International Journal of Artificial Intelligence, Data Science, and Machine Learning
Grace Horizon Publication | Volume 6, Issue 2, 55-64, 2025
ISSN: 3050-9262 | https://doi.org/10.63282/3050-9262.1JAIDSML-V6I2P106

Original Article

Al-Driven Adaptive Control for Battery Management

Systems in Electric Vehicles

Srikiran Chinta!, Hari Prasad Bhupathi?
1.2Kalinga University, India.

Received On: 27/02/2025 Revised On: 10/03/2025 Accepted On: 25/03/2025 Published On: 15/04/2025
Abstract: With increasing global demand for green transportation, the urge to innovate and implement electric
vehicles (EVs) has also picked up steam. Behind the performance, safety, and reliability of EV stands the Battery
Management System (BMS) that optimizes battery performance through monitoring, management, and protection of
the battery pack. Traditional BMS designs have rule-based or model-based approaches with static parameters, which
are not sufficiently adaptive to deal with real usage patterns and battery aging effects. The presented paper proposes
a scheme of adaptive control based on Al for BMS utilizing the ML and DL algorithms to enhance system robustness,
extend the life of the battery, and optimize charging/discharge operations. The proposed system utilizes neural
networks and reinforcement algorithms to estimate dynamic state of charge (SoC), state of health (SoH), and
temperature control against varying loads and ambient conditions. We compare the operation of our framework with
traditional BMS controllers through HIL tests and simulation. Our findings indicate that Al-based BMS delivers more
accurate predictions, fault tolerance, better energy efficiency and battery life improvements. This paper presents a
critical survey of common Al use cases employed in BMS, proposes a novel hybrid Al architecture for adaptive real-
time control, and proposes deployment strategies that can be deployed on the latest EV platforms. Future work
opportunities involve integrating edge-Al for real-time inferencing and federated learning for privacy-respecting data
analysis in distributed EV fleets.

Keywords: Battery Management System (BMS), Electric Vehicles (EV), Artificial Intelligence (A1), Adaptive Control,
Machine Learning (ML), Deep Learning (DL), State of Charge (SoC), State of Health (SoH), Reinforcement Learning

(RL), Edge-Al

1. Introduction
1.1 Background and Motivation

Electric vehicles (EVs) are transforming the
transport industry at a very fast rate with EV technology
being the most efficient means of curbing greenhouses and
depleting fossil fuel consumption. Being one of the largest
generators of carbon emissions globally, the transport
industry, governments, and global institutions are all placing
their bets on EV technology to enhance the sustainability of
the environment. Reported directly to each EV is the energy
storage component, most often lithium-ion batteries, greatly
sought after for high energy density, high cycle count, and
minimal self-discharge. Such batteries, though, are a vaunted
art to accomplish, something that necessitates careful
oversight and precisely tuned in the effort to provide safety,
provide optimal performance, and enhance life. This is where
the Battery Management System (BMS) comes into play.

A BMS is responsible for keeping track of
parameters like voltage, current, and temperature of the
battery, forecasting alarming situations like State of Charge
(SoC) and State of Health (SoH), and safe operation by
offering protection against short circuit, thermal runaway,
overcharge, and over-discharge. Since EVs are being
produced in higher powers and usage patterns differ, the
function of a BMS becomes more significant. Battery

performance, safety, and reliability have direct impacts on
user satisfaction and vehicle reliability. Thus, there is an
urgent need for BMS solutions that can adaptively learn to
respond to different operating environments, vibrating
battery dynamics, and real-time user lifestyles. The
motivation of this research originates from the motivation,
which tries to explore the application of Al techniques into
BMS design and control. Through the support of the adaptive
capacity of Al, EV battery management can now be designed
to make them smart, efficient, and trustworthy energy
storage units for future electric mobility.

1.2 Limitations of Traditional BMS

Rule-based algorithms and equivalent circuit
models are the primary methods for designing conventional
Battery Management Systems (BMS). They rely on pre-
defined thresholds and deterministic logic. They function
well under known, steady-state conditions but lose precision
and efficiency in practical applications involving dynamic
load conditions, varying ambient temperatures, and gradual
battery degradation. As for instance, universal practices such
as Coulomb counting and Kalman filtering to calculate SoC
have a high vulnerability to long-term drift and considerably
depend on precision initial values alongside the adjustment
of parameters. Similarly, SoH estimation algorithms
commonly rely on assumptions of fixed pattern for


https://doi.org/10.63282/3050-9262.IJAIDSML-V6I2P106

Srikiran Chinta & Hari Prasad Bhupathi/ IJAIDSML, 6(2), 55-64, 2025

degradation loss, excluding randomness in usage patterns,
environmental changes, or variations in manufacturing
characteristics. But still another critical shortcoming of
traditional BMS is their inability to extrapolate across
different battery chemistries and pack arrangements without
significant re-engineering. As diversity in EV platforms
increases, batteries are subjected to new stressors and aging
modes, one-size-fits-all methods of BMS are no longer
adequate. Traditional systems are also not real-time adaptive,
resulting in conservative operating margins that reduce the
efficiency of battery utilization. These inefficiencies manifest
as lower driving range, longer charging times, and greater
likelihood of premature cell aging.

Moreover, rule-based logic does not possess the
capability to learn from previous data or predict upcoming
states. This inability to anticipate and adapt tends to lead to
missed opportunities for energy optimization and fault
prevention in advance. As EV uptake rises globally, and as
performance and reliability demands from consumers
continue to escalate, the constraints of conventional BMS
designs present significant challenges. These are issues that
emphasize the need for smarter, more flexible, and data-
driven approaches capabilities that artificial intelligence (Al)
technologies are well positioned to deliver.

1.3 Emergence of Al in BMS

Artificial Intelligence (AI) has emerged as a
revolutionary technology in several fields, and its application
to Battery Management Systems (BMS) is also attracting
growing attention. The nonlinear behavior of batteries
combined with the heterogeneity of usage environments in
electric vehicles (EVs) renders Al a perfect candidate for
improving BMS performance. Al computations i.e., those
that use machine learning (ML) and deep learning (DL) can
simulate dynamic systems with complicated behaviors
without being physically represented. Rather than using stiff,
pre-specified rules, experience-based Al systems learn and,
over time, can adapt to changing battery behaviors.Machine
learning techniques like Support Vector Machines (SVM),
Decision Trees, and Random Forests have been used for the
prediction of battery State of Charge (SoC), State of Health
(SoH), and Remaining Useful Life (RUL) as well. Even
more sophisticated models like Long Short-Term Memory
(LSTM) networks and Convolutional Neural Networks
(CNNs) have also enhanced the predictability by extracting
temporal and spatial patterns in battery data. These models
are more accurate, robust, and interactive than conventional
estimation techniques under most operating conditions.

Reinforcement Learning (RL) is yet another Al
domain that offers a promising avenue for the optimization
of charging and discharging cycle control strategies. Through
closed-loop interaction with the battery system, an RL agent
is able to learn how to optimize performance metrics such as
efficiency, battery life, and thermal stability. Perhaps more
significantly, Al enables real-time decision-making, fault
detection, and predictive maintenance, enabling BMS to
move from a reactive to a proactive, self-optimizing system.
With advancements in compute hardware, such as the low-
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power edge-Al platforms that exist today, implementing
these models on actual EVs in the market is possible. This
change is a change from passive battery monitoring to
adaptive smart battery control and paves new innovation
avenues in EV technology.

1.4 Objectives of the Paper

This research study is driven by the imperative to
innovate Battery Management Systems (BMS) with artificial
intelligence (AI) to spearhead the revolution of future
electric vehicles (EVs). The prime aim is to overcome the
drawbacks of existing BMS topologies and demonstrate how
Al-aided adaptive control approaches can improve the
performance, safety, and lifespan of batteries. In that
direction, this paper presents four key objectives. First, the
book seeks to provide an overall picture of Al technology
state-of-the-art for BMS design. This includes a
comprehensive assessment of ML and DL models of battery
state variable estimation and application of RL to optimal
control policy design. Second, the work suggests a new
hybrid AI architecture that integrates Long Short-Term
Memory (LSTM) networks, Convolutional Neural Networks
(CNNs), and Deep Q-Learning (DQL) for real-time and
adaptive decision-making in BMS. The hybrid architecture is
such that it takes into account temporal dynamics as well as
control schemes, and the solution is end-to-end for battery
management.

Third, the paper also includes a full simulation and
validation process based on real driving data and HIL test
scenarios. The new Al-based battery management system is
compared to rule-based systems in terms of different
performance metrics such as SoC prediction accuracy,
charging efficiency, thermal management, and SoH
degradation rate. Finally, the paper explores deployment
possibilities, such as deployment onto edge-Al hardware for
real-time inference and control, and into areas of integration
with future-gen EV platforms. This variability in design is
the one in the direction toward which the paper seeks to
provide theoretical as well as practical contributions toward
the advancement of intelligent BMS solutions scalable,
efficient, and robust.

1.5 Paper Organization

The paper is designed in a manner that it formulates
the research problem, the solution proposed, and the outcome
of validation in an integrated and organized manner. Section
2 then provides a thorough survey of literature, introducing
traditional and Al-based approaches of battery management.
It explains state estimation techniques, control policies, and
identifies the constraints involved in applying Al in BMS.
Section 3 defines the methodology of the proposed system
with an explanation of Al-adaptive control system
architecture. The section gives an overview of data
acquisition, machine learning algorithms utilized for SoC
and SoH prediction, reinforcement learning for control, and
system deployment on edge devices. Flowcharts and system
diagrams are included to explain the implementation
strategy.
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Section 4 comprises results and discussion, such as
experimental setups, comparison of performance, and
evaluation metrics. The model is validated with respect to
simulations as well as hardware-in-the-loop testing. Key
findings are highlighted using figures and tables in an
attempt to display performance improvement with respect to
traditional BMS. Finally, Section 5 provides conclusion and
future work, summarizing the contribution of the paper and
future directions for research. These include the addition of
federated learning to ensure privacy-preserving analytics,
further enhancing model generalization improvement, and
challenges of real-world deployment. This systematic
approach is giving cohesiveness and transparency, educating
readers by Al development, deployment, and utilization in
modern BMS solutions.

2. Literature Survey
2.1 Traditional Battery Management Techniques
Conventional Battery Management Systems (BMS)
employed deterministic and physics-based modeling
methods for battery monitoring and management in the past.
Examples of the best known among them include the
Extended Kalman Filter (EKF), Coulomb counting, and
Electrochemical Impedance Spectroscopy (EIS). The EKF is
an algorithmic state estimation approach for nonlinear
batteries to iteratively correct predictions from observed
system outputs. It is particularly well-adapted for State of
Charge (SoC) estimation but suffers from being very prone
to model error and noise. In a similar manner, Coulomb
counting quantifies the SoC by integrating the current over
time. While inexpensive and straightforward, it is prone to
cumulative error and does not naturally account for dynamic
environmental or load conditions. Electrochemical
Impedance Spectroscopy gives a more detailed picture of
battery condition by frequency-domain analysis but with
sophisticated equipment and too cumbersome to be
employed onboard in real time.

Other similar circuit models, including Thevenin
and Randle's model, are also preferred in battery response
modeling with less computational effort. These are, however,
parameter calibrated on fixed or slowly varying conditions
and therefore less sensitive to changing actual conditions.
Conventional methods always assume constant operating
conditions and are worst-case design-based with
conservative safety margins. These tight limits result in low
efficiency in battery utilization and vehicle operation. Most
importantly, such systems lack the potential for learning
from in-service operation or for accommodating effects of
battery aging, which accumulate during extended service as
electric vehicles (EVs) grow older. With growing demands
for smart energy management, enhanced driving range, and
enhanced battery life, traditional approaches alone are no
longer sufficient. The shift towards smart and learning
technologies, spurred heavily by Artificial Intelligence (Al),
has been identified as the most crucial next step towards
BMS development.

2.2 AI Techniques in Battery State Estimation
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Artificial Intelligence (Al), in the form of machine
learning (ML) and deep learning (DL), has advanced the
science of battery state estimation significantly. Al
approaches are different from traditional model-based
approaches in the sense that they are capable of learning
from past and current sensor data nonlinear, intricate
relationships, thus allowing them to handle a range of battery
chemistries, configurations, and conditions. Support Vector
Machines (SVM), Decision Trees, and Random Forests were
most commonly utilized for estimating SoC and SoH with
optimistic results. They are relatively lightweight and
interpretable models, thereby suitable for applications of
BMS during the introductory phase of Al. Deep models have
demonstrated impeccable performance, specifically in the
operation's  highly dynamic and uncertain cases.
Convolutional Neural Networks (CNNs) excel at spatial
pattern extraction and have been used for both anomaly
detection and SoH estimation from voltage-current traces
and thermal images. Long Short-Term Memory (LSTM)
networks, a type of Recurrent Neural Network (RNN), are
particularly suited to sequential data, such as time-series
readings of current, voltage, and temperature. LSTMs are
capable of learning long-term dependencies and provide
extremely accurate SoC estimation under adverse driving
conditions and varying environmental parameters.

Al approaches have also made multi-tasking
possible wherein SoC, SoH, and temperature estimation are
performed simultaneously, improving computational efficacy
as well as system reliability. Ensemble learning techniques
wherein multiple models (e.g., bagging or boosting
strategies) are fused have also been shown to achieve
improved generalization and fault tolerance. Although these
developments came with tremendous improvement,
challenges persist in model explainability, labelling
requirements in data, as well as in real-time deployability
constraints. However, along with the availability of battery
dataset and edge-Al hardware development platform,
challenges are being increasingly addressed. The Al-based
methods of state estimation therefore mark an epoch-making
transition from static rule-based reasoning towards adaptive
self-learned system capable of ensuring intelligent energy
management for EVs.

2.3 Reinforcement Learning in BMS

Reinforcement Learning (RL) is a subset of
machine learning that aims at sequential decision-making
where an agent learns to take actions by engaging with the
environment with the ultimate goal of maximizing the
cumulative reward. Its application in Battery Management
Systems (BMS) has been appealing because it can optimize
battery charging and discharging cycles, thermal
management, and energy consumption regardless of being
given explicit models for the system. Compared with
supervised learning approaches, RL algorithms are not
dependent on labeled data, and hence they are optimal for
adaptive control for changing conditions. Deep Q-Network
(DQN) is one of the most widely used RL algorithms, which
adapts Q-learning with deep neural networks to estimate the
action-value function for the high-dimensional state space.
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DQN has also been employed for the creation of policies
with dynamically altering charging rates based on real-time
battery temperature, voltage, and history of use. This offers
improved charging efficiency along with lower degradation,
particularly while fast-charging. A further sophisticated
technique is Proximal Policy Optimization (PPO), a policy-
gradient method that strikes the right balance between
exploration and exploitation and is best suited for learning
continuously from changing battery dynamics.

Through the integration of reward functions that
discourage thermal spikes, overcharging, or excessive
current draws, RL agents can be trained to develop optimal
policies optimizing battery life and safety. Furthermore, RL
can be integrated with predictive models like LSTMs to
create hybrid architectures that achieve both accurate state
estimation and smart control. By doing so, BMS can be
upgraded from passive monitoring devices to active

optimization agents. Although it has benefits, RL-based
BMS methods are limited by having long learning periods,
safe exploration, and the requirement of extensive simulation
sets. Recent developments, such as model-based RL, and
safe exploration methods are alleviating these constraints. In
most instances, reinforcement learning presents a thrilling
direction towards realizing end-to-end autonomy and
adaptability in battery management for electric vehicles.

2.4 Comparative Studies

Comparative assessment of some Al methods used
in Battery Management Systems (BMS) provides numerous
strengths and drawbacks with regards to accuracy, capability
for learning, and computation in real time. The table below
presents a description of some extensively utilized Al
methods in the literature with their normal application areas
as well as relative performance characteristics.

Table 1: Comparison of Al Techniques for BMS

Technique Use Case Accuracy | Adaptability | Real-time Capability
SVM SoC Estimation | Medium Low High
CNN SoH Prediction High Medium Medium
LSTM SoC Tracking | Very High High High
DQN Charging Control High Very High Medium

Support Vector Machines (SVM) are applied due to
their simplicity in complexity in low-noise conditions. They
are less adaptive and less tolerant to nonlinear, time-variant
conditions. Spatial analysis has been performed excellently
by Convolutional Neural Networks (CNNs), which are
highly suitable for fault diagnosis and SoH estimation based
on pattern recognition of voltage-current profiles. LSTMs are
superior to conventional models in SoC tracking because
they can model time-series dependencies, and they are
proven to generalize extremely well in dynamic
environments. On the controller side, Deep Q-Networks
(DQN) are highly versatile with the ability to learn from
interaction and generate optimal charging strategies based on
unit battery behavior. Models of DQN are plagued by latency
in real-time contexts due to their very high computational
complexity. These comparisons highlight that although no
one approach is superior in all aspects, hybrid approaches
that leverage the strengths of several Al models are most
promising for future BMS applications. Furthermore, the
real-time requirements of Al algorithms are increasingly
being addressed by edge computing and hardware
acceleration, further enabling them to be integrated into
production EV systems.

2.5 Gaps in Existing Work

Despite historic breakthroughs in the application of
Al in Battery Management Systems (BMS), there are some
significant gaps which restrict bulk deployment of these
technologies in actual electric vehicles (EVs). For one, most
research papers study a single feature of battery management
SoC estimation or charging control employing a single Al
technique. While individual point solutions are likely to
provide more accuracy or flexibility within the particular
domain, they cannot provide multiple functions
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simultaneously. This piecemeal strategy leads to disparate
systems that ultimately become unscalable or hard to
integrate. The second significant weakness is the absence of
real-time operation focus. The majority of Al models,
particularly deep learning and reinforcement learning, are
computationally costly and typically trained and tested in
offline settings. Their deployment into onboard BMS
environments is still challenging because of the latency
demands and power constraints. Edge-Al deployment
strategies have nearly no research papers on them, and they
are critical for real-time inference and adaptive feedback in
automotive applications.

In addition, most current models are not compatible
with continuous learning or online adaptation. Static models
become obsolete with battery aging and changing usage
patterns, and they suffer from degraded performance or even
safety risks. The absence of real-time feedback loops
prevents such systems from revising their policies or
parameters as battery states change. Furthermore, data
availability and standardization are still the biggest
challenges. Most models are trained on confidential or lab-
scale datasets that do not represent actual driving or varied
battery chemistries. This hinders model generalizability and
applicability in real life. Closing these gaps will necessitate
the transition to hybrid, adaptive, and modulated BMS
design with over a single Al model, allowing for real-time
processing, and constant learning. Integration of edge
computing and federated learning frameworks can also
facilitate modeling capabilities at edge, scalability, and
responsiveness, but there remains more to make way for
genuinely intelligent battery management in next-gen EV
platforms.
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Figure 1: Proposed AI-Driven BMS Architecture

3.1 System Overview

The suggested Al-based Battery Management
System (BMS) architecture, illustrated in Figure 1, employs
multiple artificial intelligence modules to perform real-time
state estimation, adaptive control, and smart decision-making
for electric vehicles (EVs). The architecture contains five
basic layers: data collection, preprocessing, machine
learning-based estimation, reinforcement control, and edge
deployment. At the basic level, sensor modules continuously
observe important battery parameters of voltage, current,
temperature, and charge/discharge rates. These raw data
streams are thereafter directed to the preprocessing module
whereby they are descreened against noise, normalized, and
characteristics of interest thereof are extracted therefrom.
The prediction of State of Charge (SoC) and State of Health
(SoH) with respect to time and space characteristics of data
are done through an ensuing hybrid model of next hybrid
Long Short-Term Memory-Convolutional Neural Network
(LSTM-CNN). Parallel to this, a DQN reinforcement
learning-based agent learns useful control policies via
experience with the environment and batteries. The closed
adaptive feedback loop guarantees model update in real-time
with sensor feed and user pattern information. It operates on
a Jetson Nano edge-Al board in order to keep up with the
very high real-time requirements of automotive applications.
The architecture not only provides high accuracy of battery
state estimation but also ensures stable adaptability and
better energy efficiency.

3.2 Data Acquisition and Preprocessing

Effective use of Al in BMS begins with quality and
robust data acquisition. The system in this work gathers data
from sensors on the EV battery pack. Sensors are used to
measure key parameters like voltage across cells, current
through the pack, surface temperature and core temperature,
ambient environment conditions, and previous charge-
discharge cycles. These kinds of data form the input for the
training of machine learning models appropriately as well as
for real-time inference. Sensor raw data are likely to be
corrupted by transients, noisy, or missing and hence a
requirement to have preprocessing. Preprocessing itself
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forms multiple operations. Handling missing values takes
place initially via interpolation or imputation strategies in
such a manner that continuous sequences of data become
available. Second, normalization is performed to convert all
the sensor measurements to a common numerical scale
(usually between 0 and 1) to enable deep learning models to
converge properly. Either min-max normalization or Z-score
is selected based on the nature of the data distribution.
Statistical and machine learning-based outlier detection
algorithms like Isolation Forests or DBSCAN are used to
identify and eliminate erroneous readings due to hardware
failures or unwanted environmental spikes.

Furthermore, computed features such as voltage
delta, current RMS, charge throughput, and cumulative
temperature rise are computed to enrich the input space for
downstream Al modules. Temporal structuring is
subsequently realized by dividing data into windows for
LSTM processing and 2D shaping utilized in CNN analysis.
The preprocessed data is subsequently forwarded to the
training pipeline, and a small subset is streamed continuously
to enable real-time model inference at the edge hardware.
This foundational acquisition and preprocessing pipeline
enables robustness, accuracy, and reliability in the resultant
Al-based BMS operations.

3.3 Machine Learning for SoC and SoH Estimation
Effective SoC and SoH estimation of the battery are
required for proper and safe EV operation. For this purpose,
the system represented employs a deep neural network of
hybrid LSTM-CNN that draws the strengths from both time-
series and spatial learning of features. LSTM (Long Short-
Term Memory) layer performs efficiently in identifying long-
term temporal trends of sequence sensor data like voltage
changes, current trends, and thermal gradients as a function
of time. This positions it highly well for identifying trends of
SoC wvariation. At the same time, CNN (Convolutional
Neural Network) layer performs well in identifying local
patterns and anomalies in 2D structures of battery readings
and then enhancing the predictive precision of SoH. The
training data are composed of sensor measurements from
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publicly available battery data sets and proprietary operating
records of electric vehicle fleet operators. The data set
comprises real-world driving cycles experienced under a
variety of temperatures, discharge rates, and battery
chemistries. The LSTM layer is provided with sequential
input vectors of a sliding time window of battery states, and
the CNN is provided with 2D matrices from correlation and
co-variance maps of sensor signals. The two outputs are
combined in a close layer to generate final SoC and SoH
estimates.

Model performance is maximized with mean
squared error (MSE) as loss function and Adam optimizer to
achieve fast convergence. Regularization techniques like
dropout and early stopping are utilized to avoid overfitting.
In real-time deployment, the inference part of the trained
model alone is run on edge hardware for real-time
estimation. This dual-model fusion enhances estimation
accuracy by as much as 15% over individual models and
provides stable battery monitoring even in dynamically
changing scenarios.

3.4 Reinforcement Learning for Control Policy

Reinforcement Learning (RL) adds a smart,
adaptive element to battery control. In the current work, we
utilize a Deep Q-Network (DQN) agent that is trained to use
optimal charging and discharging strategies for optimal
efficiency and battery life. The RL agent learns in a
simulated battery model that replicates realistic behaviors
including aging effects, thermal dynamics, and non-linear
charge-discharge rates. The agent has a view of the world
using a state vector of real-time SoC, SoH, temperature, and
user demand. The actions are discrete charge/discharge
powers, and rewards on multi-objective metrics are
computed.

Formula 1 outlines the reward function:

R = w, - EnergyEfficiency + w, - BatteryHealth — wy - TemperatureRise

Where:
e wl,w2,w3 are tunable weights,

EnergyEfficiency relates to the ratio of delivered

versus stored energy,

BatteryHealth penalizes overcharge/deep discharge,

TemperatureRise penalizes thermal excursions.

The DQN employs an epsilon-greedy policy for
regulating exploration and exploitation. Experience replay
buffer and a target network are employed for stabilizing the
learning. The training is conducted in a simulated
environment by utilizing OpenAl Gym-based simulators
along with actual battery profiles. After the agent converges,
the policy is exported and installed on the edge device. The
RL agent dynamically learns control strategies based on real-
time inputs and accordingly adjusts to changing user
requirements and environmental conditions. This leads to
increased battery life (10-20% enhancement) and improved
thermal safety without degrading vehicle performance.

3.5 Adaptive Feedback Loop
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One of the inherent qualities of the envisioned Al-
driven BMS is its adaptive feedback loop, hence rendering
the system dynamic and precise since the conditions of the
battery change over time. Unlike fixed rule-based systems,
the feedback loop enables the model to be dynamically
updated in real time according to actual usage patterns in the
real world, making the BMS self-improving throughout the
whole life cycle of the EV. The adaptive loop compares
calculated values (e.g., SoC, SoH) and control output (e.g.,
temperature rise, energy through-put) to sensor readings. A
significant  discrepancy initiates local retraining or
adjustment of Al models. The feedback loop comprises three
interconnected modules: monitoring, evaluation, and update.
The monitoring module receives real-time streaming sensor
readings from the sensor array. The performance metrics like
estimation accuracy, prediction error, and thermal deviation
are calculated by the evaluation module. When the indicators
cross a predetermined threshold, the update module
undergoes partial model retraining or weight adaptation
using online learning methods. Light incremental learning
algorithms perform the updates in a computationally
lightweight manner and do not involve full model retraining.

In addition, the feedback loop integrates user usage
with its learning. Drive use behind a vehicle, charge usage,
and climate control usage are tracked and fed in as a second
input in an attempt to give more customized answers. The
system is hence learning from the battery and also the way
that the user operates within the car. Adaptive loop is
involved in ensuring best performance under new conditions,
in order to resist aging battery, ambient changes, and driver
drift effects. The feedback is designed to be matched with
long-term goals for proactive power management and
predictive maintenance and has the BMS in unison with
monitored system.

3.6 Edge Deployment

For providing low-latency, energy-efficient, and
privacy-preserving operation, the overall AI-BMS system
operates on an edge-Al platform, i.e., the NVIDIA Jetson
Nano. The small computing platform is equipped with a
quad-core ARM Cortex-A57 CPU, 128-core Maxwell GPU,
and 4 GB LPDDR4 RAM and can suitably operate Al
models in real time in vehicular environments. The hybrid
LSTM-CNN SoC and SoH estimation model and the DQN
control policy are TensorRT-optimized and quantized to
INT8 precision for memory footprint and inference time
reduction. Figure 2 shows the hardware deployment setup
following Jetson Nano. Sensor battery data is streamed over
a CAN interface to Jetson Nano, where the data is
preprocessed before being presented to AI modules.
Inference result is forwarded to the Battery Control Unit
(BCU) for charge/discharge command execution. Metadata is
retained in a local SQLite database for learning and
diagnostic applications.

The edge deployment method has a number of
benefits. Firstly, it reduces communication latency, which is
important in real-time control of vehicle systems. Secondly,
it restricts reliance on cloud infrastructure, improving system
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reliability and privacy of information. Thirdly, it facilitates
continued operation even when there is no connectivity to
networks. For further dependability, watchdog timers and
fail-safe principles are applied for switching over to default
control schemes in case of hardware or model malfunction.
The system is tested across different operating loads and
temperatures to check for stability and performance testing.
This embedded application offers prospects for scalable,
secure, and autonomous battery management for production
EVs.

3.7 Flowchart of Adaptive Control Loop

Adaptive control flow of the Al-powered BMS is
shown in Figure 3. The process begins with sensor
measurement (voltage, current, and temperature reading).
Such inputs are preprocessed (noise removal, normalization,
feature extraction) before being input to the LSTM-CNN
model for predicting SoC and SoH. Meanwhile, the DQN-
based RL agent chooses the optimal control action (e.g.,
adjust charging rate). The outputs are sent to the Battery
Control Unit, where the control policy is enacted. The system
then enters the feedback loop, in which actual measures of
performance are compared with predicted values. If
deviations exceed a predetermined threshold, the adaptive
feedback loop engages in model updates via online learning
algorithms. The loop operates in a cycle, enhancing model
performance with time while accommodating changes in
battery conditions and wuser activity. This flowchart
encapsulates the underlying philosophy behind the system:
intelligent, real-time, and self-correcting control.

4. Results and Discussion
4.1 Experimental Setup

To ensure validation of the created Al-based BMS,
we set up a Hardware-in-the-Loop (HIL) simulation facility
on a 60Ah lithium-ion battery pack. The test facility was
developed with the ability to mimic real-world driving and
charging scenarios and facilitate controlled variation of
operating parameters to a high level of precision. Hardware
comprised a programmable power supply, battery emulator,
thermal chamber, and sensor modules attached to the Jetson
Nano edge Al device where the intended control and
estimation algorithms were executed. The test cases of the
simulation were designed using common driving cycles such
as UDDS (Urban Dynamometer Driving Schedule) and
HWFET (Highway Fuel Economy Test) representing high
speed, load conditions, and ambient operating conditions.

The BMS was exposed to realistic continuous
sensor feedbacks of voltage, current, and temperature,
characteristic of actual battery pack operation. The ground-
truth SoC and SoH measurements were derived from
electrochemical model predictions and supplier data for
comparisons. The platform permitted offline accuracy testing

of the training and online responsiveness testing for control.
Wide testing was done through multiple cycles to ensure
statistical significance and reliability. The AI components
(hybrid LSTM-CNN, DQN agent) were trained on 80% of
the data and tested on 20% of the data before being deployed
on the HIL system. Key performance criteria such as SoC
estimation error, SoH degradation rate, charging time, and
thermal stability were quantified using calibrated
instruments. The overall configuration provided a real,
reproducible, and controlled configuration to compare the
proposed system with traditional BMS implementations.

4.2 Performance Metrics

To compare quantitatively the Al-based BMS's performance
relatively, quantitative indices that are reliant on battery
longevity, efficiency, and safety were selected:

e Mean Absolute Error (MAE) of SoC Prediction:
This is the measure to represent the difference
between the estimated and actual SoC value as a
measure of accuracy of the LSTM-CNN estimate
model. Lower MAE refers to enhanced prediction
accuracy, which is most important in accurate range
estimation and charge planning of EVs.

e SoH Degradation Rate: As a year-to-year decrease
in overall battery capacity, it is a metric to report by
which the BMS impacts long-term battery life. By
preventing overcharge, deep discharging, and
thermal spikes, the Al system should minimize
degradation.

e Reducing the Charging Time: It is a technique of
tracking the performance of the DQN-based control
method to present an optimal number of charge
cycles. Reducing charging time with cell safety
offers higher energy throughput and operational
efficiency.

The remaining performance aspects were power
consumption in edge devices, temperature fluctuation, and
system latency, yet according to the study requirements,
emphasis was laid on the three most significant parameters
mentioned above. The readings not only meet industry
requirements but also have direct-world implications in
vehicle performance, customer satisfaction, and battery
replacement cost. The readings were recorded after a buildup
of more than 100 charge/discharge cycles to guarantee
statistical stability and reliability. The achieved results form a
good foundation on which the pragmatic practicability of the
said Al-based BMS can be estimated.

4.3 Result Analysis

The relative performance of the conventional and
Al-based BMS systems is discussed in Table 2 below. The
results conclusively prove the superiority of the proposed Al
framework on all the performance parameters of concern.

Table 2: Performance Comparison of BMS Systems

Metric Traditional BMS | AI-Driven BMS
SoC MAE 52% 1.3%
SoH Degradation 8.5%/year 4.1%/year
Charging Time 90 minutes 68 minutes
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Figure 2: Performance Comparison of BMS Systems

The Al-based BMS lowered the SoC prediction
error to 1.3% from 5.2%, i.e., a reduction of almost 75% in
prediction accuracy. This is achievable due to the hybrid
LSTM-CNN model's ability to perceive sequential and
spatial relations in battery data. Thus, SoH degradation rate
decreased from 8.5% to 4.1% per year, validating the
efficiency of reinforcement learning toward guaranteeing
secure working limits and load management of
charge/discharge between cells. Further, charging time
decreased by approximately 24%, from 90 to 68 minutes,
without going beyond thermal limits and impacting battery
life. This performance is gained by the policy optimization of
the DQN agent that dynamically optimizes current flow
based on actual-time SoC, temperature, and future demand
prediction. The system exhibited operationally stable
performance under trial conditions with negligible latency
(~120 ms inference time) and no apparent drift in
predictions. These gains taken together indicate the viability
of incorporating Al methods into commercial EV BMS units,
which can lead to increased energy usage, battery longevity,
and accelerated charging all such aspects that set electric
mobility scalability.

4.4 Discussion

Outcomes verify that the new BMS founded on Al
is superior to traditional approaches on some major domains
accuracy, adaptability, and efficiency to a large extent. With
the use of the hybrid LSTM-CNN model, the system
achieved an insignificant SoC prediction error and directly
aid the driver through the enhancement of confidence on
range with the evading of risks for deep discharge. The
traditional methods like the Kalman filters are limited by
rigid models and noise assumptions, making them unable to
react quickly in real-time. This was not so in the deep
learning model, which learned complex non-linear
relationships between sensor variables and battery state
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variables to generate more stable and better predictions.
Reinforcement learning (RL) provided remarkable efficiency
gains to operations. Best charge and discharge policies,
satisfying the prevailing power demand and taking battery
long-term health into account, were found via DQN training
of the agent. With lower instantaneous charge/discharge
current and ideal thermal conditions, RL-based control
minimized SoH degradation and maximized battery life
utilization. It maximized charging efficiency with predicted
best charging time windows considering thermal and user
profiles.

In addition, the edge deployment offered zero
latency real-time response, which is an important condition
for EVs in that decisions must be realized within
milliseconds. The adaptive feedback loop also made it
possible for the system to learn wunder changing
environmental conditions and user behavior and thereby
maintain the model drift and battery aging resilient. Briefly
speaking, this architecture is a shift from fixed rule-based
systems to adaptive data-driven smart systems that learn and
improve over time. Not only is the application of Al better
technically but also allows for the ultimate sustainability,
safety, and scalability goals for electric vehicle ecosystems to
be achievable.

4.5 Limitations

In spite of the encouraging results, some of the
limitations in the proposed system have to be overcome in
future releases. Most importantly, the accuracy of the
machine learning estimators, especially the LSTM-CNN
estimator, heavily depends on the quality and variability of
the training data set. Unless the training set includes edge
cases and extreme operating points (e.g., cold-starts, deep
discharges, or heavy use), the model will fail to generalize in
the field. Also, battery chemistries differ by manufacturer
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and application, so the model may need to be retrained for
different batteries, adding still more system complexity.
Another fundamental limitation is that of edge hardware
capability. While the NVIDIA Jetson Nano enables real-time
Al inference, it is compute- and memory-limited in
comparison to cloud environments. This limits model
complexity and potentially impinges upon performance with
multi-tasking or concurrent system loads. Inference
optimization methodologies such as model pruning and
quantization assist, but can result in minimal accuracy loss.

In addition, regulatory compliance and safety
certification are also major issues. Al models are black
boxes, and ensuring their behavior across all operating
conditions in the case of safety-critical systems such as BMS
is difficult. Explainable Al methods and formal verification
tools must be incorporated with an attempt at achieving
industrial standards. Lastly, although adaptive feedback loop
generates resilience, there are also some possible
cybersecurity threats if the malware data affects the online
learning procedure. These need to be negated by robust
model update strategies and anomaly detection. In spite of
these restrictions, the work provides a sufficient basis for
upcoming intelligent BMS systems and prescribes directions
for future research.

5. Conclusion and Future Work

This paper has introduced a wide Al-driven
adaptive control scheme for Electric Vehicle (EV) Battery
Management Systems (BMS) with a view to overcoming the
limitations of traditional rule-based and model-dependent
approaches. The system, with a hybrid LSTM-CNN
configuration, produces extremely accurate real-time
estimations of the battery State of Charge (SoC) and State of
Health (SoH) with a significantly reduced error rate, thereby
enhancing operation reliability. ~ Simultaneously, a
reinforcement learning agent trained on a Deep Q-Network
(DQN) was employed in order to be taught the most
favorable charging and discharging strategies, proving great
decreases in charge time and annual SoH decay, as ratified
by exhaustive Hardware-in-the-Loop (HIL) experiments on a
60Ah lithium-ion battery pack. Operation of the smart
system on edge-Al hardware (NVIDIA Jetson Nano) allowed
for low-latency, real-time control with minimal
computational overhead, enabling its application to real-
world electric vehicle systems.

The use of an adaptive feedback loop also provided
for continuous learning from user action and sensor readings,
resulting in dynamic system evolution based on user usage
patterns and environmental factors. In summary, the results
confirm the Al-driven BMS's ability to maximize battery life,
efficiency, and safety and deliver a scalable, smart solution
for modern EV platforms. In the future, there are several
compelling directions for future work presented that will
further expand the system's capabilities. One is to apply
federated learning to enable collaborative model training
across an distributed ensemble of EVs, while achieving
broader generalization without compromising user privacy.
Two is to provide next-generation edge-Al hardware with
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increased memory and computational strength to support
more complex deep learning models and higher-level control
and estimation. Third, integrating Al-powered fault diagnosis
and predictive maintenance software in the BMS can enable
the BMS to become proactive in identifying cell imbalances,
degradation patterns, and safety faults ahead of time. This
enhancement will, as a whole, lead towards an intelligent,
green, and safe energy management philosophy for the future
of electric mobility.
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