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Abstract: The application layer in the modern web, developed for various purposes such as banking, social 

networking, etc., is widely exposed to cyber threats due to loopholes in application architecture. To address these 

issues, it has been found that the incorporation of AI in security analysis has been quite effective. In this paper, the 

author scrutinizes the manner in which static and dynamic analysis methods propelled by artificial intelligence can 

strengthen the security of the current web-intensified applications. Here, we see the very essence of modern web 

applications and identify the significant increase in the number and depth of threats. We then provide a comparative 

analysis of traditional and AI methods for detecting vulnerabilities. What pertains to static analysis that analyzes 

code without executing it is discussed regarding applying machine learning classifiers and code understanding based 

on NLP. On the other hand, dynamic analysis that involves determining the behavior of an application in operation 

can rely on reinforcement learning and anomaly detection. In this paper, we propose a framework that incorporates 

both approaches which is well demonstrated through an actual e-commerce environment. Given outcomes suggest a 

gain in the number of birds detected, minimized false alarms, and quicker response time. It also covers 
implementation issues such as the lack of datasets and generalizing and incorporating the model into the DevSecOps 

pipeline. In conclusion, incorporating AI-based analysis provides an active and elastic approach to safeguard web 

applications against existing and arising hazards. 

 

Keywords: Web Security, Artificial Intelligence, Static Analysis, Dynamic Analysis, Machine Learning, Vulnerability 

Detection. 

 

1. Introduction 
1.1 The Need for AI in Security Analysis 

With the continuous development of complex web 

applications and their increased importance to businesses, 

such kind of methods of security analysis are becoming even 

more important. [1-4] Procedures involved in the past, 

including manual code reviews or the application of rules-

based vulnerability scanners, are inadequate to meet today‟s 

growing threats. This section focuses on identifying factors 

that justify the use of AI in security analysis to ascertain why 
it is crucial in the field. 

 
Figure 1: The Need for AI in Security Analysis 
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 Growing Complexity of Web Applications: Web 

applications are characterized by their increasing 

complexity, interactivity and functionality. This is 

due to other features like complicated coding 

structures, layered services, and high third-party 

incorporation mostly difficult to diagnose by hand. 
As new technologies like microservices, APIs, and 

serverless are introduced, the attack vector has 

shifted. Moreover, traditional security tools do not 

evolve with such complex structures of the systems 

and are incapable of evaluating their security 

efficiently. Thus, AI can handle these complexities 

on the go and is able to predict new and other forms 

of risks as they develop over time. 

 Speed and Volume of Development Cycles: When 

it comes to development in the contemporary world, 

people follow the idea of „time is money.‟ When it 
comes to software development, segregated phases 

of development are a thing of the past, with the 

current paradigm embracing Continuous 

Integration/Continuous Deployment (CI/CD) pipes. 

There is barely any space left for manual security 

testing, which slows release cycles and may lead to 

more susceptibilities being missed. Analysts found 

advantages in integrating AI-driven security 

analysis in these security pipelines. This automation 

enables security to maintain parity with 

development to identify and report issues without 

slowing down development. 

 The Evolving Threat Landscape: It is also 

suggested that threats in cyberspace are advancing 

and tend to employ methods like machine learning, 

social engineering, and zero-day attacks. These 

emerging threats sometimes call for detection 

mechanisms different from the norm, which 

involves simple rules-based detection that can only 

be effective when used to identify known threats. AI 

is particularly good at discovering new patterns of 

attack and potential weaknesses that may be latent 

and not easily discernible using other techniques. AI 
can be used to identify new trends in hacking, 

which makes this technology quite effective in the 

fight against ever-evolving hackers. 

 Scarcity of Skilled Security Professionals: This is 

a problem because there is a shrinking pool of 

qualified personnel in the cybersecurity industry, 

and this means that organizations cannot have 

adequate personnel for deeper analysis of security 

issues. As for manual testing, it demands 

considerable effort and experienced specialists, 

which are relatively few. This can be useful to close 

the gap and facilitate the security analysis process 
by automating many facets without additional 

human resources. Automating a large part of the 

work may be helpful to security specialists who can 

be relieved from routine tasks and devote their time 

to important cases that call for their attention. 

 The Need for Proactive Security Measures: 

Traditionally, security for applications on the web 

has been of a reactive type, where measures are 

taken only after incidents happen or are discovered. 

This makes them take a reactive approach that 

exposes applications to cyberattacks for a long time. 

In contrast, AI-based security analysis is more 

preventative analysing the system to find out what 

can go wrong in a system. Thus, AI can foresee 
possible threats and prevent them by having 

algorithms to sort numbers, characterizing patterns 

and behaviors, and using machine learning. This 

also ensures that businesses adopt preventive 

measures against security breaches in the 

development phase, thus mitigating the 

vulnerability of such instances and the cost incurred 

in handling them. Altogether, such factors as the 

increasing intricacy of Web applications, pressure 

on development time, development of threats, 

shortage of skilled workers, and the necessity to 

have active safety measures mean that AI is 
becoming critical in security analysis. AI results in 

enhanced capabilities to meet contemporary 

security issues, allowing organizations' web 

applications to be safe against malicious actors. 

 

1.2 AI-Driven Static and Dynamic Analysis Techniques 

Static and dynamic analysis methodologies are 

strong security solutions in modern web applications through 

machine learning and artificial intelligence. [5,6] Static 

analysis, on the other hand, refers to inspecting a program 

without actually running it to find syntax bugs, insecure 
coding practices or weakened security breaches such as SQL 

injection. AI also improves static analysis by utilising 

algorithms from the sphere of machine learning to search for 

patterns of behavior in a code that can be considered a 

vulnerability. It can also automatically rank vulnerabilities 

depending on their criticality and does not necessarily 

require one to assess. Static analysis‟s strength in AI is its 

capacity to ingest large amounts of code quickly and then 

flag the probability of a mistake that might have otherwise 

escaped code review. Dynamic analysis, in contrast with 

static analysis, is performed at the runtime to check for the 

presence of issues that only become apparent during the 
actual use of the developed application, for example, when a 

user tries to enter the application with an appropriate 

password or if the access rights within the application are not 

properly implemented.  

 

AI underlines dynamic analysis‟s effectiveness by 

allowing it to be conducted in real-time and adaptive mode. 

During runtime, the AI-based tools can monitor the 

behaviour of an application and then, based on this 

information, use predictive analysis to identify signs of a 

potential weak link in the security system. They can also 
model advanced attacks, which may not be displayed by the 

other means typical for security systems. Static and dynamic 

analysis work in union to present several advantages of AI; 

AI becomes the way of obtaining the synchronous view of 

the referred application‟s tendencies both at the code level 

and the runtime. These AI-based approaches help identify 

intricate problems and improve the positives while ensuring 

continuous security integration into the coding procedures to 
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rectify the issues. This is more than just a reactive approach, 

making it a robust, scalable and proactive measure that helps 

organizations prepare for new threats. 

 

2. Literature Survey 
2.1 Static Analysis Techniques 

Static analysis entails analyzing source code 

without running it or profiling its behavior. A set of tools are 

used in the industry, like SonarQube, Fortify, and 

Checkmarx for identifying security vulnerabilities, code 

smells, and compliance. They all use the rule-based approach 

and work based on matching pre-defined templates by 

checking for mistakes throughout the development cycle. [7-
11] Although they are not immune from a high false positive 

rate whereby, the reliability of the developers is easily 

compromised and therefore, important cues are missed. 

Furthermore, some competencies in static analysis tools, 

such as asynchronous JavaScript or dependency injection in 

Angular and Spring, cause issues in current development 

paradigms and frameworks, which restrains their efficiency 

in contemporary conditions. 

 

2.2 Dynamic Analysis Techniques 

DAST is the process of testing the application in a 
runtime environment and look for vulnerabilities that are not 

exposed if the Program testing is done at static state. OWASP 

ZAP and Burp Suite are successful tools for emulating real 

attack scenarios on web applications; some of the standard 

attacks that may be discovered include SQL injection attacks, 

cross-site scripting, and improper session management. The 

above tools are useful for runtime analysis but often do not 

know how the application works and what control flows suit 

it. Another limitation of using DAST tools is that they can 

easily get stuck in a routine where they run through the same 

patterns over and over until a problem is identified, even 

when better options exist because they do not have memory 
or intelligence for analysis over time. 

 

2.3 AI in Static Analysis 

New approaches to static analysis have brought 

semantic sensitivity and context into the picture with the help 

of AI into the picture. A distinctive example is DeepBugs  

here, the word embeddings and the neural networks are used 

to identify bugs with factors related to the semantics of 

tokens in source code. DeepBugs and similar models learn 

the code as natural language and are able to identify some 

peculiarities that rule-based approaches could not detect. By 
incorporating deep learning data, AI-based systems achieve 

higher precision and less false results, but that heavily 

depends on the quantity and quality of labeled datasets. 

 

2.4 AI in Dynamic Analysis 

Such an application of artificial intelligence in 

dynamic analysis is mainly through Anomaly detection 

methods and reinforcement learning. These include 

autoencoders, which can be trained on normal application 

behavior and then used to detect anomalies, including a 

security breach or software problem. Reinforcement learning 

agents have been evaluated to test the running system, teach 

the testing strategies to the learners, and learn the efficient 

strategies according to the specific application environment. 

A promising set of directions in AI patterns involves 

improving the responsiveness and the quality of detection of 
such bugs, although these are currently considered as 

research prototypes and scale-up and integration into the 

contemporary development processes pose some concerns. 

 

2.5 Gaps Identified 

Although work has been done combining static and 

dynamic analysis, integration stays relatively modest in 

numerous applications. This is perhaps a two-pronged 

approach that could be beneficial in getting better security 

insights in terms of both codes and the actual runtime 

behavior. Furthermore, most of the AI tools are in research 

and not widely used in the real world due to some concerns 
regarding reliability and interpretability and because they 

may require tuning for a specific area. Another major 

shortcoming is that there is no consistent set of datasets and 

performance measures to compare and compare tools and 

technologies. To fill in the given gaps more detailed and 

deeper understanding of this problem is important for further 

improvement of approaches to secure software development. 

 

3. Methodology 
3.1 Framework Overview 

In this section, we propose a new generic approach 

that combines static and dynamic analysis concepts with the 

help of Artificial Intelligence (AI) algorithms. This approach 

is an attempt to improve on the limitations of the traditional 

approaches of static code inspection and runtime behavior 

analysis. To enhance the credibility and potential of the given 

framework, it can be underpinned by AI functionality, which 

can assist the process of a vulnerability scan, minimize the 
number of false positives, and make effective 

recommendations based on context. [12-16] The hybrid 

system combines three main modules, each with a different 

function, but the outcomes obtained are useful for 

performing security tests. 

 Source Code: The source code is the first input to 

the hybrid framework. This is where the static 

analysis module starts and searches through the 

program for threats, errors, omissions, or security 

weaknesses. It is worth noting that most of the time, 

the source code is a static view of the application; it 
doesn‟t contain any runtime data, but it does contain 

a lot of patterns that can be marked problematic in 

accordance with certain defined rules, or learned by 

an AI model. This code can then be parsed by the 

framework to be input into the Static AI Module, 

where the statistical and machine learning 

algorithms are used to detect any risks as per past 

identifiable trends and any risks identified from 

contextual analysis of the code. 
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Figure 2: Framework Overview 

 

 Static AI Module: Static AI module is the first core 
combined in the hybrid framework of the proposed 

system. Examining the application‟s source code 

without running it while incorporating concepts 

such as artificial intelligence, machine learning, and 

deep learning are other critical aspects of this type 

of analysis. While numerous traditional tools, such 

as PVS-Studio, work with strictly defined rules, the 

Static AI Module applies artificial intelligence to 

identify vulnerabilities that may have been in the 

past to anticipate potential problems in the source 

code. Thus, by understanding the meaning of the 

code snippets and recognizing the semantic 
patterns, especially the intricate relations between 

various sequences, the AI module can identify a 

potential flaw, a security issue or suboptimal code 

practices in a slice of code that might go unnoticed 

by humans. It can also evolve to accommodate the 

latest programming frameworks and paradigms, 

making it more efficient and versatile. 

 Integrated Dashboard: The Integrated Dashboard, 

also known as the control panel, serves as the 

command center for monitoring and controlling the 

analysis process. It aggregates and presents the 
results from both the Static AI Module and the 

Dynamic AI Module to make them easily 

understandable to the developers, security teams, 

and stakeholders, all at one centralized place where 

they want to be. Overall, such a dashboard is 

management-oriented and dynamic and presents 

overviews of identified threats, the calculated level 

of risk, and suggested measures in order to facilitate 

the prioritization of the remediation based on risk‟s 

qualitative characteristics. However, there can be 

real-time analysis statistics, current threats and 
alerts observed while dynamic analysis is in 

progress and historical statistics to evaluate the 

application‟s safety at a definite time. They suggest 

that the integrated nature of this dashboard helps to 

provide synthesis and support decision-making 

across the Software Development Life Cycle. 

 Running Application: The Running Application 
component describes the application's version in 

production or an environment in which the software 

can be tested as it would be used in actual use. This 

is possible through the running application that the 

Dynamic AI Module interfaces with the system in 

order to monitor the dynamic behavior. DAST is an 

example of dynamic analysis tools that evaluate the 

application‟s runtime environment to detect flaws 

that may not easily be seen from the code. These 

aspects include session management, input 

validation, and security misconfigurations that arise 

when the application is run. The real-time data is 
fed into the Dynamic AI Module incorporated in the 

fabric of the running application, where anomalies 

and correlations are identified and potential threats 

predicted based on context. 

 Dynamic AI Module: The Dynamic AI Module 

parallels the Static AI Module, which analyses the 

application's behaviour during runtime. This module 

employs artificial intelligence and machine learning 

processes, including anomaly detection, 

reinforcement learning, and behavioural analysis, to 

detect security issues that are not detectable in a 
static analysis. For example, machine learning 

models can learn how an application is supposed to 

behave, what kind of traffic it is normally supposed 

to generate, or which APIs it should be calling and 

then look for the next unexpected activity or traffic 

that may be a sign of an attack or vulnerability. This 

kind of analysis is perfect for identifying threats in a 

real environment, while some other passive 

approaches might not discover threats during 

runtime. This is because the Dynamic AI Module is 

based upon previous incidents, real-time learning, 
and behavioural changes of application to 

proactively induce threat detection and prevention. 

Hence, by integrating static and dynamic testing and 

incorporating AI in a system, it is possible to devise 

a more extensive and robust security testing 

framework that would depict the best features of 

both paradigms without bearing their shortcomings. 
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3.2 Static AI Module 
Static AI module is used to analyze code without 

running it, and the main idea is to find out how to protect the 

system from malicious attacks. It operates in two main 

phases: Of particular use, identification of the features and 

classification of the vulnerabilities, using trending models 

and representations to form feature extraction and 

vulnerability classification models that are accurate and 

contextually tailored. 

 
Figure 3: Static AI Module 

 

 Feature Extraction: The first stage that is 

performed in static analysis involves the 

identification of features that it is required to 

analyze. This may start with using Abstract Syntax 

Trees (ASTs) to understand the various tokens used 

to structure the code in tree structures that capture 

their syntactic structure. This process enables the 

system to capture two forms of relations, namely 

the hierarchical and the sequential one between 
code elements. After this, Semantic embeddings are 

created as with BERT-like models for code, for 

example CodeBERT. These models deal with code 

in the same way as with natural language, analyzing 

the contextual and semantic features of how 

different variables interact with functions and logic 

and how the code operates deeper than the mere 

resemblance of patterns. 

 Vulnerability Classification: The next step that 

follows the extracting of features is categorising the 

code for vulnerability potential. Two strategies to 
achieve this are using conventional supervised 

learning algorithms such as the Random Forest and 

SVM, although these present easily interpretable 

results where the input dataset is structured and 

well-labeled. Concurrently or in tandem, deep 

learning models like Convolutional Neural 

Networks (CNN) and Long Short-Term Memory 

networks (LSTM) capture the complex and non-

linear relationships and long-range dependency 

within the code. One of the most beneficial uses of 

these models is that they can be utilized to identify 

complex code paths and buried bugs that even 
complex algorithms do not pick up. 

 

3.3 Dynamic AI Module 
This is the Dynamic AI Module that is designed to 

tackle behaviors that may not be detected during the Static 

AI Module as it involves analyzing the application as it is in 

use by the end-user and injecting intelligence [17-20] 

algorithms that track possible threats in real-time and 

generates responses in line with the context. 

 Runtime Monitoring: In this phase, the system 

writes the operational metric collected of the 

running application is actively observed. This 

includes memory profile, frequency and type of API 

calls, and HTTP traffic, which will reveal improper 

use or misuse. It also keeps track of the user 
interactions and system reactions to study the 

pattern of usage and flow of interactions. This 

information creates behavioral models for actions 

and looks for anomalies denoting security threats or 

low-performance risks. 

 
Figure 4: Dynamic AI Module 

 

 Anomaly Detection: After understanding the 

normal profile of operation, measures like activity 

monitoring that enable the detection of any 

abnormal activity are used. Autoencoders are a form 

of analyzing neural networks that handles typical 

application interactions and uncovers the atypical 

interactions without raising many false alarms. In 

addition to this, the RL agent is implemented to 

increase flexibility. It can also learn from the 

environment and modify this type of detection 

dynamically to respond in real time with regard to 
continuing trends of threats and other abnormalities 

in the system. 
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3.4 Integration Layer 

In a way, the Integration Layer is the controlling 

component that takes the data generated from both the Static 

AI Module as well as the Dynamic AI Module and presents a 

combined and coherent depiction of application security. 
Unlike most tools that conduct static and dynamic analyses 

as separate entities, this layer links the two, increasing the 

effectiveness of the detection, reducing the time spent on 

repeating analyses and enabling better ranking of the threats. 

Additionally, to a white- or black-box analysis that only 

allows to detection of insecure code and patterns at compile-, 

linkage- and binary levels, information about runtime-

behavior like bizarre API usage or strange memory accesses 

can be obtained. A key attribute of the integration layer is 

that the integration layer applies the threat scoring model. 

This model considers the critical level of identified 

vulnerabilities, the probability of threats and risks, the 
certainty of AI-based predictions, and the context of an 

anomaly‟s occurrence in the runtime environment. For 

instance, a static vulnerability identified in the critical 

authentication module may have a higher score when a 

certain abnormal use of login is observed dynamically.  

 

The automated scores themselves can be developed 

with the help of logistic regression or gradient boosting and 

are able to modify the scores based on prior incident data to 

work more effectively over time.Furthermore, the integration 

layer can, in turn, enhance the involvement of feedback 
loops for decision-making. Single threats identified by the 

system can be accepted or rejected for their validity by the 

security analysts who help optimise the application scoring 

system and lower the number of false positives. In the end, 

this layer produces a portfolio of potential threats with 

contextual details, recommendations on what to do, and 

confidence scores. This is done through the integrated 

dashboard, which provides the security teams with the 

relevant outputs to help in their decision making process on 

the same incident. In summary, our proposed Integration 

Layer aggregates fragmented analytical outcomes. It 

improves the overal foldable construction of the hybrid AI-
based framework, making it more practical and appropriate 

for application in CI/CD pipelines. 

 

3.5 Dataset Preparation 

In order to train and test the AI models employed in 

the proposed framework, open-source and company-specific 

datasets were applied. These datasets give documents 

covering various levels of vulnerabilities and having 

different structures of applications alongside having code 

bases and being real world like nature these datasets are 

useful for creating highly generalized models. The three 

primary datasets used in the study are the OWASP Juice 
Shop, WebGoat, and another e-commerce application the 

authors built. 

 OWASP Juice Shop: OWASP Juice Shop is an 

intentionally insecure web application that is an 

open-source web application for security purposes, 

of the 30 or more known critical ones, cross-site 

scripting (XSS) or, at the other end of the 

complexity scale, application-level broken access 

controls. Juice Shop is an Application with approx 

15000 LOC, comes with good documentation, and 

it is easy to reproduce the static and dynamic 
testing. It is also modern and has the ability to 

mimic real-world attack surfaces, which is suitable 

for the AI model training in detecting commonly 

used web vulnerabilities. 

 
Figure 5: Dataset Preparation 

 

 WebGoat: WebGoat is another OWASP product, 

and it is an intentionally insecure application with 

over 50 lessons, and each of them is devoted to a 

specific type of vulnerability. Currently, WebGoat 

contains about 20,000 lines of Java-based code and 
has more detailed discussions about server-side 

flaws and developers‟ mistakes. However, it can be 

helpful in assessing the dynamic behaviour of 

insecure applications and crowdsourcing AI training 

to recognize complex runtime defects in business 

and flow logic. 

 E-commerce Application: The web-based e-

commerce application was designed to have real-

life scenarios such as user credentials, ordering 
system, and inventory with 50 thousand lines of 

production-grade code and 15 known ones disclosed 

after manual code examination and penetration 

testing. Unlike an open-source dataset, it introduces 

the specific security concerns of a particular 
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domain. It shows reasonable usage patterns that 

should be essential for testing the real-world 

performance of the framework. 

 

4. Result and discussion 
4.1 Experimental Setup 

To ensure that the performance of the proposed 

hybrid AI-based framework for vulnerability detection is 

well tested an effective experiment was set on high-

performance hardware and with the assistance of popular and 

reliable software tools. The training and testing equipment 

included an Intel Core i9 processor, 32 GB RAM and 

NVIDIA RTX 3080 graphics card. This configuration 
allowed parallelism of tasks, speedy throughput in machine 

learning operations, and the running of extensive deep 

learning models. Finally, the researchers noted that some 

languages, particularly the GPU, enhanced the training of 

neural networks and analysis of large code repositories and 

runtime logs. This was established based on the Python 

environment due to its compatibility with scientific 

computing and Machine learning libraries. For classical 

machine learning algorithms such as Random Forest and 

Support Vector Machines (SVM), scikit-learn was used for 

baseline comparisons and classifying vulnerabilities.  
 

For complex models such as CNN and LSTM, 

TensorFlow offered the required framework for giving 

architecture of deep learning models, training a model and 

deploying them. These tools enabled the modularity of static 

and dynamic analysis components, which is crucial for their 

application in practice. For DAST, Burp Suite was employed 

as a subsequent tool in the testing mechanism. It can be used 

as an aggressive web vulnerability scanner and proxy tool 

that allows the emulation of different user actions, the 

interception of HTTP communication and the detection of 

misbehaviors during application use. Burp Suite was used to 
actively elicit realistic run-time data, and, in turn, the Data 

Analysis and Control Layer, along with the Dynamic AI 

Module, were used to identify behavioural anomalousness. 

Not only did this end-to-end experiment facilitate the 

technical requirements of building and testing the model, but 

it also closely resembled real-world scenarios for the 

deployment of the framework, making it a reliable 

environment in terms of real-life applicability and robustness 

in detecting software vulnerabilities. 

 

4.2 Performance Metrics 

In order to evaluate the performance of the 
proposed hybrid vulnerability detection framework, basic 

standard benchmarks often used in this area of research were 

adopted. There are three that are commonly used: accuracy, 

precision, and recall, all of which give a fair representation 

of a model‟s performance. Moreover, false positive 

rate(FPR), false negative rate(FNR) and total time required 

for analysis were other parameters to assess the effectiveness 

and time taken using different approaches. Below is a 

comparative analysis of the three scenarios: static-only, 

dynamic-only, and the combined dynamic and static AI 

model. 

 

Table 1: Model Performance 

Model Precision Recall F1-score FP Rate FN Rate 

Static Only 84% 79% 81% 12% 9% 

Dynamic Only 86% 83% 84% 10% 7% 

Combined (AI) 92% 89% 90% 5% 4% 

 

 
 

Figure 6: Graph representing Model Performance 
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 Static: Hence, the model that uses the static 

approach only has a precision of 84% Recalled 

79%and an f-score of 81%. However, while static 

analysis was used to find standard risks in the code 

without its execution, it had such disadvantages, 

with 12% false positive results and 9% false 
negative ones. This is mainly because, beyond the 

formal analysis of code, most tools are not able to 

fully understand how a program is executed in its 

runtime environment and the context it runs in and 

miss many flags for over-flagging or fail to identify 

several vulnerabilities in complex data structures. 

 Dynamic Only: Though not much remarkable, the 

results of the dynamic-only model were slightly 

superior, with an overall accuracy of 86% and recall 

of 83%, yielding an F1-score of 84%. It was also 

employed to display a low false positive rate at 10% 
and a low false negative rate at 7% than the static 

analysis approach. The dynamic model was more 

successful in predicting context-sensitive 

vulnerabilities; however, it did not have insight into 

those paths in the code that were not called during 

the tests. 

 Combined (AI): The integrated model has yielded 

the highest possible values; one is the precision of 

the model is 92%, the second is the recall value is 

89%, and the last one is the F1 score of the model, 

which is 90%. It reported the least false positive 

(5%) and false negative rate (4%) in the experiment 
and could complement static and dynamic analysis. 

This approach gave a more precise and practical 

detection of the vulnerabilities with fewer false 

positives and negatives. 

 

4.3 Analysis of Results 

The performance analysis findings prove a 

significant improvement using the AI-incorporated 

vulnerability detection model over the individual static or 

dynamic analysis methods. This was evident from its F1-

score, which stood at 0.90; the higher the F1, the better the 
model‟s ability to balance between the precision and recall of 

the detected vulnerabilities, thus being accurate in their 

identification, while, at the same time, pointing only a higher 

number of times and not producing false alerts often. As for 

the results, the static-only model received an F1-score of 

0.81, while the dynamic-only model received an F1-score of 

0.84, proving the methods' drawbacks when having no 

regard for each other. Static analysis, while being fresh and 

more efficient in the early stage and improving code analysis 

with deeper insights, has limited context awareness at 

runtime and provides a large number of false positives. 

Dynamic analysis resolves this problem by analyzing real-
time execution but may miss dormant code paths or 

unexploitable vulnerabilities. The most notable advantages 

of the hybrid model are seen in false result drop rates.  

 

The analysis of results shows that the false positive 

rate decreased from 12% in the first model, where only static 

analysis was applied to only 5% in the proposed approach, 

which means an improvement of more than 50%. In the same 

respect, the false negatives saw a reduction from 9% to 4%,” 

a more than 50% reduction on average. This improvement is 

very important considering that realistic scenarios imply that 

security teams could get a large number of false positives 

and, consequently, experience alert fatigue; on the other 

hand, many false negatives mean that exploits could be left 
unnoticed. In addition, it was also seen that the time taken to 

identify vulnerabilities by the consequent combination of the 

asset model was 35% less than the manual analysis of the 

codes. This is mainly due to the ability to analyze the code 

and the application simultaneously and have machine 

learning models identify high-risk patterns in a short time 

Frame. In general, it has been established that incorporating 

AI in static and dynamic analysis positively impacts 

detection accuracy and improves the efficiency of operation 

in the application of AST. 

 

4.4 Case Study: E-commerce Platform 

 Detection of SQL Injection Vulnerabilities: While 

testing the online shopping system developed with 

the proprietary framework, the integrated AI 

approach flagged three new undiscovered SQL 

injection types. These flaws had managed to evade 

earlier static and dynamic code analysis since they 

were implemented at locations that are not 

frequently executed in the backend controls. The 

proposed SD, which integrated semantic analysis 

and dynamic information the insecurities of 

constructed SQL queries and sample user inputs  
accurately identified these injection points based on 

the patterns of the former when matching with the 

latter. These were further validated by manually 

checking the vulnerabilities and doing penetration 

tests on the sites, noting that the developed 

framework could reveal a range of deeper-rooted 

vulnerabilities that other tools fail to identify. 

 Identifying libraries of an application: 

Altogether, in the system, three code items were 

viewed as imperfections at the coding level, and 

two third-party libraries were Outdated/Associated 
with known CVEs. These libraries used for payment 

processing and form validation were not updated for 

several months and contained vulnerabilities 

referred to in CVE. The static analysis identified the 

version number scanning the dependent modules, 

and further, the model matched to the external 

vulnerability database. They proactively identified 

these components for enhancement and proposed 

upgrades before the product's release to counter 

well-known attacks that would otherwise have 

seriously compromised the supply chain credentials 

of the application in circulation. 

 

4.5 Limitations 

Nevertheless, it is also imperative to note the 

weaknesses of the proposed hybrid AI framework concerning 

generalization, data dependency, and behavioral generality. 

Still, one of the difficulties remains in the problem of the 

availability of both large and diversified training samples. In 

deep learning architecture, the model can learn optimally if 
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and only if they are trained on a large dataset of real-world 

samples and labeled codes and their corresponding 

vulnerabilities or attacks. Nevertheless, such datasets are 

rare, particularly in the case of proprietary software, the main 

sources of which code and vulnerabilities are often withheld 

for reasons of proprietary rights. Therefore, the models can 
learn to optimize the characteristics of a training corpus and 

fail at correctly predicting its performance across other 

applications or unconventional development tendencies. 

 

Furthermore, the dynamic part of the framework is 

heavily based on the runtime behavior, and the latter is only 

a small fraction of the behavior possible in the framework, 

where training or testing paths are used. Suppose some 

portions of an application logic are not executed during 

testing because of test inputs, feature flags, or unavailable 

conditions. In that case, the flaws in that unused code path 

will not be found. This is especially the case when the 
system being tested is a large application that has many 

different workflows or when the events being tested are 

asynchronous and can take a long time to complete. For 

similar reasons, it is difficult to determine that anomaly 

detection methods, alternatively using an autoencoder 

embedded within the encoder layer, are only as good as the 

“normal” behaviour it learns. The problem is that if the 

training data does not include all valid behaviors, the model 

may sound an alarm when none is needed or fail to sound 

one when required due to a familiarity with but non-ill意
behavior patterns. Addressing these limitations will entail 

research in developing better unsupervised learning, 

knowledge transfer, and more efficient and effective, as well 
as wider future bead range test case generation. Thus, 

integrating external threat intelligence and user simulating 

tools can also increase the model's exposure to various 

application behaviors, aiding it in performing better in 

different real-life scenarios. 

 

5. Conclusion 
Static and dynamic analysis is a strong tool that can 

offer proactive, accurate and fresh solutions against the 

current menace of web application security threats. While 

conventional forms of security testing still serve their 

purpose, they may not be able to handle the rapid 

advancement and development of web applications. Namely, 

if it combines static and dynamic analysis, it becomes 

possible to identify vulnerabilities faster and to a greater 

extent. The static analysis examines the code and the 

potential bugs before the application development. In 

contrast, dynamic analysis runs the code and records real-
time security threats. Integrating the two approaches 

accompanied by Machine Learning algorithms leads to 

discovering the susceptibilities within a relatively short time 

span that would otherwise require unreasonably much time. 

The combination of these two makes it relevant as machine 

learning increases accuracy and efficiency by learning from 

previous results and finding new patterns that were not 

earlier considered more closely. It also ensures that the 

vulnerabilities are detected immediately while at the same 

time helping avoid the possibility of the failure to identify 

other security flaws that may be present in the development 

of the application. 

 

In the future, the following factors can improve this 

AI-based security strategy: One of the topics that appears to 

have high potential for additional development is using NLP 
methods to detect flaws in business logic. These types of 

defects are usually not even recognizable by classical 

security solutions as they result from the imperfections in the 

behavior of an application rather than from the misprints in 

source code. It can be useful in understanding the semantics 

behind the code and its use and interaction with other 

components; hence, better detection of such vulnerabilities 

could be witnessed. Another direction is the increase in the 

number of examples used for training the AI. Using various 

types of architectures in the web enables the AI to be ready 

to detect the vulnerabilities in different types of frameworks 

and architectures of the web today. Incorporating these kinds 
of AI-based security models in the Continuous Integration 

and Continuous Delivery (CI/CD) pipeline could also help 

automate the vulnerability scan to maintain the security 

aspect from one phase to another in the SDLC. This would 

help to catch those security flaws before it gets to the final 

stages of development and minimize the incidences of a 

security breach in the production environment. 

 

Although it is certainly not the Holy Grail for web 

app security, AI can become a powerful supplement for 

conventional instruments. AP When done rightly, AI will 
help approach security in a much better and non-

conventional manner to help developers and security 

authorities avoid, recognize, and find counter solutions to 

threats more efficiently. This may eventually reduce risks 

and threats that work their way into web application 

weaknesses, which would help improve the general security 

of the environment. 
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