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Abstract: Federated Learning (FL) has emerged as a practical approach to training machine learning models
collaboratively across multiple institutions, especially in domains like healthcare where patient data is highly
sensitive. By allowing data to remain local while only model updates are shared, FL addresses a critical balance
between innovation and privacy. This paper explores FL’s growing relevance in medical Al particularly its role in
improving diagnostic models, patient management, and regulatory compliance. Key contributions include a
breakdown of FL's interaction with healthcare systems, a look at privacy-preserving techniques like differential
privacy and homomorphic encryption, and real-world use cases in oncology, cardiology, and radiology. We present
experimental results, challenges with interoperability, and a vision for FL's evolution in secure global healthcare

collaboration.
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1. Introduction
1.1 Emergence of Federated Learning in Medical Al

The integration of Federated Learning (FL) into
medical Al reflects a timely response to the sector’s dual
need for innovation and privacy. As medical institutions
grapple with enormous volumes of patient data, FL offers a
unique way to build powerful predictive models without

compromising data security. Rather than transferring raw
data, which can raise ethical and legal concerns, institutions
can train models locally and contribute to a shared global
model. This shift has sparked meaningful progress in
medical Al, allowing distributed learning to flourish even
under strict data protection laws.
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Figure 1: Emergence of Federated Learning in Medical Al

rather cosy because data in health care is private,
and owing to the large data sets that are usual in
machine learning models, one of the biggest
concerns is data leaks and user information fraud.

Data Privacy and Security Concerns in
Healthcare: The main factor that has made
Federated Learning widely implemented in medical
Al is the issue of data security. These ideas are
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Federated Learning deals with this challenge so that
the data is never transmitted to the central server.
Still, only updates are sent to add to the aggregated
update from the central server. This way, patients’
privacy remains protected, but the data can be
shared between institutions to enhance the creation
of a better generalized Al.

Collaboration Across Distributed Institutions: Al
in the medical space usually requires a large and
varied amount of patient data to create models that
can be used on various patients with various
diseases. Unfortunately, the institutions that operate
in the realm of medicine are bound by legal and
ethical guidelines that do not allow for the exchange
of information. FL assists integration in different
facilities, such as hospitals, clinics, and research
institutions. FL enables the training of models using
the local data from the institutions and includes only
reporting model parameters like weights and
gradients that can be exchanged safely between
institutions. This is especially crucial in areas like
medical imaging, genomics, and patient record
analytics, where variants to develop Al systems
serve different populations of patients.

Improved Model Generalization and
Performance: Therefore, Federated Learning
improves model generalization as a valuable benefit
of medical AI. Because FL serves multiple
institutions and uses decentralised datasets to train
the models, the model is not overtrained in a given
dataset. This results in improved results on a large
sample size, demographics, disease type and patient
conditions, making the model more effective in
real-world situations. It also helps to create models
for the Al, which would improve its accuracy when
dealing with medical conditions and imaging
information, thereby coming up with better
predictions and diagnoses in practice.

Regulatory and Ethical Compliance: According
to different reports compiled by numerous
authorities, the healthcare sector is one of the most
strictly supervised sectors in the world. It also
maintains the validity of the patient’s records by
setting up stringent guidelines, for example, in the
United States: Health Insurance Portability and
Accountability Act (HIPAA) or the European
Union: General Data Protection Regulation
(GDPR). However, due to the Federated Learning
approach, the data remains in its original place;
hence, it becomes easier to follow these regulations
since the raw patient data does not have to travel to
different places. This regulatory compliance makes
it appealing to healthcare providers interested in
implementing Al in their systems without
compromising on legal aspects of privacy.
Real-world Applications and Advancements: FL
is starting to be used in real-world medical Al
challenges. For instance, medical imaging is being
used for collaborative training of deep learning
models for procedures such as brain tumor
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segmentation or chest X-ray analysis with no need
for transferring personal sensitive patient
information to a central location. Federated learning
has another potential use in predictive health care,
where EHRs located in different institutions have to
be used to predict patient outcomes. These
examples evidence the application of the Federated
Learning paradigm on large-scale use cases and its
effectiveness in breaking silos that have been setting
back significant advancements in medical Artificial
Intelligence.

e Future Potential and Challenges: However, there
are some limitations to employing Federated
Learning in medical Al. Of course, as it has been
noted, there are certain challenges within the
concept. Factors such as data distribution may be
categorized as data heterogeneity; they may be data
collected and stored from various institutions and
may not be homogenously distributed or labeled in
the same manner. Also, acquiring updates of these
models and distributing them to clients and servers
consumes time, given that large models may be
involved. Mitigating these challenges will help
achieve the full benefit of federated learning in
transforming medical artificial intelligence and
enhance the development of privacy-preserving
artificial intelligence systems in healthcare. So, in
identifying Federated Learning in Medical Al as the
main topic of discussion, this paper denotes these
insights: Therefore, it is suitable for the healthcare
sector because it can protect data privacy when used
by large datasets, and further developments in
encryption, secure aggregation and improvement of
communication protocols would only promote the
future capabilities of blockchain solutions.

1.2 Importance in Healthcare

Healthcare data is structurally complex since it is a
large collection of information that can be correctly
described as heterogeneous; it includes radiology images,
EHRs, genomics data, and patient medical history, among
others. Every healthcare institution gathers data in its own
format that may vary in the set of protocols and standards.
This heterogeneity resulted in the inability of the models that
would have been developed to generalize well across the
population. But, as mentioned earlier, Federated Learning
(FL) can solve this problem because learners only train
models on local data, and all of them contribute to
developing a general model without sharing their databases.
[5,6] This makes FL train the model on various data sets of
medical conditions, patient data types and disease
progression rates, making the model versatile. This is
particularly important in medical applications of artificial
intelligence, where it is crucial to account for the variance of
some features in the population to make accurate predictions
of an outcome, such as disease probability, where the early
warning signs vary significantly from patient to patient.

However, most health-related data are very sensitive
and require much more protection than any other data, and
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many laws regulate the way they should be collected and
stored, such as the HIPAA in the US and the GDPR in the
EU. Interoperability of the raw patient data at the cabinet
level between the institutions is quite perilous as it includes
cumbersome chances of data leaks and privacy infringement.
FL addresses all these issues because no sensitive
information is transmitted outside the local institution during
the process. Patients’ information cannot be disclosed; only
the changes in the model are shared in the network, while the
models reside in a local database on the personal computer. It
also has the advantage of protecting patient data and
enabling legal and ethical compliance in organizations.
Specific examples of FL include applications that deal with
images: radiology and pathology, genetics (genome), and
personalized medicine to address patients’ behavior and
responses to different treatments or prognoses of outbreaks
and patients’ conditions. Given that FL is capable of
combining decentralized, structurally unrelated data and, at
the same time, protecting data privacy, FL is set to become a
revolutionary enablement technology for the advancement of
Al-assisted healthcare.

2. Literature Survey
2.1 Federated Learning Fundamentals

Federated Learning was first popularized through
the FedAvg algorithm, which allowed devices or institutions
to train a shared model collaboratively without sending raw
data to a central server. This innovation laid the foundation
for secure, decentralized learning an ideal match for sensitive
sectors like healthcare. Over time, several adaptations of this
approach emerged: FedProx added a regularization term to
stabilize training across non-1ID environments, while FedBN
used local batch normalization layers to improve consistency
in heterogeneous datasets. Scaffold tackled another core
issue client drift by applying control variates. These variants
have helped FL mature into a more adaptable and reliable
framework.

2.2 FL in Medical Imaging

Medical imaging has been one of the earliest and
most promising use cases for Federated Learning. In one of
the pioneering efforts, researchers successfully trained
models to segment brain tumors from MRI scans collected at
different hospitals without ever transferring the actual patient
images. The results were nearly on par with centralized deep
learning systems, demonstrating that high performance
doesn’t always require centralized data access. These early
successes have since inspired extensions into other
diagnostic tasks and modalities, confirming FL's value in
real-world clinical settings where data sharing is limited by
law or patient consent.

2.3 Privacy Techniques in FL

In order to strengthen privacy assurance in FL,
various state-of-the-art cryptographic and data privacy-
preserving methods have been incorporated. Differential
Privacy (DP) is one of the most commonly used techniques
where noise is added to gradients or model updates before
broadcasting them to the central server. This assists in
protecting individual items of data to be inferred even from
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the aggregated results. Consequently, Homomorphic
Encryption (HE) operates differently since it allows
computations to be carried out on the encrypted data; thus,
the raw data and even further computations are kept secure.
Nevertheless, HE contains provisos, which can be
computationally expensive. The other is Secure Multiparty
Computation (SMC), whereby a number of parties can
compute a function of inputs to which no other party gains
knowledge of inputs of the other parties. These techniques
offer a strong means of protecting privacy in FL settings,
especially when applied to sensitive contexts such as health
and monetary services provision, but they are often less
efficient computationally and in terms of communication.

2.4 Challenges Identified

Unfortunately, several issues with Federated
Learning are crucial and currently prevent it from being
widely adopted in the industry. The main drawback is, in
fact, the communication overhead because FL entails the
continual exchange of the model between the clients and the
center server. The limitation associated with this is that it can
be challenging in large-scale or bandwidth systems
environments. Another issue that can be problematic is data
heterogeneity, which results when the datasets possessed by
different clients are non-IID, resulting in lower accuracy of
the resultant model and instability in convergence.
Unfortunately, there is no consensus on evaluating,
comparing, and, most importantly, rolling out such systems.
Finally, FL systems have issues of security risks such as
poisoning attacks, which is a process by which a client
pollutes the model, and inference attacks, in which a client
tries to extract information from the updates. Solving these
challenges remains a topic of interest in developing secure,
efficient and robust FL systems.

3. Methodology
3.1 System Architecture

The FL system is used to provide the ability to train
the model with private data of patients to several medical
institutions, for example, hospitals. In this setup, each
participating hospital can be considered a client, and each
client has a local data source that may have very private
medical imaging data such as MRI scans, X-rays or CT
scans. [11-15] Instead of uploading the data to another
server, this might be a privacy, legal or ethical issue; the data
is brought to each client site where the machine learning
model is trained locally and independently. After the local
training, the hospital does not upload the raw data to the
server. Still, it uploads only the model parameters or weight
updates of the model to an aggregation server.

The central server is useful because it pulls the
model updates from each of the participating clients and
combines them using Federated Averaging (FedAvg). The
updated global models accumulated by each round are then
broadcast back to the clients so they can revise their local
models. These steps are repeated through several iterations of
the communication rounds before reaching an acceptable
performance level of the global model. This approach
guarantees that the collected and stored medical data are not
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disclosed to third parties HIPAA and GDPR standards. For
the purpose of improving communication and the level of its
protection, some more subcomponents can be included in the
system structure. For example, the model updates can be
encrypted through homomorphic encryption or protected
through secure aggregation techniques. Update leakage can
be restricted using methods that belong to the differential
privacy category. Therefore, to handle such variance of data
distribution across the various hospitals and to obtain the
best results for each specific case, more elaborate techniques

3.2 Training Process

like adding new layers for a particular hospital or fine-tuning
for the local region may be applied. One particular type of
architecture for this is especially suitable for medical
research and diagnostic tool creation in large numbers of
patients, where data variety and exchange are essential but
cannot be centrally stored due to privacy issues. All in all,
the architecture of the FL system presents a reliable and
efficient solution in the context of privacy-based ML across
different institutions in the medical context.

TRAINING PROCESS

INITIALIZATION s

MODEL
AGGREGATION

GLOBAL UPDATE

|
/

LOCAL TRAINING

Figure 2: Training Process

Initialization: This training process starts right
from the central server of the network by invoking a
global Machine Learning model. It has either
distributed random or pre-trained weights or is used
as the primary model for all clients. This is
important mainly because it puts all the clients at
the same basic point whereby they are equally
informed, which is important in a distributed
training environment. It is then transmitted to the
individual clients (such as hospitals in the case of
medical FL) for the first round of local updates.
Local Training: After collecting the global model,
each client tunes this model for local training on
their respective local data set. This training is
carried out separately and commonly takes place for
one or several local epochs. At this stage, clients
apply certain modifications to the model weights
due to differences in their distribution data, and
institutions might have different data distributions.
Local training leverages valuable patterns from each
client’s data set while preserving the patient’s data
in-house, especially to avoid leaks.

Model Aggregation: Finally, unlike the raw data,
each client transmits its weights, obtained after the
local update, back to the central server. The server
then performs model aggregation, where the most
often used algorithms are the Federated Averaging
(FedAvg). This implies a procedure of averaging the
received model parameters by using a correct
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weight often arrived at from the size of each client's
data. Aggregation allows the construction of a better
model from all clients’ knowledge, as it may be
more diverse due to the distribution of the data.
Global Update: After the aggregation, the global
model weights are updated with new average values
received from the other parameters. It then forms
the new global model shared with all the clients at
the start of the new training round. Clients replace
the previous model with the updated version, and
local training for the new model begins. This
iterative process goes on until either the
achievement of the global model performance or
depending on the set convergence criteria.

3.3 Privacy-Preserving Techniques
o Differential Privacy: Differential Privacy (DP) is
an approach focused on anonymising individual
occurrences used for training the model by adding
stochastic noise, normally from Laplace or
Gaussian distribution. They specially introduce this
noise into the gradients or the model parameters
before it is transmitted to the central server in the
schema of Federated Learning. This enables
minimizing the impact of any given data point;
hence, when the model updates are compromised, it
will be hard for the adversaries to come to any
conclusions. DP has a concrete and numerical
privacy measure, which is denoted often with (g, ),
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and is crucial when the data to be trained is

Differential Privacy

sensitive, such as the medical data.

Figure 3: Privacy-Preserving Techniques

Homomorphic Encryption: Homomorphic
Encryption (HE) implies carrying out data
computations without decrypting the message while
still being secure. This capability is even more
valuable in Federated Learning, where the model
updates can be encrypted on the client side by, for
instance, Paillier or CKKS (Cheon-Kim-Kim-
Song). These encrypted updates are then passed to
the central server, where some forms of aggregation
can be performed without a direct peek at the
original data. After aggregation, the final encrypted
result can only be unlocked by the correct entity;
only the entitled individuals can decrypt it. It
maintains data confidentiality for all the data during
model training and aggregation but incurs some
more computation time.

Secure Aggregation: Secure Aggregation is a
method to perform aggregation where the server can
add up all the client’s model updates but cannot
learn updates from any of them individually. Every
client sends a change of parameters encrypted with
random masks or through cryptographic keys,
whereby the server does not realize the exposure of
individual parameters. The server may then cancel
out the masks (with the help of the clients) so that
he does not observe any of the contributions in
plaintext as he/she adds the sum of the updates. This
technique averts the possibility of the server or any
other unauthorized person from helping reconstruct

federated data, thus making Federated Learning
more secure.

4. Result and discussion
4.1 Experiment Setup

This experiment is planned to create an
environment that could approximate the Federation Learning
system’s nature in which several hospitals (as clients) learn
jointly using the central model without sharing patient data.
Namely, there are 5 replicas of hospitals used in the
computations, and each of them has its medical data, which
is necessary for healthcare purposes. Both datasets used in
the experiment are NIH Chest X-ray and MIMIC-III
datasets, which are quite popular among medical researchers.
The chest X-ray dataset from NIH is one of the biggest pools
of frontal chest X-ray images, with more than one hundred
thousand images with labels for various diseases in lung
disorders. The MIMIC-III dataset, on the other hand, is a
comprehensive source of clinical data since it offers a variety
of data from EHRs of critically ill patients. In this way, the
experiment would be able to evaluate the efficiency of
Federated Learning for both the medical imaging data and
the clinical record information. This setup also allows testing
not only the effectiveness of Federated Learning in
healthcare but also the potential privacy risks when using
such techniques on identifiable health information, which
makes such a scenario highly applicable to the actual
healthcare practice.

Table 1: Model Performance Comparison

Method Accuracy (%) | AUC (%) | Privacy Loss (€)
Centralized 94.8% 95% 0%
FL (No DP) 94.2% 94% 0%

FL + DP 92.7% 91% 3.2%

Centralized Method: The Centralized model can
also be referred to as the traditional model, as it
deals with data collected from all the hospitals
where data from one or several hospitals feeds into
the model. This yields the highest accuracy of
94.8% and the highest area under the curve of 95%,
which is the case since the model can use the entire
dataset in training. However, one main disadvantage
of this approach is the need to disclose patient data
that may contain private information, which is
easily breached in the healthcare environment.
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o FIl without Differential Privacy (also described as
FL-No DP): The FL (No DP) model can be
considered Federated Learning, where no privacy-
preserving measures were applied. Here, you train
the model locally for each hospital, and only the
model weights are transferred to the central server,
not the raw data itself. Therefore, the accuracy
achieved in this case is 94.2%, and the AUC of 94
% is slightly lower than that of the centralized
model. This paper reduces such risks by not sharing
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sensitive data but does not eliminate them entirely
since the model updates could be attacked.

The integration of federated learning with
differential privacy is examined as [FL + DP]: As
for the second aspect in FL + DP, DP reconfigured
the model updates so that it would not leak any
information about the patients. By incorporating DP,
noise is incorporated into the model updates,
leading to a privacy loss of 3.2%. This is at the
expense of the model’s performance since the

accuracy reduces to 92.7%, and the AUC reduces to
91%. Nevertheless, this leads to performance
degradation since the DP technique offers greater
privacy protection; thus, it is preferable if privacy is
a major concern. These results show that the
model's usefulness is an exchange for protection,
which the federated learning accompanied by \DP
provides rather adequately.

3.20%
0%
0%

Privacy Loss

(€)

91%

AUC (%) 94%
95%
92.70%
Accuracy (%) 94.20%
94.80%
0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

FL+DP ®FL(NoDP)

H Centralized

Figure 4: Graph representing Model Performance Comparison

4.2 Findings

Minimal Drop in Accuracy with Privacy-
Enhancing Techniques: The application of the DP
to FL models led to a decrement in accuracy and the
AUC; they reduced from 94.2% to 92.7%,
respectively. This decline, however, was relatively
moderate and, thus, shows that integrating
approaches such as DP does not necessarily
decrease the model's performance significantly. The
reason for a slight decrease in the model’s
efficiency is the noise introduced to the updates to
prevent information leakage from individual data
samples. The noise must make the information
difficult to be learned by the model, hence its
effectiveness in preventing the extraction of
information from the model. However, it slightly
hinders the learning process, leading to a small
margin of decrease in model accuracy and AUC.
However, the small amount of sacrifice indicates
that DP can indeed offer privacy protection while
not greatly affecting the model's performance;
therefore, it is fit for use in scenarios where data
ownership must be kept private.

FL Outperformed Siloed Learning Models: The
statistics presented revealed that FL’s performance
was always higher than the isolated local training
where model training occurs independently without
any FL interaction. Consequently, in this
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experiment, it was possible to record an
improvement ranging from 8-10 per cent compared
to standalone models. This can be credited to FL’s
feature of working in a decentralized fashion where
multiple hospitals train one model but use diverse
datasets without data sharing. Training on more
varieties of data sources makes the model more
generalized so that it can handle wide variations of
various medical conditions as may be exhibited in
different hospitals. This result further establishes the
flexibility and efficiency of FL in deriving better
models from distributed data with confirmation of
privacy and data protection without compromising
the signal quality and integrity and out-competing
the centralized approach.

Communication Efficiency Improved with
FedAvg + Compression Algorithms: When it
comes to large models and many clients,
communication overhead is a significant constraint
in Federated Learning. However, the integration of
FedAvg with model compression algorithms helped
limit the amount of data to be exchanged between
the clients and the central server to a great extent.
Optimizers reduce the size of the updated model
since the amount of communication in each round
and, hence, the network bandwidth is limited. This
improvement is important in real-world scenarios
since the cost of data transfer and the use of
communication channels may be significant. As the
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frequency of updates is less, the system becomes
less resource-intensive. As such, Federated
Learning becomes more scalable and practical in
scenarios where the network is not as strong as in
rural hospitals or where the latency is high.

4.3 Discussion

Trade-off Between Privacy and Model
Performance: The results reveal that with the use
of DP, it is possible to have a trade-off between
privacy and the model's performance. Although DP
is a useful method of preventing the leakage of
sensitive information in the model updates, it
decreases the model’s accuracy due to the noise
added to the updates. When applying DP, both the
accuracy and the AUC of the model were lower
than before, which is expected due to the
introduction of noise in the data learning process.
However, this is mainly true with the privacy

hyperparameter, which is the major factor
determining the DP's feasibility in different
practical applications. A smaller value of €

introduces stronger privacy in the sense that fewer
characteristics of the individual data points can be
learned from the construction of the model, but it
also raises the noise level and, thus, a higher loss in
performance of the model.

On the other hand, a larger value of € means lesser
noise that improves the model performance. On the
other end, the user’s privacy is at risk. Thus, there is
a need to identify an optimal choice of € such that
sufficient levels of privacy are achieved at the same
time the performance penalty incurred is kept
relatively small.

Secure Aggregation Enhances Trustworthiness in
Real-World Settings: Secure aggregation plays a
huge role in providing a trustworthy environment in
Federated Learning, mainly when implemented in
real-life applications such as healthcare. The type of
communication used is that the central server
collects model updates from clients without
accessing the individual updates, yet maintaining
the confidentiality of data. This eliminates the
possibility of disclosure of sensitive information in
the process of model amalgamation, which raises
insecurity issues. When it comes to healthcare
organizations that may deal with patient
information, aggregation must be more secure. It
also makes sure that even the server or any other
middleman participant cannot have the ability to put
together or guess at patient-specific details from
these updates, which would help make all
participants in the federated learning system put
their trust in the arrangement. Such trust is
necessary for adopting Federated Learning in areas
or regions where privacy is crucial, like hospitals or
clinics.

Differentially Private Models Require Tuning of
Privacy Budget (€): Although DP has proven to be
one of the most effective ways of preserving data
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privacy, using the privacy budget (€) is critical in
determining its efficiency. A very small € value
distorts the updates of the model to a large extent,
which in turn results in the handicaps of the ability
of the model to learn good features from the data,
thereby causing significant performance
degradation. While a high € value has the advantage
of increasing noise to reduce noise that affects the
outcome of the learned model, it decreases the
privacy level. Therefore, attackers have a high
chance of learning some important customer
information. Thus, the challenge ensues on how
much noise is optimally introduced into the model
and the usefulness of the model that ensues from the
noise. In order to achieve the above objectives,
there is a need to fine-tune and develop a deeper
understanding of the model so as not to give out
false results while keeping it secure. Moreover, the
value of € is also sensitive to the application type;
that is, some applications are more sensitive to
privacy as well as optimizing the trade-off between
privacy and other factors.

5. Conclusion

FL is a revolutionary approach to cooperative
healthcare research as it provides a way for training the ML
algorithms across various institutions with the help of
patients’ data protection. In this regard, FL empowers several
hospitals or other medical centers to contribute to creating
the model while medical data remains decentralized yet
secure owing to DP and secure aggregation. Our work also
demonstrates the importance of using FL to increase
diagnostic accuracy because models that learn from data
from other institutions are more generalized and less
sensitive to variations in patient data, which is important in
healthcare settings. Also, FL can support the implementation
of Al in different institutions since the model updating
happens with the participants’ validation without sending the
actual patient data, which remains a significant concern in
the healthcare industry due to security issues. Although the
values of FL are rather high, several obstacles have to be
overcome. This is due to challenges such as high
communication costs and varieties of data distribution across
institutions, which are referred to as heterogeneity.

However, the study shows that these issues are
constantly being worked on and solved by advancing
encryption techniques and secure protocols, thus making
implementing FL more viable. As for future perspectives, the
development of Federated Learning in healthcare is expected
to proceed in the direction of defining proper FL pipelines
that push the technology's deployment along different
institutions and districts. One such extension is to combine
FL with blockchain, which will ensure the accountability of
the model development process. Moreover, FL’s continued
development could make its integration into real-time
clinical decision support systems, which would be a critical
application of Al in patient care in conjunction with data
protection. In conclusion, I have shown that Federated
Learning is the promising approach to support the privacy-
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preserving development of Al in healthcare and give medical
researchers and clinicians eager for collaborative and data-
driven progress in treating and combating diseases an
opportunity to make positive changes.
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