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Abstract: The application layer in the modern web, developed for various purposes such as banking, social
networking, etc., is widely exposed to cyber threats due to loopholes in application architecture. To address these
issues, it has been found that the incorporation of Al in security analysis has been quite effective. In this paper, the
author scrutinizes the manner in which static and dynamic analysis methods propelled by artificial intelligence can
strengthen the security of the current web-intensified applications. Here, we see the very essence of modern web
applications and identify the significant increase in the number and depth of threats. We then provide a comparative
analysis of traditional and Al methods for detecting vulnerabilities. What pertains to static analysis that analyzes
code without executing it is discussed regarding applying machine learning classifiers and code understanding based
on NLP. On the other hand, dynamic analysis that involves determining the behavior of an application in operation
can rely on reinforcement learning and anomaly detection. In this paper, we propose a framework that incorporates
both approaches which is well demonstrated through an actual e-commerce environment. Given outcomes suggest a
gain in the number of birds detected, minimized false alarms, and quicker response time. It also covers
implementation issues such as the lack of datasets and generalizing and incorporating the model into the DevSecOps
pipeline. In conclusion, incorporating Al-based analysis provides an active and elastic approach to safeguard web
applications against existing and arising hazards.
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Detection.
1. Introduction including manual code reviews or the application of rules-
1.1 The Need for Al in Security Analysis based vulnerability scanners, are inadequate to meet today’s
growing threats. This section focuses on identifying factors
that justify the use of Al in security analysis to ascertain why
it is crucial in the field.

With the continuous development of complex web
applications and their increased importance to businesses,
such kind of methods of security analysis are becoming even
more important. [1-4] Procedures involved in the past,
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Figure 1: The Need for Al in Security Analysis
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Growing Complexity of Web Applications: Web
applications are characterized by their increasing
complexity, interactivity and functionality. This is
due to other features like complicated coding
structures, layered services, and high third-party
incorporation mostly difficult to diagnose by hand.
As new technologies like microservices, APIs, and
serverless are introduced, the attack vector has
shifted. Moreover, traditional security tools do not
evolve with such complex structures of the systems
and are incapable of evaluating their security
efficiently. Thus, Al can handle these complexities
on the go and is able to predict new and other forms
of risks as they develop over time.

Speed and Volume of Development Cycles: When
it comes to development in the contemporary world,
people follow the idea of ‘time is money.” When it
comes to software development, segregated phases
of development are a thing of the past, with the
current  paradigm embracing Continuous
Integration/Continuous Deployment (CI/CD) pipes.
There is barely any space left for manual security
testing, which slows release cycles and may lead to
more susceptibilities being missed. Analysts found
advantages in integrating Al-driven security
analysis in these security pipelines. This automation
enables security to maintain parity with
development to identify and report issues without
slowing down development.

The Evolving Threat Landscape: It is also
suggested that threats in cyberspace are advancing
and tend to employ methods like machine learning,
social engineering, and zero-day attacks. These
emerging threats sometimes call for detection
mechanisms different from the norm, which
involves simple rules-based detection that can only
be effective when used to identify known threats. Al
is particularly good at discovering new patterns of
attack and potential weaknesses that may be latent
and not easily discernible using other techniques. Al
can be used to identify new trends in hacking,
which makes this technology quite effective in the
fight against ever-evolving hackers.

Scarcity of Skilled Security Professionals: This is
a problem because there is a shrinking pool of
qualified personnel in the cybersecurity industry,
and this means that organizations cannot have
adequate personnel for deeper analysis of security
issues. As for manual testing, it demands
considerable effort and experienced specialists,
which are relatively few. This can be useful to close
the gap and facilitate the security analysis process
by automating many facets without additional
human resources. Automating a large part of the
work may be helpful to security specialists who can
be relieved from routine tasks and devote their time
to important cases that call for their attention.

The Need for Proactive Security Measures:
Traditionally, security for applications on the web
has been of a reactive type, where measures are
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taken only after incidents happen or are discovered.
This makes them take a reactive approach that
exposes applications to cyberattacks for a long time.
In contrast, Al-based security analysis is more
preventative analysing the system to find out what
can go wrong in a system. Thus, Al can foresee
possible threats and prevent them by having
algorithms to sort numbers, characterizing patterns
and behaviors, and using machine learning. This
also ensures that businesses adopt preventive
measures against security breaches in the
development  phase, thus  mitigating the
vulnerability of such instances and the cost incurred
in handling them. Altogether, such factors as the
increasing intricacy of Web applications, pressure
on development time, development of threats,
shortage of skilled workers, and the necessity to
have active safety measures mean that Al is
becoming critical in security analysis. Al results in
enhanced capabilities to meet contemporary
security issues, allowing organizations' web
applications to be safe against malicious actors.

1.2 AI-Driven Static and Dynamic Analysis Techniques

Static and dynamic analysis methodologies are
strong security solutions in modern web applications through
machine learning and artificial intelligence. [5,6] Static
analysis, on the other hand, refers to inspecting a program
without actually running it to find syntax bugs, insecure
coding practices or weakened security breaches such as SQL
injection. Al also improves static analysis by utilising
algorithms from the sphere of machine learning to search for
patterns of behavior in a code that can be considered a
vulnerability. It can also automatically rank vulnerabilities
depending on their criticality and does not necessarily
require one to assess. Static analysis’s strength in Al is its
capacity to ingest large amounts of code quickly and then
flag the probability of a mistake that might have otherwise
escaped code review. Dynamic analysis, in contrast with
static analysis, is performed at the runtime to check for the
presence of issues that only become apparent during the
actual use of the developed application, for example, when a
user tries to enter the application with an appropriate
password or if the access rights within the application are not
properly implemented.

Al underlines dynamic analysis’s effectiveness by
allowing it to be conducted in real-time and adaptive mode.
During runtime, the Al-based tools can monitor the
behaviour of an application and then, based on this
information, use predictive analysis to identify signs of a
potential weak link in the security system. They can also
model advanced attacks, which may not be displayed by the
other means typical for security systems. Static and dynamic
analysis work in union to present several advantages of Al
Al becomes the way of obtaining the synchronous view of
the referred application’s tendencies both at the code level
and the runtime. These Al-based approaches help identify
intricate problems and improve the positives while ensuring
continuous security integration into the coding procedures to
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rectify the issues. This is more than just a reactive approach,
making it a robust, scalable and proactive measure that helps
organizations prepare for new threats.

2. Literature Survey
2.1 Static Analysis Techniques

Static analysis entails analyzing source code
without running it or profiling its behavior. A set of tools are
used in the industry, like SonarQube, Fortify, and
Checkmarx for identifying security vulnerabilities, code
smells, and compliance. They all use the rule-based approach
and work based on matching pre-defined templates by
checking for mistakes throughout the development cycle. [7-
11] Although they are not immune from a high false positive
rate whereby, the reliability of the developers is easily
compromised and therefore, important cues are missed.
Furthermore, some competencies in static analysis tools,
such as asynchronous JavaScript or dependency injection in
Angular and Spring, cause issues in current development
paradigms and frameworks, which restrains their efficiency
in contemporary conditions.

2.2 Dynamic Analysis Techniques

DAST is the process of testing the application in a
runtime environment and look for vulnerabilities that are not
exposed if the Program testing is done at static state. OWASP
ZAP and Burp Suite are successful tools for emulating real
attack scenarios on web applications; some of the standard
attacks that may be discovered include SQL injection attacks,
cross-site scripting, and improper session management. The
above tools are useful for runtime analysis but often do not
know how the application works and what control flows suit
it. Another limitation of using DAST tools is that they can
easily get stuck in a routine where they run through the same
patterns over and over until a problem is identified, even
when better options exist because they do not have memory
or intelligence for analysis over time.

2.3 Al in Static Analysis

New approaches to static analysis have brought
semantic sensitivity and context into the picture with the help
of Al into the picture. A distinctive example is DeepBugs
here, the word embeddings and the neural networks are used
to identify bugs with factors related to the semantics of
tokens in source code. DeepBugs and similar models learn
the code as natural language and are able to identify some
peculiarities that rule-based approaches could not detect. By
incorporating deep learning data, Al-based systems achieve
higher precision and less false results, but that heavily
depends on the quantity and quality of labeled datasets.

2.4 AI in Dynamic Analysis

Such an application of artificial intelligence in
dynamic analysis is mainly through Anomaly detection
methods and reinforcement learning. These include
autoencoders, which can be trained on normal application
behavior and then used to detect anomalies, including a
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security breach or software problem. Reinforcement learning
agents have been evaluated to test the running system, teach
the testing strategies to the learners, and learn the efficient
strategies according to the specific application environment.
A promising set of directions in Al patterns involves
improving the responsiveness and the quality of detection of
such bugs, although these are currently considered as
research prototypes and scale-up and integration into the
contemporary development processes pose some concerns.

2.5 Gaps Identified

Although work has been done combining static and
dynamic analysis, integration stays relatively modest in
numerous applications. This is perhaps a two-pronged
approach that could be beneficial in getting better security
insights in terms of both codes and the actual runtime
behavior. Furthermore, most of the Al tools are in research
and not widely used in the real world due to some concerns
regarding reliability and interpretability and because they
may require tuning for a specific area. Another major
shortcoming is that there is no consistent set of datasets and
performance measures to compare and compare tools and
technologies. To fill in the given gaps more detailed and
deeper understanding of this problem is important for further
improvement of approaches to secure software development.

3. Methodology
3.1 Framework Overview

In this section, we propose a new generic approach
that combines static and dynamic analysis concepts with the
help of Artificial Intelligence (Al) algorithms. This approach
is an attempt to improve on the limitations of the traditional
approaches of static code inspection and runtime behavior
analysis. To enhance the credibility and potential of the given
framework, it can be underpinned by Al functionality, which
can assist the process of a vulnerability scan, minimize the
number of false positives, and make effective
recommendations based on context. [12-16] The hybrid
system combines three main modules, each with a different
function, but the outcomes obtained are useful for
performing security tests.
Source Code: The source code is the first input to
the hybrid framework. This is where the static
analysis module starts and searches through the
program for threats, errors, omissions, or security
weaknesses. It is worth noting that most of the time,
the source code is a static view of the application; it
doesn’t contain any runtime data, but it does contain
a lot of patterns that can be marked problematic in
accordance with certain defined rules, or learned by
an Al model. This code can then be parsed by the
framework to be input into the Static Al Module,
where the statistical and machine learning
algorithms are used to detect any risks as per past
identifiable trends and any risks identified from
contextual analysis of the code.
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Figure 2: Framework Overview

Static AI Module: Static Al module is the first core
combined in the hybrid framework of the proposed
system. Examining the application’s source code
without running it while incorporating concepts
such as artificial intelligence, machine learning, and
deep learning are other critical aspects of this type
of analysis. While numerous traditional tools, such
as PVS-Studio, work with strictly defined rules, the
Static AI Module applies artificial intelligence to
identify vulnerabilities that may have been in the
past to anticipate potential problems in the source
code. Thus, by understanding the meaning of the
code snippets and recognizing the semantic
patterns, especially the intricate relations between
various sequences, the Al module can identify a
potential flaw, a security issue or suboptimal code
practices in a slice of code that might go unnoticed
by humans. It can also evolve to accommodate the
latest programming frameworks and paradigms,
making it more efficient and versatile.

Integrated Dashboard: The Integrated Dashboard,
also known as the control panel, serves as the
command center for monitoring and controlling the
analysis process. It aggregates and presents the
results from both the Static Al Module and the
Dynamic Al Module to make them easily
understandable to the developers, security teams,
and stakeholders, all at one centralized place where
they want to be. Overall, such a dashboard is
management-oriented and dynamic and presents
overviews of identified threats, the calculated level
of risk, and suggested measures in order to facilitate
the prioritization of the remediation based on risk’s
qualitative characteristics. However, there can be
real-time analysis statistics, current threats and
alerts observed while dynamic analysis is in
progress and historical statistics to evaluate the
application’s safety at a definite time. They suggest
that the integrated nature of this dashboard helps to
provide synthesis and support decision-making
across the Software Development Life Cycle.
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Running Application: The Running Application
component describes the application's version in
production or an environment in which the software
can be tested as it would be used in actual use. This
is possible through the running application that the
Dynamic Al Module interfaces with the system in
order to monitor the dynamic behavior. DAST is an
example of dynamic analysis tools that evaluate the
application’s runtime environment to detect flaws
that may not easily be seen from the code. These
aspects include session ~management, input
validation, and security misconfigurations that arise
when the application is run. The real-time data is
fed into the Dynamic Al Module incorporated in the
fabric of the running application, where anomalies
and correlations are identified and potential threats
predicted based on context.

Dynamic AI Module: The Dynamic Al Module
parallels the Static Al Module, which analyses the
application's behaviour during runtime. This module
employs artificial intelligence and machine learning
processes, including anomaly detection,
reinforcement learning, and behavioural analysis, to
detect security issues that are not detectable in a
static analysis. For example, machine learning
models can learn how an application is supposed to
behave, what kind of traffic it is normally supposed
to generate, or which APIs it should be calling and
then look for the next unexpected activity or traffic
that may be a sign of an attack or vulnerability. This
kind of analysis is perfect for identifying threats in a
real environment, while some other passive
approaches might not discover threats during
runtime. This is because the Dynamic Al Module is
based upon previous incidents, real-time learning,
and behavioural changes of application to
proactively induce threat detection and prevention.
Hence, by integrating static and dynamic testing and
incorporating Al in a system, it is possible to devise
a more extensive and robust security testing
framework that would depict the best features of
both paradigms without bearing their shortcomings.
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3.2 Static AI Module

Static Al module is used to analyze code without
running it, and the main idea is to find out how to protect the
system from malicious attacks. It operates in two main
phases: Of particular use, identification of the features and

classification of the vulnerabilities, using trending models

and

representations to form feature extraction and

vulnerability classification models that are accurate and
contextually tailored.

3.2 Static Al Module

3.2.1 Feature Extraction

Tokenization of code using

2.2.2 Vulnerability Classification

abstract syntax trees (AST) =

l

Semantic embedding using
BERT-like models for code|
(eg. CodeBERT)

|

[Source Code

ML classifiers
(Random Forest, SVM)

Deep learning models
(CNN, LSTM)

Figure 3: Static AI Module

e Feature Extraction: The first stage that is
performed in static analysis involves the
identification of features that it is required to
analyze. This may start with using Abstract Syntax
Trees (ASTs) to understand the various tokens used
to structure the code in tree structures that capture
their syntactic structure. This process enables the
system to capture two forms of relations, namely
the hierarchical and the sequential one between
code elements. After this, Semantic embeddings are
created as with BERT-like models for code, for
example CodeBERT. These models deal with code
in the same way as with natural language, analyzing
the contextual and semantic features of how
different variables interact with functions and logic
and how the code operates deeper than the mere
resemblance of patterns.

e  Vulnerability Classification: The next step that
follows the extracting of features is categorising the
code for vulnerability potential. Two strategies to
achieve this are using conventional supervised
learning algorithms such as the Random Forest and
SVM, although these present easily interpretable
results where the input dataset is structured and
well-labeled. Concurrently or in tandem, deep
learning models like Convolutional Neural
Networks (CNN) and Long Short-Term Memory
networks (LSTM) capture the complex and non-
linear relationships and long-range dependency
within the code. One of the most beneficial uses of
these models is that they can be utilized to identify
complex code paths and buried bugs that even
complex algorithms do not pick up.

3.3 Dynamic AI Module

This is the Dynamic AI Module that is designed to
tackle behaviors that may not be detected during the Static
Al Module as it involves analyzing the application as it is in
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use by the end-user and injecting intelligence [17-20]
algorithms that track possible threats in real-time and
generates responses in line with the context.

Runtime Monitoring: In this phase, the system
writes the operational metric collected of the
running application is actively observed. This
includes memory profile, frequency and type of API
calls, and HTTP traffic, which will reveal improper
use or misuse. It also keeps track of the user
interactions and system reactions to study the
pattern of usage and flow of interactions. This
information creates behavioral models for actions
and looks for anomalies denoting security threats or
low-performance risks.

Runtime
Monitoring
Dynamic Al
Module
Anomaly
Detection

Figure 4: Dynamic AI Module

Anomaly Detection: After understanding the
normal profile of operation, measures like activity
monitoring that enable the detection of any
abnormal activity are used. Autoencoders are a form
of analyzing neural networks that handles typical
application interactions and uncovers the atypical
interactions without raising many false alarms. In
addition to this, the RL agent is implemented to
increase flexibility. It can also learn from the
environment and modify this type of detection
dynamically to respond in real time with regard to
continuing trends of threats and other abnormalities
in the system.
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3.4 Integration Layer

In a way, the Integration Layer is the controlling
component that takes the data generated from both the Static
Al Module as well as the Dynamic Al Module and presents a
combined and coherent depiction of application security.
Unlike most tools that conduct static and dynamic analyses
as separate entities, this layer links the two, increasing the
effectiveness of the detection, reducing the time spent on
repeating analyses and enabling better ranking of the threats.
Additionally, to a white- or black-box analysis that only
allows to detection of insecure code and patterns at compile-,
linkage- and binary levels, information about runtime-
behavior like bizarre API usage or strange memory accesses
can be obtained. A key attribute of the integration layer is
that the integration layer applies the threat scoring model.
This model considers the critical level of identified
vulnerabilities, the probability of threats and risks, the
certainty of Al-based predictions, and the context of an
anomaly’s occurrence in the runtime environment. For
instance, a static vulnerability identified in the critical
authentication module may have a higher score when a
certain abnormal use of login is observed dynamically.

The automated scores themselves can be developed
with the help of logistic regression or gradient boosting and
are able to modify the scores based on prior incident data to
work more effectively over time.Furthermore, the integration
layer can, in turn, enhance the involvement of feedback
loops for decision-making. Single threats identified by the
system can be accepted or rejected for their validity by the
security analysts who help optimise the application scoring
system and lower the number of false positives. In the end,
this layer produces a portfolio of potential threats with
contextual details, recommendations on what to do, and

confidence scores. This is done through the integrated
dashboard, which provides the security teams with the
relevant outputs to help in their decision making process on
the same incident. In summary, our proposed Integration
Layer aggregates fragmented analytical outcomes. It
improves the overal foldable construction of the hybrid Al-
based framework, making it more practical and appropriate
for application in CI/CD pipelines.

3.5 Dataset Preparation

In order to train and test the Al models employed in
the proposed framework, open-source and company-specific
datasets were applied. These datasets give documents
covering various levels of wvulnerabilities and having
different structures of applications alongside having code
bases and being real world like nature these datasets are
useful for creating highly generalized models. The three
primary datasets used in the study are the OWASP Juice
Shop, WebGoat, and another e-commerce application the
authors built.
OWASP Juice Shop: OWASP Juice Shop is an
intentionally insecure web application that is an
open-source web application for security purposes,
of the 30 or more known critical ones, cross-site
scripting (XSS) or, at the other end of the
complexity scale, application-level broken access
controls. Juice Shop is an Application with approx
15000 LOC, comes with good documentation, and
it is easy to reproduce the static and dynamic
testing. It is also modern and has the ability to
mimic real-world attack surfaces, which is suitable
for the Al model training in detecting commonly
used web vulnerabilities.

Dataset
Preparaftion
OWASP Juice Rl E-commerce
[ Shop ] [ WebCGoat ] [ Application ]

Figure 5: Dataset Preparation

WebGoat: WebGoat is another OWASP product,
and it is an intentionally insecure application with
over 50 lessons, and each of them is devoted to a
specific type of vulnerability. Currently, WebGoat
contains about 20,000 lines of Java-based code and
has more detailed discussions about server-side
flaws and developers’ mistakes. However, it can be
helpful in assessing the dynamic behaviour of
insecure applications and crowdsourcing Al training
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to recognize complex runtime defects in business
and flow logic.

E-commerce Application: The web-based e-
commerce application was designed to have real-
life scenarios such as user credentials, ordering
system, and inventory with 50 thousand lines of
production-grade code and 15 known ones disclosed
after manual code examination and penetration
testing. Unlike an open-source dataset, it introduces
the specific security concerns of a particular
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domain. It shows reasonable usage patterns that
should be essential for testing the real-world
performance of the framework.

4. Result and discussion
4.1 Experimental Setup

To ensure that the performance of the proposed
hybrid Al-based framework for vulnerability detection is
well tested an effective experiment was set on high-
performance hardware and with the assistance of popular and
reliable software tools. The training and testing equipment
included an Intel Core i9 processor, 32 GB RAM and
NVIDIA RTX 3080 graphics card. This configuration
allowed parallelism of tasks, speedy throughput in machine
learning operations, and the running of extensive deep
learning models. Finally, the researchers noted that some
languages, particularly the GPU, enhanced the training of
neural networks and analysis of large code repositories and
runtime logs. This was established based on the Python
environment due to its compatibility with scientific
computing and Machine learning libraries. For classical
machine learning algorithms such as Random Forest and
Support Vector Machines (SVM), scikit-learn was used for
baseline comparisons and classifying vulnerabilities.

For complex models such as CNN and LSTM,
TensorFlow offered the required framework for giving
architecture of deep learning models, training a model and
deploying them. These tools enabled the modularity of static
and dynamic analysis components, which is crucial for their

application in practice. For DAST, Burp Suite was employed
as a subsequent tool in the testing mechanism. It can be used
as an aggressive web vulnerability scanner and proxy tool
that allows the emulation of different user actions, the
interception of HTTP communication and the detection of
misbehaviors during application use. Burp Suite was used to
actively elicit realistic run-time data, and, in turn, the Data
Analysis and Control Layer, along with the Dynamic Al
Module, were used to identify behavioural anomalousness.
Not only did this end-to-end experiment facilitate the
technical requirements of building and testing the model, but
it also closely resembled real-world scenarios for the
deployment of the framework, making it a reliable
environment in terms of real-life applicability and robustness
in detecting software vulnerabilities.

4.2 Performance Metrics

In order to evaluate the performance of the
proposed hybrid vulnerability detection framework, basic
standard benchmarks often used in this area of research were
adopted. There are three that are commonly used: accuracy,
precision, and recall, all of which give a fair representation
of a model’s performance. Moreover, false positive
rate(FPR), false negative rate(FNR) and total time required
for analysis were other parameters to assess the effectiveness
and time taken using different approaches. Below is a
comparative analysis of the three scenarios: static-only,
dynamic-only, and the combined dynamic and static Al
model.

Table 1: Model Performance

Model Precision | Recall | F1-score | FP Rate | FN Rate

Static Only 84% 79% 81% 12% 9%

Dynamic Only 86% 83% 84% 10% 7%

Combined (AI) 92% 89% 90% 5% 4%
FN Rate
FP Rate
Fl-score
Recall
Precision

0% 20% 40% 60% 80% 100%
Combined (Al) ™ Dynamic Only M Static Only

Figure 6: Graph representing Model Performance
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Static: Hence, the model that uses the static
approach only has a precision of 84% Recalled
79%and an f-score of 81%. However, while static
analysis was used to find standard risks in the code
without its execution, it had such disadvantages,
with 12% false positive results and 9% false
negative ones. This is mainly because, beyond the
formal analysis of code, most tools are not able to
fully understand how a program is executed in its
runtime environment and the context it runs in and
miss many flags for over-flagging or fail to identify
several vulnerabilities in complex data structures.
Dynamic Only: Though not much remarkable, the
results of the dynamic-only model were slightly
superior, with an overall accuracy of 86% and recall
of 83%, yielding an Fl-score of 84%. It was also
employed to display a low false positive rate at 10%
and a low false negative rate at 7% than the static
analysis approach. The dynamic model was more
successful  in  predicting  context-sensitive
vulnerabilities; however, it did not have insight into
those paths in the code that were not called during
the tests.

Combined (AI): The integrated model has yielded
the highest possible values; one is the precision of
the model is 92%, the second is the recall value is
89%, and the last one is the F1 score of the model,
which is 90%. It reported the least false positive
(5%) and false negative rate (4%) in the experiment
and could complement static and dynamic analysis.
This approach gave a more precise and practical
detection of the vulnerabilities with fewer false
positives and negatives.

4.3 Analysis of Results
The performance analysis findings prove a
significant improvement using the Al-incorporated

vulnerability detection model over the individual static or
dynamic analysis methods. This was evident from its F1-
score, which stood at 0.90; the higher the F1, the better the
model’s ability to balance between the precision and recall of
the detected vulnerabilities, thus being accurate in their
identification, while, at the same time, pointing only a higher
number of times and not producing false alerts often. As for
the results, the static-only model received an Fl-score of
0.81, while the dynamic-only model received an F1-score of
0.84, proving the methods' drawbacks when having no
regard for each other. Static analysis, while being fresh and
more efficient in the early stage and improving code analysis
with deeper insights, has limited context awareness at
runtime and provides a large number of false positives.
Dynamic analysis resolves this problem by analyzing real-
time execution but may miss dormant code paths or
unexploitable vulnerabilities. The most notable advantages
of the hybrid model are seen in false result drop rates.

The analysis of results shows that the false positive
rate decreased from 12% in the first model, where only static
analysis was applied to only 5% in the proposed approach,
which means an improvement of more than 50%. In the same
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respect, the false negatives saw a reduction from 9% to 4%,”
a more than 50% reduction on average. This improvement is
very important considering that realistic scenarios imply that
security teams could get a large number of false positives
and, consequently, experience alert fatigue; on the other
hand, many false negatives mean that exploits could be left
unnoticed. In addition, it was also seen that the time taken to
identify vulnerabilities by the consequent combination of the
asset model was 35% less than the manual analysis of the
codes. This is mainly due to the ability to analyze the code
and the application simultaneously and have machine
learning models identify high-risk patterns in a short time
Frame. In general, it has been established that incorporating
Al in static and dynamic analysis positively impacts
detection accuracy and improves the efficiency of operation
in the application of AST.

4.4 Case Study: E-commerce Platform

Detection of SQL Injection Vulnerabilities: While
testing the online shopping system developed with
the proprietary framework, the integrated Al
approach flagged three new undiscovered SQL
injection types. These flaws had managed to evade
earlier static and dynamic code analysis since they
were implemented at locations that are not
frequently executed in the backend controls. The
proposed SD, which integrated semantic analysis
and dynamic information the insecurities of
constructed SQL queries and sample user inputs
accurately identified these injection points based on
the patterns of the former when matching with the
latter. These were further validated by manually
checking the vulnerabilities and doing penetration
tests on the sites, noting that the developed
framework could reveal a range of deeper-rooted
vulnerabilities that other tools fail to identify.
Identifying libraries of an application:
Altogether, in the system, three code items were
viewed as imperfections at the coding level, and
two third-party libraries were Outdated/Associated
with known CVEs. These libraries used for payment
processing and form validation were not updated for
several months and contained vulnerabilities
referred to in CVE. The static analysis identified the
version number scanning the dependent modules,
and further, the model matched to the external
vulnerability database. They proactively identified
these components for enhancement and proposed
upgrades before the product's release to counter
well-known attacks that would otherwise have
seriously compromised the supply chain credentials
of the application in circulation.

4.5 Limitations

Nevertheless, it is also imperative to note the
weaknesses of the proposed hybrid Al framework concerning
generalization, data dependency, and behavioral generality.
Still, one of the difficulties remains in the problem of the
availability of both large and diversified training samples. In
deep learning architecture, the model can learn optimally if
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and only if they are trained on a large dataset of real-world
samples and labeled codes and their corresponding
vulnerabilities or attacks. Nevertheless, such datasets are
rare, particularly in the case of proprietary software, the main
sources of which code and vulnerabilities are often withheld
for reasons of proprietary rights. Therefore, the models can
learn to optimize the characteristics of a training corpus and
fail at correctly predicting its performance across other
applications or unconventional development tendencies.

Furthermore, the dynamic part of the framework is
heavily based on the runtime behavior, and the latter is only
a small fraction of the behavior possible in the framework,
where training or testing paths are used. Suppose some
portions of an application logic are not executed during
testing because of test inputs, feature flags, or unavailable
conditions. In that case, the flaws in that unused code path
will not be found. This is especially the case when the
system being tested is a large application that has many
different workflows or when the events being tested are
asynchronous and can take a long time to complete. For
similar reasons, it is difficult to determine that anomaly
detection methods, alternatively using an autoencoder
embedded within the encoder layer, are only as good as the
“normal” behaviour it learns. The problem is that if the
training data does not include all valid behaviors, the model
may sound an alarm when none is needed or fail to sound
one when required due to a familiarity with but non-illE
behavior patterns. Addressing these limitations will entail
research in developing better unsupervised learning,
knowledge transfer, and more efficient and effective, as well
as wider future bead range test case generation. Thus,
integrating external threat intelligence and user simulating
tools can also increase the model's exposure to various
application behaviors, aiding it in performing better in
different real-life scenarios.

5. Conclusion

Static and dynamic analysis is a strong tool that can
offer proactive, accurate and fresh solutions against the
current menace of web application security threats. While
conventional forms of security testing still serve their
purpose, they may not be able to handle the rapid
advancement and development of web applications. Namely,
if it combines static and dynamic analysis, it becomes
possible to identify vulnerabilities faster and to a greater
extent. The static analysis examines the code and the
potential bugs before the application development. In
contrast, dynamic analysis runs the code and records real-
time security threats. Integrating the two approaches
accompanied by Machine Learning algorithms leads to
discovering the susceptibilities within a relatively short time
span that would otherwise require unreasonably much time.
The combination of these two makes it relevant as machine
learning increases accuracy and efficiency by learning from
previous results and finding new patterns that were not
earlier considered more closely. It also ensures that the
vulnerabilities are detected immediately while at the same
time helping avoid the possibility of the failure to identify
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other security flaws that may be present in the development
of the application.

In the future, the following factors can improve this
Al-based security strategy: One of the topics that appears to
have high potential for additional development is using NLP
methods to detect flaws in business logic. These types of
defects are usually not even recognizable by classical
security solutions as they result from the imperfections in the
behavior of an application rather than from the misprints in
source code. It can be useful in understanding the semantics
behind the code and its use and interaction with other
components; hence, better detection of such vulnerabilities
could be witnessed. Another direction is the increase in the
number of examples used for training the Al. Using various
types of architectures in the web enables the Al to be ready
to detect the vulnerabilities in different types of frameworks
and architectures of the web today. Incorporating these kinds
of Al-based security models in the Continuous Integration
and Continuous Delivery (CI/CD) pipeline could also help
automate the vulnerability scan to maintain the security
aspect from one phase to another in the SDLC. This would
help to catch those security flaws before it gets to the final
stages of development and minimize the incidences of a
security breach in the production environment.

Although it is certainly not the Holy Grail for web
app security, Al can become a powerful supplement for
conventional instruments. AP When done rightly, Al will
help approach security in a much better and non-
conventional manner to help developers and security
authorities avoid, recognize, and find counter solutions to
threats more efficiently. This may eventually reduce risks
and threats that work their way into web application
weaknesses, which would help improve the general security
of the environment.
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