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Abstract: With increasing global demand for green transportation, the urge to innovate and implement electric 

vehicles (EVs) has also picked up steam. Behind the performance, safety, and reliability of EV stands the Battery 

Management System (BMS) that optimizes battery performance through monitoring, management, and protection of 
the battery pack. Traditional BMS designs have rule-based or model-based approaches with static parameters, which 

are not sufficiently adaptive to deal with real usage patterns and battery aging effects. The presented paper proposes 

a scheme of adaptive control based on AI for BMS utilizing the ML and DL algorithms to enhance system robustness, 

extend the life of the battery, and optimize charging/discharge operations. The proposed system utilizes neural 

networks and reinforcement algorithms to estimate dynamic state of charge (SoC), state of health (SoH), and 

temperature control against varying loads and ambient conditions. We compare the operation of our framework with 

traditional BMS controllers through HIL tests and simulation. Our findings indicate that AI-based BMS delivers more 

accurate predictions, fault tolerance, better energy efficiency and battery life improvements. This paper presents a 

critical survey of common AI use cases employed in BMS, proposes a novel hybrid AI architecture for adaptive real-

time control, and proposes deployment strategies that can be deployed on the latest EV platforms. Future work 

opportunities involve integrating edge-AI for real-time inferencing and federated learning for privacy-respecting data 

analysis in distributed EV fleets. 
 

Keywords: Battery Management System (BMS), Electric Vehicles (EV), Artificial Intelligence (AI), Adaptive Control, 

Machine Learning (ML), Deep Learning (DL), State of Charge (SoC), State of Health (SoH), Reinforcement Learning 

(RL), Edge-AI. 

 

1. Introduction 
1.1 Background and Motivation 

Electric vehicles (EVs) are transforming the 

transport industry at a very fast rate with EV technology 

being the most efficient means of curbing greenhouses and 

depleting fossil fuel consumption. Being one of the largest 

generators of carbon emissions globally, the transport 

industry, governments, and global institutions are all placing 

their bets on EV technology to enhance the sustainability of 

the environment. Reported directly to each EV is the energy 

storage component, most often lithium-ion batteries, greatly 

sought after for high energy density, high cycle count, and 

minimal self-discharge. Such batteries, though, are a vaunted 
art to accomplish, something that necessitates careful 

oversight and precisely tuned in the effort to provide safety, 

provide optimal performance, and enhance life. This is where 

the Battery Management System (BMS) comes into play. 

 

A BMS is responsible for keeping track of 

parameters like voltage, current, and temperature of the 

battery, forecasting alarming situations like State of Charge 

(SoC) and State of Health (SoH), and safe operation by 

offering protection against short circuit, thermal runaway, 

overcharge, and over-discharge. Since EVs are being 
produced in higher powers and usage patterns differ, the 

function of a BMS becomes more significant. Battery 

performance, safety, and reliability have direct impacts on 

user satisfaction and vehicle reliability. Thus, there is an 

urgent need for BMS solutions that can adaptively learn to 

respond to different operating environments, vibrating 

battery dynamics, and real-time user lifestyles. The 

motivation of this research originates from the motivation, 
which tries to explore the application of AI techniques into 

BMS design and control. Through the support of the adaptive 

capacity of AI, EV battery management can now be designed 

to make them smart, efficient, and trustworthy energy 

storage units for future electric mobility. 

 

1.2 Limitations of Traditional BMS 

Rule-based algorithms and equivalent circuit 

models are the primary methods for designing conventional 

Battery Management Systems (BMS). They rely on pre-

defined thresholds and deterministic logic. They function 

well under known, steady-state conditions but lose precision 
and efficiency in practical applications involving dynamic 

load conditions, varying ambient temperatures, and gradual 

battery degradation. As for instance, universal practices such 

as Coulomb counting and Kalman filtering to calculate SoC 

have a high vulnerability to long-term drift and considerably 

depend on precision initial values alongside the adjustment 

of parameters. Similarly, SoH estimation algorithms 

commonly rely on assumptions of fixed pattern for 
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degradation loss, excluding randomness in usage patterns, 

environmental changes, or variations in manufacturing 

characteristics. But still another critical shortcoming of 

traditional BMS is their inability to extrapolate across 

different battery chemistries and pack arrangements without 
significant re-engineering. As diversity in EV platforms 

increases, batteries are subjected to new stressors and aging 

modes, one-size-fits-all methods of BMS are no longer 

adequate. Traditional systems are also not real-time adaptive, 

resulting in conservative operating margins that reduce the 

efficiency of battery utilization. These inefficiencies manifest 

as lower driving range, longer charging times, and greater 

likelihood of premature cell aging. 

 

Moreover, rule-based logic does not possess the 

capability to learn from previous data or predict upcoming 

states. This inability to anticipate and adapt tends to lead to 
missed opportunities for energy optimization and fault 

prevention in advance. As EV uptake rises globally, and as 

performance and reliability demands from consumers 

continue to escalate, the constraints of conventional BMS 

designs present significant challenges. These are issues that 

emphasize the need for smarter, more flexible, and data-

driven approaches capabilities that artificial intelligence (AI) 

technologies are well positioned to deliver. 

 

1.3 Emergence of AI in BMS 

Artificial Intelligence (AI) has emerged as a 
revolutionary technology in several fields, and its application 

to Battery Management Systems (BMS) is also attracting 

growing attention. The nonlinear behavior of batteries 

combined with the heterogeneity of usage environments in 

electric vehicles (EVs) renders AI a perfect candidate for 

improving BMS performance. AI computations i.e., those 

that use machine learning (ML) and deep learning (DL) can 

simulate dynamic systems with complicated behaviors 

without being physically represented. Rather than using stiff, 

pre-specified rules, experience-based AI systems learn and, 

over time, can adapt to changing battery behaviors.Machine 

learning techniques like Support Vector Machines (SVM), 
Decision Trees, and Random Forests have been used for the 

prediction of battery State of Charge (SoC), State of Health 

(SoH), and Remaining Useful Life (RUL) as well. Even 

more sophisticated models like Long Short-Term Memory 

(LSTM) networks and Convolutional Neural Networks 

(CNNs) have also enhanced the predictability by extracting 

temporal and spatial patterns in battery data. These models 

are more accurate, robust, and interactive than conventional 

estimation techniques under most operating conditions. 

 

Reinforcement Learning (RL) is yet another AI 
domain that offers a promising avenue for the optimization 

of charging and discharging cycle control strategies. Through 

closed-loop interaction with the battery system, an RL agent 

is able to learn how to optimize performance metrics such as 

efficiency, battery life, and thermal stability. Perhaps more 

significantly, AI enables real-time decision-making, fault 

detection, and predictive maintenance, enabling BMS to 

move from a reactive to a proactive, self-optimizing system. 

With advancements in compute hardware, such as the low-

power edge-AI platforms that exist today, implementing 

these models on actual EVs in the market is possible. This 

change is a change from passive battery monitoring to 

adaptive smart battery control and paves new innovation 

avenues in EV technology. 
 

1.4 Objectives of the Paper 

This research study is driven by the imperative to 

innovate Battery Management Systems (BMS) with artificial 

intelligence (AI) to spearhead the revolution of future 

electric vehicles (EVs). The prime aim is to overcome the 

drawbacks of existing BMS topologies and demonstrate how 

AI-aided adaptive control approaches can improve the 

performance, safety, and lifespan of batteries. In that 

direction, this paper presents four key objectives. First, the 

book seeks to provide an overall picture of AI technology 

state-of-the-art for BMS design. This includes a 
comprehensive assessment of ML and DL models of battery 

state variable estimation and application of RL to optimal 

control policy design. Second, the work suggests a new 

hybrid AI architecture that integrates Long Short-Term 

Memory (LSTM) networks, Convolutional Neural Networks 

(CNNs), and Deep Q-Learning (DQL) for real-time and 

adaptive decision-making in BMS. The hybrid architecture is 

such that it takes into account temporal dynamics as well as 

control schemes, and the solution is end-to-end for battery 

management. 

 
Third, the paper also includes a full simulation and 

validation process based on real driving data and HIL test 

scenarios. The new AI-based battery management system is 

compared to rule-based systems in terms of different 

performance metrics such as SoC prediction accuracy, 

charging efficiency, thermal management, and SoH 

degradation rate. Finally, the paper explores deployment 

possibilities, such as deployment onto edge-AI hardware for 

real-time inference and control, and into areas of integration 

with future-gen EV platforms. This variability in design is 

the one in the direction toward which the paper seeks to 

provide theoretical as well as practical contributions toward 
the advancement of intelligent BMS solutions scalable, 

efficient, and robust. 

 

1.5 Paper Organization 

The paper is designed in a manner that it formulates 

the research problem, the solution proposed, and the outcome 

of validation in an integrated and organized manner. Section 

2 then provides a thorough survey of literature, introducing 

traditional and AI-based approaches of battery management. 

It explains state estimation techniques, control policies, and 

identifies the constraints involved in applying AI in BMS. 
Section 3 defines the methodology of the proposed system 

with an explanation of AI-adaptive control system 

architecture. The section gives an overview of data 

acquisition, machine learning algorithms utilized for SoC 

and SoH prediction, reinforcement learning for control, and 

system deployment on edge devices. Flowcharts and system 

diagrams are included to explain the implementation 

strategy. 
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Section 4 comprises results and discussion, such as 

experimental setups, comparison of performance, and 

evaluation metrics. The model is validated with respect to 

simulations as well as hardware-in-the-loop testing. Key 

findings are highlighted using figures and tables in an 
attempt to display performance improvement with respect to 

traditional BMS. Finally, Section 5 provides conclusion and 

future work, summarizing the contribution of the paper and 

future directions for research. These include the addition of 

federated learning to ensure privacy-preserving analytics, 

further enhancing model generalization improvement, and 

challenges of real-world deployment. This systematic 

approach is giving cohesiveness and transparency, educating 

readers by AI development, deployment, and utilization in 

modern BMS solutions. 

 

2. Literature Survey 
2.1 Traditional Battery Management Techniques 

Conventional Battery Management Systems (BMS) 

employed deterministic and physics-based modeling 

methods for battery monitoring and management in the past. 

Examples of the best known among them include the 

Extended Kalman Filter (EKF), Coulomb counting, and 
Electrochemical Impedance Spectroscopy (EIS). The EKF is 

an algorithmic state estimation approach for nonlinear 

batteries to iteratively correct predictions from observed 

system outputs. It is particularly well-adapted for State of 

Charge (SoC) estimation but suffers from being very prone 

to model error and noise. In a similar manner, Coulomb 

counting quantifies the SoC by integrating the current over 

time. While inexpensive and straightforward, it is prone to 

cumulative error and does not naturally account for dynamic 

environmental or load conditions. Electrochemical 

Impedance Spectroscopy gives a more detailed picture of 

battery condition by frequency-domain analysis but with 
sophisticated equipment and too cumbersome to be 

employed onboard in real time.  

 

Other similar circuit models, including Thevenin 

and Randle's model, are also preferred in battery response 

modeling with less computational effort. These are, however, 

parameter calibrated on fixed or slowly varying conditions 

and therefore less sensitive to changing actual conditions. 

Conventional methods always assume constant operating 

conditions and are worst-case design-based with 

conservative safety margins. These tight limits result in low 
efficiency in battery utilization and vehicle operation. Most 

importantly, such systems lack the potential for learning 

from in-service operation or for accommodating effects of 

battery aging, which accumulate during extended service as 

electric vehicles (EVs) grow older. With growing demands 

for smart energy management, enhanced driving range, and 

enhanced battery life, traditional approaches alone are no 

longer sufficient. The shift towards smart and learning 

technologies, spurred heavily by Artificial Intelligence (AI), 

has been identified as the most crucial next step towards 

BMS development. 

 

2.2 AI Techniques in Battery State Estimation 

Artificial Intelligence (AI), in the form of machine 

learning (ML) and deep learning (DL), has advanced the 

science of battery state estimation significantly. AI 

approaches are different from traditional model-based 

approaches in the sense that they are capable of learning 
from past and current sensor data nonlinear, intricate 

relationships, thus allowing them to handle a range of battery 

chemistries, configurations, and conditions. Support Vector 

Machines (SVM), Decision Trees, and Random Forests were 

most commonly utilized for estimating SoC and SoH with 

optimistic results. They are relatively lightweight and 

interpretable models, thereby suitable for applications of 

BMS during the introductory phase of AI. Deep models have 

demonstrated impeccable performance, specifically in the 

operation's highly dynamic and uncertain cases. 

Convolutional Neural Networks (CNNs) excel at spatial 

pattern extraction and have been used for both anomaly 
detection and SoH estimation from voltage-current traces 

and thermal images. Long Short-Term Memory (LSTM) 

networks, a type of Recurrent Neural Network (RNN), are 

particularly suited to sequential data, such as time-series 

readings of current, voltage, and temperature. LSTMs are 

capable of learning long-term dependencies and provide 

extremely accurate SoC estimation under adverse driving 

conditions and varying environmental parameters. 

 

AI approaches have also made multi-tasking 

possible wherein SoC, SoH, and temperature estimation are 
performed simultaneously, improving computational efficacy 

as well as system reliability. Ensemble learning techniques 

wherein multiple models (e.g., bagging or boosting 

strategies) are fused have also been shown to achieve 

improved generalization and fault tolerance. Although these 

developments came with tremendous improvement, 

challenges persist in model explainability, labelling 

requirements in data, as well as in real-time deployability 

constraints. However, along with the availability of battery 

dataset and edge-AI hardware development platform, 

challenges are being increasingly addressed. The AI-based 

methods of state estimation therefore mark an epoch-making 
transition from static rule-based reasoning towards adaptive 

self-learned system capable of ensuring intelligent energy 

management for EVs. 

 

2.3 Reinforcement Learning in BMS 

Reinforcement Learning (RL) is a subset of 

machine learning that aims at sequential decision-making 

where an agent learns to take actions by engaging with the 

environment with the ultimate goal of maximizing the 

cumulative reward. Its application in Battery Management 

Systems (BMS) has been appealing because it can optimize 
battery charging and discharging cycles, thermal 

management, and energy consumption regardless of being 

given explicit models for the system. Compared with 

supervised learning approaches, RL algorithms are not 

dependent on labeled data, and hence they are optimal for 

adaptive control for changing conditions. Deep Q-Network 

(DQN) is one of the most widely used RL algorithms, which 

adapts Q-learning with deep neural networks to estimate the 

action-value function for the high-dimensional state space. 
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DQN has also been employed for the creation of policies 

with dynamically altering charging rates based on real-time 

battery temperature, voltage, and history of use. This offers 

improved charging efficiency along with lower degradation, 

particularly while fast-charging. A further sophisticated 
technique is Proximal Policy Optimization (PPO), a policy-

gradient method that strikes the right balance between 

exploration and exploitation and is best suited for learning 

continuously from changing battery dynamics. 

 

Through the integration of reward functions that 

discourage thermal spikes, overcharging, or excessive 

current draws, RL agents can be trained to develop optimal 

policies optimizing battery life and safety. Furthermore, RL 

can be integrated with predictive models like LSTMs to 

create hybrid architectures that achieve both accurate state 

estimation and smart control. By doing so, BMS can be 
upgraded from passive monitoring devices to active 

optimization agents. Although it has benefits, RL-based 

BMS methods are limited by having long learning periods, 

safe exploration, and the requirement of extensive simulation 

sets. Recent developments, such as model-based RL, and 

safe exploration methods are alleviating these constraints. In 
most instances, reinforcement learning presents a thrilling 

direction towards realizing end-to-end autonomy and 

adaptability in battery management for electric vehicles. 

 

2.4 Comparative Studies 

Comparative assessment of some AI methods used 

in Battery Management Systems (BMS) provides numerous 

strengths and drawbacks with regards to accuracy, capability 

for learning, and computation in real time. The table below 

presents a description of some extensively utilized AI 

methods in the literature with their normal application areas 

as well as relative performance characteristics. 

 

Table 1: Comparison of AI Techniques for BMS 

Technique Use Case Accuracy Adaptability Real-time Capability 

SVM SoC Estimation Medium Low High 

CNN SoH Prediction High Medium Medium 

LSTM SoC Tracking Very High High High 

DQN Charging Control High Very High Medium 

 

Support Vector Machines (SVM) are applied due to 

their simplicity in complexity in low-noise conditions. They 

are less adaptive and less tolerant to nonlinear, time-variant 

conditions. Spatial analysis has been performed excellently 

by Convolutional Neural Networks (CNNs), which are 

highly suitable for fault diagnosis and SoH estimation based 

on pattern recognition of voltage-current profiles. LSTMs are 

superior to conventional models in SoC tracking because 
they can model time-series dependencies, and they are 

proven to generalize extremely well in dynamic 

environments. On the controller side, Deep Q-Networks 

(DQN) are highly versatile with the ability to learn from 

interaction and generate optimal charging strategies based on 

unit battery behavior. Models of DQN are plagued by latency 

in real-time contexts due to their very high computational 

complexity. These comparisons highlight that although no 

one approach is superior in all aspects, hybrid approaches 

that leverage the strengths of several AI models are most 

promising for future BMS applications. Furthermore, the 
real-time requirements of AI algorithms are increasingly 

being addressed by edge computing and hardware 

acceleration, further enabling them to be integrated into 

production EV systems. 

 

2.5 Gaps in Existing Work 

Despite historic breakthroughs in the application of 

AI in Battery Management Systems (BMS), there are some 

significant gaps which restrict bulk deployment of these 

technologies in actual electric vehicles (EVs). For one, most 

research papers study a single feature of battery management 

SoC estimation or charging control employing a single AI 
technique. While individual point solutions are likely to 

provide more accuracy or flexibility within the particular 

domain, they cannot provide multiple functions 

simultaneously. This piecemeal strategy leads to disparate 

systems that ultimately become unscalable or hard to 

integrate. The second significant weakness is the absence of 

real-time operation focus. The majority of AI models, 

particularly deep learning and reinforcement learning, are 

computationally costly and typically trained and tested in 

offline settings. Their deployment into onboard BMS 

environments is still challenging because of the latency 
demands and power constraints. Edge-AI deployment 

strategies have nearly no research papers on them, and they 

are critical for real-time inference and adaptive feedback in 

automotive applications. 

 

In addition, most current models are not compatible 

with continuous learning or online adaptation. Static models 

become obsolete with battery aging and changing usage 

patterns, and they suffer from degraded performance or even 

safety risks. The absence of real-time feedback loops 

prevents such systems from revising their policies or 
parameters as battery states change. Furthermore, data 

availability and standardization are still the biggest 

challenges. Most models are trained on confidential or lab-

scale datasets that do not represent actual driving or varied 

battery chemistries. This hinders model generalizability and 

applicability in real life. Closing these gaps will necessitate 

the transition to hybrid, adaptive, and modulated BMS 

design with over a single AI model, allowing for real-time 

processing, and constant learning. Integration of edge 

computing and federated learning frameworks can also 

facilitate modeling capabilities at edge, scalability, and 

responsiveness, but there remains more to make way for 
genuinely intelligent battery management in next-gen EV 

platforms. 
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3. Methodology 

 
Figure 1: Proposed AI-Driven BMS Architecture 

 

3.1 System Overview 

The suggested AI-based Battery Management 

System (BMS) architecture, illustrated in Figure 1, employs 
multiple artificial intelligence modules to perform real-time 

state estimation, adaptive control, and smart decision-making 

for electric vehicles (EVs). The architecture contains five 

basic layers: data collection, preprocessing, machine 

learning-based estimation, reinforcement control, and edge 

deployment. At the basic level, sensor modules continuously 

observe important battery parameters of voltage, current, 

temperature, and charge/discharge rates. These raw data 

streams are thereafter directed to the preprocessing module 

whereby they are descreened against noise, normalized, and 

characteristics of interest thereof are extracted therefrom. 

The prediction of State of Charge (SoC) and State of Health 
(SoH) with respect to time and space characteristics of data 

are done through an ensuing hybrid model of next hybrid 

Long Short-Term Memory-Convolutional Neural Network 

(LSTM-CNN). Parallel to this, a DQN reinforcement 

learning-based agent learns useful control policies via 

experience with the environment and batteries. The closed 

adaptive feedback loop guarantees model update in real-time 

with sensor feed and user pattern information. It operates on 

a Jetson Nano edge-AI board in order to keep up with the 

very high real-time requirements of automotive applications. 

The architecture not only provides high accuracy of battery 
state estimation but also ensures stable adaptability and 

better energy efficiency. 

 

3.2 Data Acquisition and Preprocessing 

Effective use of AI in BMS begins with quality and 

robust data acquisition. The system in this work gathers data 

from sensors on the EV battery pack. Sensors are used to 

measure key parameters like voltage across cells, current 

through the pack, surface temperature and core temperature, 

ambient environment conditions, and previous charge-

discharge cycles. These kinds of data form the input for the 
training of machine learning models appropriately as well as 

for real-time inference. Sensor raw data are likely to be 

corrupted by transients, noisy, or missing and hence a 

requirement to have preprocessing. Preprocessing itself 

forms multiple operations. Handling missing values takes 

place initially via interpolation or imputation strategies in 

such a manner that continuous sequences of data become 
available. Second, normalization is performed to convert all 

the sensor measurements to a common numerical scale 

(usually between 0 and 1) to enable deep learning models to 

converge properly. Either min-max normalization or Z-score 

is selected based on the nature of the data distribution. 

Statistical and machine learning-based outlier detection 

algorithms like Isolation Forests or DBSCAN are used to 

identify and eliminate erroneous readings due to hardware 

failures or unwanted environmental spikes. 

 

Furthermore, computed features such as voltage 

delta, current RMS, charge throughput, and cumulative 
temperature rise are computed to enrich the input space for 

downstream AI modules. Temporal structuring is 

subsequently realized by dividing data into windows for 

LSTM processing and 2D shaping utilized in CNN analysis. 

The preprocessed data is subsequently forwarded to the 

training pipeline, and a small subset is streamed continuously 

to enable real-time model inference at the edge hardware. 

This foundational acquisition and preprocessing pipeline 

enables robustness, accuracy, and reliability in the resultant 

AI-based BMS operations. 

 

3.3 Machine Learning for SoC and SoH Estimation 

Effective SoC and SoH estimation of the battery are 

required for proper and safe EV operation. For this purpose, 

the system represented employs a deep neural network of 

hybrid LSTM-CNN that draws the strengths from both time-

series and spatial learning of features. LSTM (Long Short-

Term Memory) layer performs efficiently in identifying long-

term temporal trends of sequence sensor data like voltage 

changes, current trends, and thermal gradients as a function 

of time. This positions it highly well for identifying trends of 

SoC variation. At the same time, CNN (Convolutional 
Neural Network) layer performs well in identifying local 

patterns and anomalies in 2D structures of battery readings 

and then enhancing the predictive precision of SoH. The 

training data are composed of sensor measurements from 
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publicly available battery data sets and proprietary operating 

records of electric vehicle fleet operators. The data set 

comprises real-world driving cycles experienced under a 

variety of temperatures, discharge rates, and battery 

chemistries. The LSTM layer is provided with sequential 
input vectors of a sliding time window of battery states, and 

the CNN is provided with 2D matrices from correlation and 

co-variance maps of sensor signals. The two outputs are 

combined in a close layer to generate final SoC and SoH 

estimates. 

 

Model performance is maximized with mean 

squared error (MSE) as loss function and Adam optimizer to 

achieve fast convergence. Regularization techniques like 

dropout and early stopping are utilized to avoid overfitting. 

In real-time deployment, the inference part of the trained 

model alone is run on edge hardware for real-time 
estimation. This dual-model fusion enhances estimation 

accuracy by as much as 15% over individual models and 

provides stable battery monitoring even in dynamically 

changing scenarios. 

 

3.4 Reinforcement Learning for Control Policy 

Reinforcement Learning (RL) adds a smart, 

adaptive element to battery control. In the current work, we 

utilize a Deep Q-Network (DQN) agent that is trained to use 

optimal charging and discharging strategies for optimal 

efficiency and battery life. The RL agent learns in a 
simulated battery model that replicates realistic behaviors 

including aging effects, thermal dynamics, and non-linear 

charge-discharge rates. The agent has a view of the world 

using a state vector of real-time SoC, SoH, temperature, and 

user demand. The actions are discrete charge/discharge 

powers, and rewards on multi-objective metrics are 

computed. 

 

Formula 1 outlines the reward function: 

 
 

Where: 

 w1,w2,w3 are tunable weights, 

 EnergyEfficiency relates to the ratio of delivered 

versus stored energy, 

 BatteryHealth penalizes overcharge/deep discharge, 

 TemperatureRise penalizes thermal excursions. 

 

The DQN employs an epsilon-greedy policy for 

regulating exploration and exploitation. Experience replay 

buffer and a target network are employed for stabilizing the 

learning. The training is conducted in a simulated 

environment by utilizing OpenAI Gym-based simulators 

along with actual battery profiles. After the agent converges, 

the policy is exported and installed on the edge device. The 

RL agent dynamically learns control strategies based on real-
time inputs and accordingly adjusts to changing user 

requirements and environmental conditions. This leads to 

increased battery life (10–20% enhancement) and improved 

thermal safety without degrading vehicle performance. 

 

3.5 Adaptive Feedback Loop 

One of the inherent qualities of the envisioned AI-

driven BMS is its adaptive feedback loop, hence rendering 

the system dynamic and precise since the conditions of the 

battery change over time. Unlike fixed rule-based systems, 

the feedback loop enables the model to be dynamically 
updated in real time according to actual usage patterns in the 

real world, making the BMS self-improving throughout the 

whole life cycle of the EV. The adaptive loop compares 

calculated values (e.g., SoC, SoH) and control output (e.g., 

temperature rise, energy through-put) to sensor readings. A 

significant discrepancy initiates local retraining or 

adjustment of AI models. The feedback loop comprises three 

interconnected modules: monitoring, evaluation, and update. 

The monitoring module receives real-time streaming sensor 

readings from the sensor array. The performance metrics like 

estimation accuracy, prediction error, and thermal deviation 

are calculated by the evaluation module. When the indicators 
cross a predetermined threshold, the update module 

undergoes partial model retraining or weight adaptation 

using online learning methods. Light incremental learning 

algorithms perform the updates in a computationally 

lightweight manner and do not involve full model retraining. 

 

In addition, the feedback loop integrates user usage 

with its learning. Drive use behind a vehicle, charge usage, 

and climate control usage are tracked and fed in as a second 

input in an attempt to give more customized answers. The 

system is hence learning from the battery and also the way 
that the user operates within the car. Adaptive loop is 

involved in ensuring best performance under new conditions, 

in order to resist aging battery, ambient changes, and driver 

drift effects. The feedback is designed to be matched with 

long-term goals for proactive power management and 

predictive maintenance and has the BMS in unison with 

monitored system. 

 

3.6 Edge Deployment 

For providing low-latency, energy-efficient, and 

privacy-preserving operation, the overall AI-BMS system 

operates on an edge-AI platform, i.e., the NVIDIA Jetson 
Nano. The small computing platform is equipped with a 

quad-core ARM Cortex-A57 CPU, 128-core Maxwell GPU, 

and 4 GB LPDDR4 RAM and can suitably operate AI 

models in real time in vehicular environments. The hybrid 

LSTM-CNN SoC and SoH estimation model and the DQN 

control policy are TensorRT-optimized and quantized to 

INT8 precision for memory footprint and inference time 

reduction. Figure 2 shows the hardware deployment setup 

following Jetson Nano. Sensor battery data is streamed over 

a CAN interface to Jetson Nano, where the data is 

preprocessed before being presented to AI modules. 
Inference result is forwarded to the Battery Control Unit 

(BCU) for charge/discharge command execution. Metadata is 

retained in a local SQLite database for learning and 

diagnostic applications. 

 

The edge deployment method has a number of 

benefits. Firstly, it reduces communication latency, which is 

important in real-time control of vehicle systems. Secondly, 

it restricts reliance on cloud infrastructure, improving system 
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reliability and privacy of information. Thirdly, it facilitates 

continued operation even when there is no connectivity to 

networks. For further dependability, watchdog timers and 

fail-safe principles are applied for switching over to default 

control schemes in case of hardware or model malfunction. 
The system is tested across different operating loads and 

temperatures to check for stability and performance testing. 

This embedded application offers prospects for scalable, 

secure, and autonomous battery management for production 

EVs. 

 

3.7 Flowchart of Adaptive Control Loop 

Adaptive control flow of the AI-powered BMS is 

shown in Figure 3. The process begins with sensor 

measurement (voltage, current, and temperature reading). 

Such inputs are preprocessed (noise removal, normalization, 

feature extraction) before being input to the LSTM-CNN 
model for predicting SoC and SoH. Meanwhile, the DQN-

based RL agent chooses the optimal control action (e.g., 

adjust charging rate). The outputs are sent to the Battery 

Control Unit, where the control policy is enacted. The system 

then enters the feedback loop, in which actual measures of 

performance are compared with predicted values. If 

deviations exceed a predetermined threshold, the adaptive 

feedback loop engages in model updates via online learning 

algorithms. The loop operates in a cycle, enhancing model 

performance with time while accommodating changes in 

battery conditions and user activity. This flowchart 
encapsulates the underlying philosophy behind the system: 

intelligent, real-time, and self-correcting control. 

 

4. Results and Discussion 
4.1 Experimental Setup 

To ensure validation of the created AI-based BMS, 

we set up a Hardware-in-the-Loop (HIL) simulation facility 
on a 60Ah lithium-ion battery pack. The test facility was 

developed with the ability to mimic real-world driving and 

charging scenarios and facilitate controlled variation of 

operating parameters to a high level of precision. Hardware 

comprised a programmable power supply, battery emulator, 

thermal chamber, and sensor modules attached to the Jetson 

Nano edge AI device where the intended control and 

estimation algorithms were executed. The test cases of the 

simulation were designed using common driving cycles such 

as UDDS (Urban Dynamometer Driving Schedule) and 

HWFET (Highway Fuel Economy Test) representing high 
speed, load conditions, and ambient operating conditions.  

 

The BMS was exposed to realistic continuous 

sensor feedbacks of voltage, current, and temperature, 

characteristic of actual battery pack operation. The ground-

truth SoC and SoH measurements were derived from 

electrochemical model predictions and supplier data for 

comparisons. The platform permitted offline accuracy testing 

of the training and online responsiveness testing for control. 

Wide testing was done through multiple cycles to ensure 

statistical significance and reliability. The AI components 

(hybrid LSTM-CNN, DQN agent) were trained on 80% of 

the data and tested on 20% of the data before being deployed 
on the HIL system. Key performance criteria such as SoC 

estimation error, SoH degradation rate, charging time, and 

thermal stability were quantified using calibrated 

instruments. The overall configuration provided a real, 

reproducible, and controlled configuration to compare the 

proposed system with traditional BMS implementations. 

 

4.2 Performance Metrics 

To compare quantitatively the AI-based BMS's performance 

relatively, quantitative indices that are reliant on battery 

longevity, efficiency, and safety were selected: 

 Mean Absolute Error (MAE) of SoC Prediction: 
This is the measure to represent the difference 

between the estimated and actual SoC value as a 

measure of accuracy of the LSTM-CNN estimate 

model. Lower MAE refers to enhanced prediction 

accuracy, which is most important in accurate range 

estimation and charge planning of EVs. 

 SoH Degradation Rate: As a year-to-year decrease 

in overall battery capacity, it is a metric to report by 

which the BMS impacts long-term battery life. By 

preventing overcharge, deep discharging, and 

thermal spikes, the AI system should minimize 
degradation. 

 Reducing the Charging Time: It is a technique of 

tracking the performance of the DQN-based control 

method to present an optimal number of charge 

cycles. Reducing charging time with cell safety 

offers higher energy throughput and operational 

efficiency. 

 

The remaining performance aspects were power 

consumption in edge devices, temperature fluctuation, and 

system latency, yet according to the study requirements, 
emphasis was laid on the three most significant parameters 

mentioned above. The readings not only meet industry 

requirements but also have direct-world implications in 

vehicle performance, customer satisfaction, and battery 

replacement cost. The readings were recorded after a buildup 

of more than 100 charge/discharge cycles to guarantee 

statistical stability and reliability. The achieved results form a 

good foundation on which the pragmatic practicability of the 

said AI-based BMS can be estimated. 

 

4.3 Result Analysis 

The relative performance of the conventional and 
AI-based BMS systems is discussed in Table 2 below. The 

results conclusively prove the superiority of the proposed AI 

framework on all the performance parameters of concern. 

 

Table 2: Performance Comparison of BMS Systems 

Metric Traditional BMS AI-Driven BMS 

SoC MAE 5.2% 1.3% 

SoH Degradation 8.5%/year 4.1%/year 

Charging Time 90 minutes 68 minutes 
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Figure 2: Performance Comparison of BMS Systems 

 

The AI-based BMS lowered the SoC prediction 

error to 1.3% from 5.2%, i.e., a reduction of almost 75% in 

prediction accuracy. This is achievable due to the hybrid 

LSTM-CNN model's ability to perceive sequential and 

spatial relations in battery data. Thus, SoH degradation rate 
decreased from 8.5% to 4.1% per year, validating the 

efficiency of reinforcement learning toward guaranteeing 

secure working limits and load management of 

charge/discharge between cells. Further, charging time 

decreased by approximately 24%, from 90 to 68 minutes, 

without going beyond thermal limits and impacting battery 

life. This performance is gained by the policy optimization of 

the DQN agent that dynamically optimizes current flow 

based on actual-time SoC, temperature, and future demand 

prediction. The system exhibited operationally stable 

performance under trial conditions with negligible latency 

(~120 ms inference time) and no apparent drift in 
predictions. These gains taken together indicate the viability 

of incorporating AI methods into commercial EV BMS units, 

which can lead to increased energy usage, battery longevity, 

and accelerated charging all such aspects that set electric 

mobility scalability. 

 

4.4 Discussion 

Outcomes verify that the new BMS founded on AI 

is superior to traditional approaches on some major domains 

accuracy, adaptability, and efficiency to a large extent. With 

the use of the hybrid LSTM-CNN model, the system 
achieved an insignificant SoC prediction error and directly 

aid the driver through the enhancement of confidence on 

range with the evading of risks for deep discharge. The 

traditional methods like the Kalman filters are limited by 

rigid models and noise assumptions, making them unable to 

react quickly in real-time. This was not so in the deep 

learning model, which learned complex non-linear 

relationships between sensor variables and battery state 

variables to generate more stable and better predictions. 

Reinforcement learning (RL) provided remarkable efficiency 

gains to operations. Best charge and discharge policies, 

satisfying the prevailing power demand and taking battery 

long-term health into account, were found via DQN training 
of the agent. With lower instantaneous charge/discharge 

current and ideal thermal conditions, RL-based control 

minimized SoH degradation and maximized battery life 

utilization. It maximized charging efficiency with predicted 

best charging time windows considering thermal and user 

profiles. 

 

In addition, the edge deployment offered zero 

latency real-time response, which is an important condition 

for EVs in that decisions must be realized within 

milliseconds. The adaptive feedback loop also made it 

possible for the system to learn under changing 
environmental conditions and user behavior and thereby 

maintain the model drift and battery aging resilient.  Briefly 

speaking, this architecture is a shift from fixed rule-based 

systems to adaptive data-driven smart systems that learn and 

improve over time. Not only is the application of AI better 

technically but also allows for the ultimate sustainability, 

safety, and scalability goals for electric vehicle ecosystems to 

be achievable. 

 

4.5 Limitations 

In spite of the encouraging results, some of the 
limitations in the proposed system have to be overcome in 

future releases. Most importantly, the accuracy of the 

machine learning estimators, especially the LSTM-CNN 

estimator, heavily depends on the quality and variability of 

the training data set. Unless the training set includes edge 

cases and extreme operating points (e.g., cold-starts, deep 

discharges, or heavy use), the model will fail to generalize in 

the field. Also, battery chemistries differ by manufacturer 

Performance Comparison of BMS 
Systems

Traditional BMS AI-Driven BMS
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and application, so the model may need to be retrained for 

different batteries, adding still more system complexity. 

Another fundamental limitation is that of edge hardware 

capability. While the NVIDIA Jetson Nano enables real-time 

AI inference, it is compute- and memory-limited in 
comparison to cloud environments. This limits model 

complexity and potentially impinges upon performance with 

multi-tasking or concurrent system loads. Inference 

optimization methodologies such as model pruning and 

quantization assist, but can result in minimal accuracy loss. 

 

In addition, regulatory compliance and safety 

certification are also major issues. AI models are black 

boxes, and ensuring their behavior across all operating 

conditions in the case of safety-critical systems such as BMS 

is difficult. Explainable AI methods and formal verification 

tools must be incorporated with an attempt at achieving 
industrial standards. Lastly, although adaptive feedback loop 

generates resilience, there are also some possible 

cybersecurity threats if the malware data affects the online 

learning procedure. These need to be negated by robust 

model update strategies and anomaly detection. In spite of 

these restrictions, the work provides a sufficient basis for 

upcoming intelligent BMS systems and prescribes directions 

for future research. 

 

5. Conclusion and Future Work 
This paper has introduced a wide AI-driven 

adaptive control scheme for Electric Vehicle (EV) Battery 

Management Systems (BMS) with a view to overcoming the 

limitations of traditional rule-based and model-dependent 

approaches. The system, with a hybrid LSTM-CNN 

configuration, produces extremely accurate real-time 

estimations of the battery State of Charge (SoC) and State of 

Health (SoH) with a significantly reduced error rate, thereby 
enhancing operation reliability. Simultaneously, a 

reinforcement learning agent trained on a Deep Q-Network 

(DQN) was employed in order to be taught the most 

favorable charging and discharging strategies, proving great 

decreases in charge time and annual SoH decay, as ratified 

by exhaustive Hardware-in-the-Loop (HIL) experiments on a 

60Ah lithium-ion battery pack. Operation of the smart 

system on edge-AI hardware (NVIDIA Jetson Nano) allowed 

for low-latency, real-time control with minimal 

computational overhead, enabling its application to real-

world electric vehicle systems.  
 

The use of an adaptive feedback loop also provided 

for continuous learning from user action and sensor readings, 

resulting in dynamic system evolution based on user usage 

patterns and environmental factors. In summary, the results 

confirm the AI-driven BMS's ability to maximize battery life, 

efficiency, and safety and deliver a scalable, smart solution 

for modern EV platforms. In the future, there are several 

compelling directions for future work presented that will 

further expand the system's capabilities. One is to apply 

federated learning to enable collaborative model training 

across an distributed ensemble of EVs, while achieving 
broader generalization without compromising user privacy. 

Two is to provide next-generation edge-AI hardware with 

increased memory and computational strength to support 

more complex deep learning models and higher-level control 

and estimation. Third, integrating AI-powered fault diagnosis 

and predictive maintenance software in the BMS can enable 

the BMS to become proactive in identifying cell imbalances, 
degradation patterns, and safety faults ahead of time. This 

enhancement will, as a whole, lead towards an intelligent, 

green, and safe energy management philosophy for the future 

of electric mobility. 
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