

various state-of-the-art cryptographic and data privacy-

preserving methods have been incorporated. Differential 

Privacy (DP) is one of the most commonly used techniques 

where noise is added to gradients or model updates before 
broadcasting them to the central server. This assists in 

protecting individual items of data to be inferred even from 

the aggregated results. Consequently, Homomorphic 

Encryption (HE) operates differently since it allows 

computations to be carried out on the encrypted data; thus, 

the raw data and even further computations are kept secure. 

Nevertheless, HE contains provisos, which can be 
computationally expensive. The other is Secure Multiparty 

Computation (SMC), whereby a number of parties can 

compute a function of inputs to which no other party gains 

knowledge of inputs of the other parties. These techniques 

offer a strong means of protecting privacy in FL settings, 

especially when applied to sensitive contexts such as health 

and monetary services provision, but they are often less 

efficient computationally and in terms of communication. 

 

2.4 Challenges Identified 
Unfortunately, several issues with Federated 

Learning are crucial and currently prevent it from being 
widely adopted in the industry. The main drawback is, in 

fact, the communication overhead because FL entails the 

continual exchange of the model between the clients and the 

center server. The limitation associated with this is that it can 

be challenging in large-scale or bandwidth systems 

environments. Another issue that can be problematic is data 

heterogeneity, which results when the datasets possessed by 

different clients are non-IID, resulting in lower accuracy of 

the resultant model and instability in convergence. 

Unfortunately, there is no consensus on evaluating, 

comparing, and, most importantly, rolling out such systems. 
Finally, FL systems have issues of security risks such as 

poisoning attacks, which is a process by which a client 

pollutes the model, and inference attacks, in which a client 

tries to extract information from the updates. Solving these 

challenges remains a topic of interest in developing secure, 

efficient and robust FL systems. 

 

3. Methodology 
3.1 System Architecture 

The FL system is used to provide the ability to train 

the model with private data of patients to several medical 

institutions, for example, hospitals. In this setup, each 

participating hospital can be considered a client, and each 

client has a local data source that may have very private 

medical imaging data such as MRI scans, X-rays or CT 

scans. [11-15] Instead of uploading the data to another 

server, this might be a privacy, legal or ethical issue; the data 

is brought to each client site where the machine learning 
model is trained locally and independently. After the local 

training, the hospital does not upload the raw data to the 

server. Still, it uploads only the model parameters or weight 

updates of the model to an aggregation server.  

 

The central server is useful because it pulls the 

model updates from each of the participating clients and 

combines them using Federated Averaging (FedAvg). The 

updated global models accumulated by each round are then 

broadcast back to the clients so they can revise their local 

models. These steps are repeated through several iterations of 

the communication rounds before reaching an acceptable 
performance level of the global model. This approach 

guarantees that the collected and stored medical data are not 
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disclosed to third parties HIPAA and GDPR standards. For 

the purpose of improving communication and the level of its 

protection, some more subcomponents can be included in the 

system structure. For example, the model updates can be 

encrypted through homomorphic encryption or protected 
through secure aggregation techniques. Update leakage can 

be restricted using methods that belong to the differential 

privacy category. Therefore, to handle such variance of data 

distribution across the various hospitals and to obtain the 

best results for each specific case, more elaborate techniques 

like adding new layers for a particular hospital or fine-tuning 

for the local region may be applied. One particular type of 

architecture for this is especially suitable for medical 

research and diagnostic tool creation in large numbers of 

patients, where data variety and exchange are essential but 
cannot be centrally stored due to privacy issues. All in all, 

the architecture of the FL system presents a reliable and 

efficient solution in the context of privacy-based ML across 

different institutions in the medical context. 

 

3.2 Training Process 

 
Figure 2: Training Process 

 

 Initialization: This training process starts right 

from the central server of the network by invoking a 

global Machine Learning model. It has either 

distributed random or pre-trained weights or is used 

as the primary model for all clients. This is 

important mainly because it puts all the clients at 

the same basic point whereby they are equally 

informed, which is important in a distributed 
training environment. It is then transmitted to the 

individual clients (such as hospitals in the case of 

medical FL) for the first round of local updates. 

 Local Training: After collecting the global model, 

each client tunes this model for local training on 

their respective local data set. This training is 

carried out separately and commonly takes place for 

one or several local epochs. At this stage, clients 

apply certain modifications to the model weights 

due to differences in their distribution data, and 

institutions might have different data distributions. 

Local training leverages valuable patterns from each 
client’s data set while preserving the patient’s data 

in-house, especially to avoid leaks. 

 Model Aggregation: Finally, unlike the raw data, 

each client transmits its weights, obtained after the 

local update, back to the central server. The server 

then performs model aggregation, where the most 

often used algorithms are the Federated Averaging 

(FedAvg). This implies a procedure of averaging the 

received model parameters by using a correct 

weight often arrived at from the size of each client's 

data. Aggregation allows the construction of a better 

model from all clients’ knowledge, as it may be 

more diverse due to the distribution of the data. 

 Global Update: After the aggregation, the global 

model weights are updated with new average values 

received from the other parameters. It then forms 

the new global model shared with all the clients at 
the start of the new training round. Clients replace 

the previous model with the updated version, and 

local training for the new model begins. This 

iterative process goes on until either the 

achievement of the global model performance or 

depending on the set convergence criteria. 

 

3.3 Privacy-Preserving Techniques 

 Differential Privacy: Differential Privacy (DP) is 

an approach focused on anonymising individual 

occurrences used for training the model by adding 

stochastic noise, normally from Laplace or 
Gaussian distribution. They specially introduce this 

noise into the gradients or the model parameters 

before it is transmitted to the central server in the 

schema of Federated Learning. This enables 

minimizing the impact of any given data point; 

hence, when the model updates are compromised, it 

will be hard for the adversaries to come to any 

conclusions. DP has a concrete and numerical 

privacy measure, which is denoted often with (ε, δ), 
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and is crucial when the data to be trained is sensitive, such as the medical data. 

 
 

Figure 3: Privacy-Preserving Techniques 

 

 Homomorphic Encryption: Homomorphic 
Encryption (HE) implies carrying out data 

computations without decrypting the message while 

still being secure. This capability is even more 

valuable in Federated Learning, where the model 

updates can be encrypted on the client side by, for 

instance, Paillier or CKKS (Cheon-Kim-Kim-

Song). These encrypted updates are then passed to 

the central server, where some forms of aggregation 

can be performed without a direct peek at the 

original data. After aggregation, the final encrypted 

result can only be unlocked by the correct entity; 

only the entitled individuals can decrypt it. It 
maintains data confidentiality for all the data during 

model training and aggregation but incurs some 

more computation time. 

 Secure Aggregation: Secure Aggregation is a 

method to perform aggregation where the server can 

add up all the client’s model updates but cannot 

learn updates from any of them individually. Every 

client sends a change of parameters encrypted with 

random masks or through cryptographic keys, 

whereby the server does not realize the exposure of 

individual parameters. The server may then cancel 
out the masks (with the help of the clients) so that 

he does not observe any of the contributions in 

plaintext as he/she adds the sum of the updates. This 

technique averts the possibility of the server or any 

other unauthorized person from helping reconstruct 

federated data, thus making Federated Learning 
more secure. 

 

4. Result and discussion 
4.1 Experiment Setup 

This experiment is planned to create an 

environment that could approximate the Federation Learning 

system’s nature in which several hospitals (as clients) learn 
jointly using the central model without sharing patient data. 

Namely, there are 5 replicas of hospitals used in the 

computations, and each of them has its medical data, which 

is necessary for healthcare purposes. Both datasets used in 

the experiment are NIH Chest X-ray and MIMIC-III 

datasets, which are quite popular among medical researchers. 

The chest X-ray dataset from NIH is one of the biggest pools 

of frontal chest X-ray images, with more than one hundred 

thousand images with labels for various diseases in lung 

disorders. The MIMIC-III dataset, on the other hand, is a 

comprehensive source of clinical data since it offers a variety 
of data from EHRs of critically ill patients. In this way, the 

experiment would be able to evaluate the efficiency of 

Federated Learning for both the medical imaging data and 

the clinical record information. This setup also allows testing 

not only the effectiveness of Federated Learning in 

healthcare but also the potential privacy risks when using 

such techniques on identifiable health information, which 

makes such a scenario highly applicable to the actual 

healthcare practice. 

 

Table 1: Model Performance Comparison 

Method Accuracy (%) AUC (%) Privacy Loss (ϵ) 

Centralized 94.8% 95% 0% 

FL (No DP) 94.2% 94% 0% 

FL + DP 92.7% 91% 3.2% 

 

 Centralized Method: The Centralized model can 

also be referred to as the traditional model, as it 

deals with data collected from all the hospitals 

where data from one or several hospitals feeds into 

the model. This yields the highest accuracy of 

94.8% and the highest area under the curve of 95%, 

which is the case since the model can use the entire 

dataset in training. However, one main disadvantage 

of this approach is the need to disclose patient data 

that may contain private information, which is 

easily breached in the healthcare environment. 

 Fl without Differential Privacy (also described as 

FL-No DP): The FL (No DP) model can be 

considered Federated Learning, where no privacy-

preserving measures were applied. Here, you train 

the model locally for each hospital, and only the 

model weights are transferred to the central server, 

not the raw data itself. Therefore, the accuracy 

achieved in this case is 94.2%, and the AUC of 94 

% is slightly lower than that of the centralized 

model. This paper reduces such risks by not sharing 

Differential Privacy Homomorphic Encryption Secure Aggregation
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sensitive data but does not eliminate them entirely 

since the model updates could be attacked. 

 The integration of federated learning with 

differential privacy is examined as [FL + DP]: As 

for the second aspect in FL + DP, DP reconfigured 
the model updates so that it would not leak any 

information about the patients. By incorporating DP, 

noise is incorporated into the model updates, 

leading to a privacy loss of 3.2%. This is at the 

expense of the model’s performance since the 

accuracy reduces to 92.7%, and the AUC reduces to 

91%. Nevertheless, this leads to performance 

degradation since the DP technique offers greater 

privacy protection; thus, it is preferable if privacy is 

a major concern. These results show that the 
model's usefulness is an exchange for protection, 

which the federated learning accompanied by \DP 

provides rather adequately. 

 

 

 
Figure 4: Graph representing Model Performance Comparison 

 

4.2 Findings 

 Minimal Drop in Accuracy with Privacy-

Enhancing Techniques: The application of the DP 

to FL models led to a decrement in accuracy and the 

AUC; they reduced from 94.2% to 92.7%, 

respectively. This decline, however, was relatively 

moderate and, thus, shows that integrating 

approaches such as DP does not necessarily 

decrease the model's performance significantly. The 
reason for a slight decrease in the model’s 

efficiency is the noise introduced to the updates to 

prevent information leakage from individual data 

samples. The noise must make the information 

difficult to be learned by the model, hence its 

effectiveness in preventing the extraction of 

information from the model. However, it slightly 

hinders the learning process, leading to a small 

margin of decrease in model accuracy and AUC. 

However, the small amount of sacrifice indicates 

that DP can indeed offer privacy protection while 

not greatly affecting the model's performance; 
therefore, it is fit for use in scenarios where data 

ownership must be kept private. 

 FL Outperformed Siloed Learning Models: The 

statistics presented revealed that FL’s performance 

was always higher than the isolated local training 

where model training occurs independently without 

any FL interaction. Consequently, in this 

experiment, it was possible to record an 

improvement ranging from 8-10 per cent compared 

to standalone models. This can be credited to FL’s 

feature of working in a decentralized fashion where 

multiple hospitals train one model but use diverse 

datasets without data sharing. Training on more 

varieties of data sources makes the model more 

generalized so that it can handle wide variations of 

various medical conditions as may be exhibited in 
different hospitals. This result further establishes the 

flexibility and efficiency of FL in deriving better 

models from distributed data with confirmation of 

privacy and data protection without compromising 

the signal quality and integrity and out-competing 

the centralized approach. 

 Communication Efficiency Improved with 

FedAvg + Compression Algorithms: When it 

comes to large models and many clients, 

communication overhead is a significant constraint 

in Federated Learning. However, the integration of 

FedAvg with model compression algorithms helped 
limit the amount of data to be exchanged between 

the clients and the central server to a great extent. 

Optimizers reduce the size of the updated model 

since the amount of communication in each round 

and, hence, the network bandwidth is limited. This 

improvement is important in real-world scenarios 

since the cost of data transfer and the use of 

communication channels may be significant. As the 
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frequency of updates is less, the system becomes 

less resource-intensive. As such, Federated 

Learning becomes more scalable and practical in 

scenarios where the network is not as strong as in 

rural hospitals or where the latency is high. 

 

4.3 Discussion 

 Trade-off Between Privacy and Model 

Performance: The results reveal that with the use 

of DP, it is possible to have a trade-off between 

privacy and the model's performance. Although DP 

is a useful method of preventing the leakage of 

sensitive information in the model updates, it 

decreases the model’s accuracy due to the noise 

added to the updates. When applying DP, both the 

accuracy and the AUC of the model were lower 

than before, which is expected due to the 
introduction of noise in the data learning process. 

However, this is mainly true with the privacy 

hyperparameter, which is the major factor 

determining the DP's feasibility in different 

practical applications. A smaller value of ϵ 

introduces stronger privacy in the sense that fewer 

characteristics of the individual data points can be 

learned from the construction of the model, but it 

also raises the noise level and, thus, a higher loss in 

performance of the model. 

 On the other hand, a larger value of ϵ means lesser 
noise that improves the model performance. On the 

other end, the user’s privacy is at risk. Thus, there is 

a need to identify an optimal choice of ϵ such that 

sufficient levels of privacy are achieved at the same 

time the performance penalty incurred is kept 

relatively small. 

 Secure Aggregation Enhances Trustworthiness in 

Real-World Settings: Secure aggregation plays a 

huge role in providing a trustworthy environment in 

Federated Learning, mainly when implemented in 

real-life applications such as healthcare. The type of 
communication used is that the central server 

collects model updates from clients without 

accessing the individual updates, yet maintaining 

the confidentiality of data. This eliminates the 

possibility of disclosure of sensitive information in 

the process of model amalgamation, which raises 

insecurity issues. When it comes to healthcare 

organizations that may deal with patient 

information, aggregation must be more secure. It 

also makes sure that even the server or any other 

middleman participant cannot have the ability to put 

together or guess at patient-specific details from 
these updates, which would help make all 

participants in the federated learning system put 

their trust in the arrangement. Such trust is 

necessary for adopting Federated Learning in areas 

or regions where privacy is crucial, like hospitals or 

clinics. 

 Differentially Private Models Require Tuning of 

Privacy Budget (ϵ): Although DP has proven to be 

one of the most effective ways of preserving data 

privacy, using the privacy budget (ϵ) is critical in 

determining its efficiency. A very small ϵ value 

distorts the updates of the model to a large extent, 

which in turn results in the handicaps of the ability 

of the model to learn good features from the data, 
thereby causing significant performance 

degradation. While a high ϵ value has the advantage 

of increasing noise to reduce noise that affects the 

outcome of the learned model, it decreases the 

privacy level. Therefore, attackers have a high 

chance of learning some important customer 

information. Thus, the challenge ensues on how 

much noise is optimally introduced into the model 

and the usefulness of the model that ensues from the 

noise. In order to achieve the above objectives, 

there is a need to fine-tune and develop a deeper 

understanding of the model so as not to give out 
false results while keeping it secure. Moreover, the 

value of ϵ is also sensitive to the application type; 

that is, some applications are more sensitive to 

privacy as well as optimizing the trade-off between 

privacy and other factors. 

 

5. Conclusion 
FL is a revolutionary approach to cooperative 

healthcare research as it provides a way for training the ML 

algorithms across various institutions with the help of 

patients’ data protection. In this regard, FL empowers several 

hospitals or other medical centers to contribute to creating 

the model while medical data remains decentralized yet 

secure owing to DP and secure aggregation. Our work also 

demonstrates the importance of using FL to increase 

diagnostic accuracy because models that learn from data 

from other institutions are more generalized and less 

sensitive to variations in patient data, which is important in 
healthcare settings. Also, FL can support the implementation 

of AI in different institutions since the model updating 

happens with the participants’ validation without sending the 

actual patient data, which remains a significant concern in 

the healthcare industry due to security issues. Although the 

values of FL are rather high, several obstacles have to be 

overcome. This is due to challenges such as high 

communication costs and varieties of data distribution across 

institutions, which are referred to as heterogeneity.   

 

However, the study shows that these issues are 
constantly being worked on and solved by advancing 

encryption techniques and secure protocols, thus making 

implementing FL more viable. As for future perspectives, the 

development of Federated Learning in healthcare is expected 

to proceed in the direction of defining proper FL pipelines 

that push the technology's deployment along different 

institutions and districts. One such extension is to combine 

FL with blockchain, which will ensure the accountability of 

the model development process. Moreover, FL’s continued 

development could make its integration into real-time 

clinical decision support systems, which would be a critical 

application of AI in patient care in conjunction with data 
protection. In conclusion, I have shown that Federated 

Learning is the promising approach to support the privacy-
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preserving development of AI in healthcare and give medical 

researchers and clinicians eager for collaborative and data-

driven progress in treating and combating diseases an 

opportunity to make positive changes. 
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