

 International Journal of Artificial Intelligence, Data Science, and Machine Learning
Grace Horizon Publication | Volume 6, Issue 2, 73-82, 2025

ISSN: 3050-9262 | https://doi.org/10.63282/3050-9262.IJAIDSML-V6I2P108

Original Article

Securing Modern Web Applications Using AI-Driven

Static and Dynamic Analysis Techniques

Sandeep Phanireddy

Sr, Product Security Engineer, USA.

Received On: 05/03/2025 Revised On: 15/03/2025 Accepted On: 31/03/2025 Published On: 20/04/2025

Abstract: The application layer in the modern web, developed for various purposes such as banking, social

networking, etc., is widely exposed to cyber threats due to loopholes in application architecture. To address these

issues, it has been found that the incorporation of AI in security analysis has been quite effective. In this paper, the

author scrutinizes the manner in which static and dynamic analysis methods propelled by artificial intelligence can

strengthen the security of the current web-intensified applications. Here, we see the very essence of modern web

applications and identify the significant increase in the number and depth of threats. We then provide a comparative

analysis of traditional and AI methods for detecting vulnerabilities. What pertains to static analysis that analyzes

code without executing it is discussed regarding applying machine learning classifiers and code understanding based

on NLP. On the other hand, dynamic analysis that involves determining the behavior of an application in operation

can rely on reinforcement learning and anomaly detection. In this paper, we propose a framework that incorporates

both approaches which is well demonstrated through an actual e-commerce environment. Given outcomes suggest a

gain in the number of birds detected, minimized false alarms, and quicker response time. It also covers
implementation issues such as the lack of datasets and generalizing and incorporating the model into the DevSecOps

pipeline. In conclusion, incorporating AI-based analysis provides an active and elastic approach to safeguard web

applications against existing and arising hazards.

Keywords: Web Security, Artificial Intelligence, Static Analysis, Dynamic Analysis, Machine Learning, Vulnerability

Detection.

1. Introduction
1.1 The Need for AI in Security Analysis

With the continuous development of complex web

applications and their increased importance to businesses,

such kind of methods of security analysis are becoming even

more important. [1-4] Procedures involved in the past,

including manual code reviews or the application of rules-

based vulnerability scanners, are inadequate to meet today‟s

growing threats. This section focuses on identifying factors

that justify the use of AI in security analysis to ascertain why
it is crucial in the field.

Figure 1: The Need for AI in Security Analysis

Sandeep Phanireddy / IJAIDSML, 6(2), 73-82, 2025

74

 Growing Complexity of Web Applications: Web

applications are characterized by their increasing

complexity, interactivity and functionality. This is

due to other features like complicated coding

structures, layered services, and high third-party

incorporation mostly difficult to diagnose by hand.
As new technologies like microservices, APIs, and

serverless are introduced, the attack vector has

shifted. Moreover, traditional security tools do not

evolve with such complex structures of the systems

and are incapable of evaluating their security

efficiently. Thus, AI can handle these complexities

on the go and is able to predict new and other forms

of risks as they develop over time.

 Speed and Volume of Development Cycles: When

it comes to development in the contemporary world,

people follow the idea of „time is money.‟ When it
comes to software development, segregated phases

of development are a thing of the past, with the

current paradigm embracing Continuous

Integration/Continuous Deployment (CI/CD) pipes.

There is barely any space left for manual security

testing, which slows release cycles and may lead to

more susceptibilities being missed. Analysts found

advantages in integrating AI-driven security

analysis in these security pipelines. This automation

enables security to maintain parity with

development to identify and report issues without

slowing down development.

 The Evolving Threat Landscape: It is also

suggested that threats in cyberspace are advancing

and tend to employ methods like machine learning,

social engineering, and zero-day attacks. These

emerging threats sometimes call for detection

mechanisms different from the norm, which

involves simple rules-based detection that can only

be effective when used to identify known threats. AI

is particularly good at discovering new patterns of

attack and potential weaknesses that may be latent

and not easily discernible using other techniques. AI
can be used to identify new trends in hacking,

which makes this technology quite effective in the

fight against ever-evolving hackers.

 Scarcity of Skilled Security Professionals: This is

a problem because there is a shrinking pool of

qualified personnel in the cybersecurity industry,

and this means that organizations cannot have

adequate personnel for deeper analysis of security

issues. As for manual testing, it demands

considerable effort and experienced specialists,

which are relatively few. This can be useful to close

the gap and facilitate the security analysis process
by automating many facets without additional

human resources. Automating a large part of the

work may be helpful to security specialists who can

be relieved from routine tasks and devote their time

to important cases that call for their attention.

 The Need for Proactive Security Measures:

Traditionally, security for applications on the web

has been of a reactive type, where measures are

taken only after incidents happen or are discovered.

This makes them take a reactive approach that

exposes applications to cyberattacks for a long time.

In contrast, AI-based security analysis is more

preventative analysing the system to find out what

can go wrong in a system. Thus, AI can foresee
possible threats and prevent them by having

algorithms to sort numbers, characterizing patterns

and behaviors, and using machine learning. This

also ensures that businesses adopt preventive

measures against security breaches in the

development phase, thus mitigating the

vulnerability of such instances and the cost incurred

in handling them. Altogether, such factors as the

increasing intricacy of Web applications, pressure

on development time, development of threats,

shortage of skilled workers, and the necessity to

have active safety measures mean that AI is
becoming critical in security analysis. AI results in

enhanced capabilities to meet contemporary

security issues, allowing organizations' web

applications to be safe against malicious actors.

1.2 AI-Driven Static and Dynamic Analysis Techniques

Static and dynamic analysis methodologies are

strong security solutions in modern web applications through

machine learning and artificial intelligence. [5,6] Static

analysis, on the other hand, refers to inspecting a program

without actually running it to find syntax bugs, insecure
coding practices or weakened security breaches such as SQL

injection. AI also improves static analysis by utilising

algorithms from the sphere of machine learning to search for

patterns of behavior in a code that can be considered a

vulnerability. It can also automatically rank vulnerabilities

depending on their criticality and does not necessarily

require one to assess. Static analysis‟s strength in AI is its

capacity to ingest large amounts of code quickly and then

flag the probability of a mistake that might have otherwise

escaped code review. Dynamic analysis, in contrast with

static analysis, is performed at the runtime to check for the

presence of issues that only become apparent during the
actual use of the developed application, for example, when a

user tries to enter the application with an appropriate

password or if the access rights within the application are not

properly implemented.

AI underlines dynamic analysis‟s effectiveness by

allowing it to be conducted in real-time and adaptive mode.

During runtime, the AI-based tools can monitor the

behaviour of an application and then, based on this

information, use predictive analysis to identify signs of a

potential weak link in the security system. They can also
model advanced attacks, which may not be displayed by the

other means typical for security systems. Static and dynamic

analysis work in union to present several advantages of AI;

AI becomes the way of obtaining the synchronous view of

the referred application‟s tendencies both at the code level

and the runtime. These AI-based approaches help identify

intricate problems and improve the positives while ensuring

continuous security integration into the coding procedures to

Sandeep Phanireddy / IJAIDSML, 6(2), 73-82, 2025

75

rectify the issues. This is more than just a reactive approach,

making it a robust, scalable and proactive measure that helps

organizations prepare for new threats.

2. Literature Survey
2.1 Static Analysis Techniques

Static analysis entails analyzing source code

without running it or profiling its behavior. A set of tools are

used in the industry, like SonarQube, Fortify, and

Checkmarx for identifying security vulnerabilities, code

smells, and compliance. They all use the rule-based approach

and work based on matching pre-defined templates by

checking for mistakes throughout the development cycle. [7-
11] Although they are not immune from a high false positive

rate whereby, the reliability of the developers is easily

compromised and therefore, important cues are missed.

Furthermore, some competencies in static analysis tools,

such as asynchronous JavaScript or dependency injection in

Angular and Spring, cause issues in current development

paradigms and frameworks, which restrains their efficiency

in contemporary conditions.

2.2 Dynamic Analysis Techniques

DAST is the process of testing the application in a
runtime environment and look for vulnerabilities that are not

exposed if the Program testing is done at static state. OWASP

ZAP and Burp Suite are successful tools for emulating real

attack scenarios on web applications; some of the standard

attacks that may be discovered include SQL injection attacks,

cross-site scripting, and improper session management. The

above tools are useful for runtime analysis but often do not

know how the application works and what control flows suit

it. Another limitation of using DAST tools is that they can

easily get stuck in a routine where they run through the same

patterns over and over until a problem is identified, even

when better options exist because they do not have memory
or intelligence for analysis over time.

2.3 AI in Static Analysis

New approaches to static analysis have brought

semantic sensitivity and context into the picture with the help

of AI into the picture. A distinctive example is DeepBugs

here, the word embeddings and the neural networks are used

to identify bugs with factors related to the semantics of

tokens in source code. DeepBugs and similar models learn

the code as natural language and are able to identify some

peculiarities that rule-based approaches could not detect. By
incorporating deep learning data, AI-based systems achieve

higher precision and less false results, but that heavily

depends on the quantity and quality of labeled datasets.

2.4 AI in Dynamic Analysis

Such an application of artificial intelligence in

dynamic analysis is mainly through Anomaly detection

methods and reinforcement learning. These include

autoencoders, which can be trained on normal application

behavior and then used to detect anomalies, including a

security breach or software problem. Reinforcement learning

agents have been evaluated to test the running system, teach

the testing strategies to the learners, and learn the efficient

strategies according to the specific application environment.

A promising set of directions in AI patterns involves

improving the responsiveness and the quality of detection of
such bugs, although these are currently considered as

research prototypes and scale-up and integration into the

contemporary development processes pose some concerns.

2.5 Gaps Identified

Although work has been done combining static and

dynamic analysis, integration stays relatively modest in

numerous applications. This is perhaps a two-pronged

approach that could be beneficial in getting better security

insights in terms of both codes and the actual runtime

behavior. Furthermore, most of the AI tools are in research

and not widely used in the real world due to some concerns
regarding reliability and interpretability and because they

may require tuning for a specific area. Another major

shortcoming is that there is no consistent set of datasets and

performance measures to compare and compare tools and

technologies. To fill in the given gaps more detailed and

deeper understanding of this problem is important for further

improvement of approaches to secure software development.

3. Methodology
3.1 Framework Overview

In this section, we propose a new generic approach

that combines static and dynamic analysis concepts with the

help of Artificial Intelligence (AI) algorithms. This approach

is an attempt to improve on the limitations of the traditional

approaches of static code inspection and runtime behavior

analysis. To enhance the credibility and potential of the given

framework, it can be underpinned by AI functionality, which

can assist the process of a vulnerability scan, minimize the
number of false positives, and make effective

recommendations based on context. [12-16] The hybrid

system combines three main modules, each with a different

function, but the outcomes obtained are useful for

performing security tests.

 Source Code: The source code is the first input to

the hybrid framework. This is where the static

analysis module starts and searches through the

program for threats, errors, omissions, or security

weaknesses. It is worth noting that most of the time,

the source code is a static view of the application; it
doesn‟t contain any runtime data, but it does contain

a lot of patterns that can be marked problematic in

accordance with certain defined rules, or learned by

an AI model. This code can then be parsed by the

framework to be input into the Static AI Module,

where the statistical and machine learning

algorithms are used to detect any risks as per past

identifiable trends and any risks identified from

contextual analysis of the code.

Sandeep Phanireddy / IJAIDSML, 6(2), 73-82, 2025

76

Figure 2: Framework Overview

 Static AI Module: Static AI module is the first core
combined in the hybrid framework of the proposed

system. Examining the application‟s source code

without running it while incorporating concepts

such as artificial intelligence, machine learning, and

deep learning are other critical aspects of this type

of analysis. While numerous traditional tools, such

as PVS-Studio, work with strictly defined rules, the

Static AI Module applies artificial intelligence to

identify vulnerabilities that may have been in the

past to anticipate potential problems in the source

code. Thus, by understanding the meaning of the

code snippets and recognizing the semantic
patterns, especially the intricate relations between

various sequences, the AI module can identify a

potential flaw, a security issue or suboptimal code

practices in a slice of code that might go unnoticed

by humans. It can also evolve to accommodate the

latest programming frameworks and paradigms,

making it more efficient and versatile.

 Integrated Dashboard: The Integrated Dashboard,

also known as the control panel, serves as the

command center for monitoring and controlling the

analysis process. It aggregates and presents the
results from both the Static AI Module and the

Dynamic AI Module to make them easily

understandable to the developers, security teams,

and stakeholders, all at one centralized place where

they want to be. Overall, such a dashboard is

management-oriented and dynamic and presents

overviews of identified threats, the calculated level

of risk, and suggested measures in order to facilitate

the prioritization of the remediation based on risk‟s

qualitative characteristics. However, there can be

real-time analysis statistics, current threats and
alerts observed while dynamic analysis is in

progress and historical statistics to evaluate the

application‟s safety at a definite time. They suggest

that the integrated nature of this dashboard helps to

provide synthesis and support decision-making

across the Software Development Life Cycle.

 Running Application: The Running Application
component describes the application's version in

production or an environment in which the software

can be tested as it would be used in actual use. This

is possible through the running application that the

Dynamic AI Module interfaces with the system in

order to monitor the dynamic behavior. DAST is an

example of dynamic analysis tools that evaluate the

application‟s runtime environment to detect flaws

that may not easily be seen from the code. These

aspects include session management, input

validation, and security misconfigurations that arise

when the application is run. The real-time data is
fed into the Dynamic AI Module incorporated in the

fabric of the running application, where anomalies

and correlations are identified and potential threats

predicted based on context.

 Dynamic AI Module: The Dynamic AI Module

parallels the Static AI Module, which analyses the

application's behaviour during runtime. This module

employs artificial intelligence and machine learning

processes, including anomaly detection,

reinforcement learning, and behavioural analysis, to

detect security issues that are not detectable in a
static analysis. For example, machine learning

models can learn how an application is supposed to

behave, what kind of traffic it is normally supposed

to generate, or which APIs it should be calling and

then look for the next unexpected activity or traffic

that may be a sign of an attack or vulnerability. This

kind of analysis is perfect for identifying threats in a

real environment, while some other passive

approaches might not discover threats during

runtime. This is because the Dynamic AI Module is

based upon previous incidents, real-time learning,
and behavioural changes of application to

proactively induce threat detection and prevention.

Hence, by integrating static and dynamic testing and

incorporating AI in a system, it is possible to devise

a more extensive and robust security testing

framework that would depict the best features of

both paradigms without bearing their shortcomings.

Sandeep Phanireddy / IJAIDSML, 6(2), 73-82, 2025

77

3.2 Static AI Module
Static AI module is used to analyze code without

running it, and the main idea is to find out how to protect the

system from malicious attacks. It operates in two main

phases: Of particular use, identification of the features and

classification of the vulnerabilities, using trending models

and representations to form feature extraction and

vulnerability classification models that are accurate and

contextually tailored.

Figure 3: Static AI Module

 Feature Extraction: The first stage that is

performed in static analysis involves the

identification of features that it is required to

analyze. This may start with using Abstract Syntax

Trees (ASTs) to understand the various tokens used

to structure the code in tree structures that capture

their syntactic structure. This process enables the

system to capture two forms of relations, namely

the hierarchical and the sequential one between
code elements. After this, Semantic embeddings are

created as with BERT-like models for code, for

example CodeBERT. These models deal with code

in the same way as with natural language, analyzing

the contextual and semantic features of how

different variables interact with functions and logic

and how the code operates deeper than the mere

resemblance of patterns.

 Vulnerability Classification: The next step that

follows the extracting of features is categorising the

code for vulnerability potential. Two strategies to
achieve this are using conventional supervised

learning algorithms such as the Random Forest and

SVM, although these present easily interpretable

results where the input dataset is structured and

well-labeled. Concurrently or in tandem, deep

learning models like Convolutional Neural

Networks (CNN) and Long Short-Term Memory

networks (LSTM) capture the complex and non-

linear relationships and long-range dependency

within the code. One of the most beneficial uses of

these models is that they can be utilized to identify

complex code paths and buried bugs that even
complex algorithms do not pick up.

3.3 Dynamic AI Module
This is the Dynamic AI Module that is designed to

tackle behaviors that may not be detected during the Static

AI Module as it involves analyzing the application as it is in

use by the end-user and injecting intelligence [17-20]

algorithms that track possible threats in real-time and

generates responses in line with the context.

 Runtime Monitoring: In this phase, the system

writes the operational metric collected of the

running application is actively observed. This

includes memory profile, frequency and type of API

calls, and HTTP traffic, which will reveal improper

use or misuse. It also keeps track of the user
interactions and system reactions to study the

pattern of usage and flow of interactions. This

information creates behavioral models for actions

and looks for anomalies denoting security threats or

low-performance risks.

Figure 4: Dynamic AI Module

 Anomaly Detection: After understanding the

normal profile of operation, measures like activity

monitoring that enable the detection of any

abnormal activity are used. Autoencoders are a form

of analyzing neural networks that handles typical

application interactions and uncovers the atypical

interactions without raising many false alarms. In

addition to this, the RL agent is implemented to

increase flexibility. It can also learn from the

environment and modify this type of detection

dynamically to respond in real time with regard to
continuing trends of threats and other abnormalities

in the system.

Sandeep Phanireddy / IJAIDSML, 6(2), 73-82, 2025

78

3.4 Integration Layer

In a way, the Integration Layer is the controlling

component that takes the data generated from both the Static

AI Module as well as the Dynamic AI Module and presents a

combined and coherent depiction of application security.
Unlike most tools that conduct static and dynamic analyses

as separate entities, this layer links the two, increasing the

effectiveness of the detection, reducing the time spent on

repeating analyses and enabling better ranking of the threats.

Additionally, to a white- or black-box analysis that only

allows to detection of insecure code and patterns at compile-,

linkage- and binary levels, information about runtime-

behavior like bizarre API usage or strange memory accesses

can be obtained. A key attribute of the integration layer is

that the integration layer applies the threat scoring model.

This model considers the critical level of identified

vulnerabilities, the probability of threats and risks, the
certainty of AI-based predictions, and the context of an

anomaly‟s occurrence in the runtime environment. For

instance, a static vulnerability identified in the critical

authentication module may have a higher score when a

certain abnormal use of login is observed dynamically.

The automated scores themselves can be developed

with the help of logistic regression or gradient boosting and

are able to modify the scores based on prior incident data to

work more effectively over time.Furthermore, the integration

layer can, in turn, enhance the involvement of feedback
loops for decision-making. Single threats identified by the

system can be accepted or rejected for their validity by the

security analysts who help optimise the application scoring

system and lower the number of false positives. In the end,

this layer produces a portfolio of potential threats with

contextual details, recommendations on what to do, and

confidence scores. This is done through the integrated

dashboard, which provides the security teams with the

relevant outputs to help in their decision making process on

the same incident. In summary, our proposed Integration

Layer aggregates fragmented analytical outcomes. It

improves the overal foldable construction of the hybrid AI-
based framework, making it more practical and appropriate

for application in CI/CD pipelines.

3.5 Dataset Preparation

In order to train and test the AI models employed in

the proposed framework, open-source and company-specific

datasets were applied. These datasets give documents

covering various levels of vulnerabilities and having

different structures of applications alongside having code

bases and being real world like nature these datasets are

useful for creating highly generalized models. The three

primary datasets used in the study are the OWASP Juice
Shop, WebGoat, and another e-commerce application the

authors built.

 OWASP Juice Shop: OWASP Juice Shop is an

intentionally insecure web application that is an

open-source web application for security purposes,

of the 30 or more known critical ones, cross-site

scripting (XSS) or, at the other end of the

complexity scale, application-level broken access

controls. Juice Shop is an Application with approx

15000 LOC, comes with good documentation, and

it is easy to reproduce the static and dynamic
testing. It is also modern and has the ability to

mimic real-world attack surfaces, which is suitable

for the AI model training in detecting commonly

used web vulnerabilities.

Figure 5: Dataset Preparation

 WebGoat: WebGoat is another OWASP product,

and it is an intentionally insecure application with

over 50 lessons, and each of them is devoted to a

specific type of vulnerability. Currently, WebGoat

contains about 20,000 lines of Java-based code and
has more detailed discussions about server-side

flaws and developers‟ mistakes. However, it can be

helpful in assessing the dynamic behaviour of

insecure applications and crowdsourcing AI training

to recognize complex runtime defects in business

and flow logic.

 E-commerce Application: The web-based e-

commerce application was designed to have real-

life scenarios such as user credentials, ordering
system, and inventory with 50 thousand lines of

production-grade code and 15 known ones disclosed

after manual code examination and penetration

testing. Unlike an open-source dataset, it introduces

the specific security concerns of a particular

Sandeep Phanireddy / IJAIDSML, 6(2), 73-82, 2025

79

domain. It shows reasonable usage patterns that

should be essential for testing the real-world

performance of the framework.

4. Result and discussion
4.1 Experimental Setup

To ensure that the performance of the proposed

hybrid AI-based framework for vulnerability detection is

well tested an effective experiment was set on high-

performance hardware and with the assistance of popular and

reliable software tools. The training and testing equipment

included an Intel Core i9 processor, 32 GB RAM and

NVIDIA RTX 3080 graphics card. This configuration
allowed parallelism of tasks, speedy throughput in machine

learning operations, and the running of extensive deep

learning models. Finally, the researchers noted that some

languages, particularly the GPU, enhanced the training of

neural networks and analysis of large code repositories and

runtime logs. This was established based on the Python

environment due to its compatibility with scientific

computing and Machine learning libraries. For classical

machine learning algorithms such as Random Forest and

Support Vector Machines (SVM), scikit-learn was used for

baseline comparisons and classifying vulnerabilities.

For complex models such as CNN and LSTM,

TensorFlow offered the required framework for giving

architecture of deep learning models, training a model and

deploying them. These tools enabled the modularity of static

and dynamic analysis components, which is crucial for their

application in practice. For DAST, Burp Suite was employed

as a subsequent tool in the testing mechanism. It can be used

as an aggressive web vulnerability scanner and proxy tool

that allows the emulation of different user actions, the

interception of HTTP communication and the detection of

misbehaviors during application use. Burp Suite was used to
actively elicit realistic run-time data, and, in turn, the Data

Analysis and Control Layer, along with the Dynamic AI

Module, were used to identify behavioural anomalousness.

Not only did this end-to-end experiment facilitate the

technical requirements of building and testing the model, but

it also closely resembled real-world scenarios for the

deployment of the framework, making it a reliable

environment in terms of real-life applicability and robustness

in detecting software vulnerabilities.

4.2 Performance Metrics

In order to evaluate the performance of the
proposed hybrid vulnerability detection framework, basic

standard benchmarks often used in this area of research were

adopted. There are three that are commonly used: accuracy,

precision, and recall, all of which give a fair representation

of a model‟s performance. Moreover, false positive

rate(FPR), false negative rate(FNR) and total time required

for analysis were other parameters to assess the effectiveness

and time taken using different approaches. Below is a

comparative analysis of the three scenarios: static-only,

dynamic-only, and the combined dynamic and static AI

model.

Table 1: Model Performance

Model Precision Recall F1-score FP Rate FN Rate

Static Only 84% 79% 81% 12% 9%

Dynamic Only 86% 83% 84% 10% 7%

Combined (AI) 92% 89% 90% 5% 4%

Figure 6: Graph representing Model Performance

84%

79%

81%

12%

9%

86%

83%

84%

10%

7%

92%

89%

90%

5%

4%

0% 20% 40% 60% 80% 100%

Precision

Recall

F1-score

FP Rate

FN Rate

Combined (AI) Dynamic Only Static Only

Sandeep Phanireddy / IJAIDSML, 6(2), 73-82, 2025

80

 Static: Hence, the model that uses the static

approach only has a precision of 84% Recalled

79%and an f-score of 81%. However, while static

analysis was used to find standard risks in the code

without its execution, it had such disadvantages,

with 12% false positive results and 9% false
negative ones. This is mainly because, beyond the

formal analysis of code, most tools are not able to

fully understand how a program is executed in its

runtime environment and the context it runs in and

miss many flags for over-flagging or fail to identify

several vulnerabilities in complex data structures.

 Dynamic Only: Though not much remarkable, the

results of the dynamic-only model were slightly

superior, with an overall accuracy of 86% and recall

of 83%, yielding an F1-score of 84%. It was also

employed to display a low false positive rate at 10%
and a low false negative rate at 7% than the static

analysis approach. The dynamic model was more

successful in predicting context-sensitive

vulnerabilities; however, it did not have insight into

those paths in the code that were not called during

the tests.

 Combined (AI): The integrated model has yielded

the highest possible values; one is the precision of

the model is 92%, the second is the recall value is

89%, and the last one is the F1 score of the model,

which is 90%. It reported the least false positive

(5%) and false negative rate (4%) in the experiment
and could complement static and dynamic analysis.

This approach gave a more precise and practical

detection of the vulnerabilities with fewer false

positives and negatives.

4.3 Analysis of Results

The performance analysis findings prove a

significant improvement using the AI-incorporated

vulnerability detection model over the individual static or

dynamic analysis methods. This was evident from its F1-

score, which stood at 0.90; the higher the F1, the better the
model‟s ability to balance between the precision and recall of

the detected vulnerabilities, thus being accurate in their

identification, while, at the same time, pointing only a higher

number of times and not producing false alerts often. As for

the results, the static-only model received an F1-score of

0.81, while the dynamic-only model received an F1-score of

0.84, proving the methods' drawbacks when having no

regard for each other. Static analysis, while being fresh and

more efficient in the early stage and improving code analysis

with deeper insights, has limited context awareness at

runtime and provides a large number of false positives.

Dynamic analysis resolves this problem by analyzing real-
time execution but may miss dormant code paths or

unexploitable vulnerabilities. The most notable advantages

of the hybrid model are seen in false result drop rates.

The analysis of results shows that the false positive

rate decreased from 12% in the first model, where only static

analysis was applied to only 5% in the proposed approach,

which means an improvement of more than 50%. In the same

respect, the false negatives saw a reduction from 9% to 4%,”

a more than 50% reduction on average. This improvement is

very important considering that realistic scenarios imply that

security teams could get a large number of false positives

and, consequently, experience alert fatigue; on the other

hand, many false negatives mean that exploits could be left
unnoticed. In addition, it was also seen that the time taken to

identify vulnerabilities by the consequent combination of the

asset model was 35% less than the manual analysis of the

codes. This is mainly due to the ability to analyze the code

and the application simultaneously and have machine

learning models identify high-risk patterns in a short time

Frame. In general, it has been established that incorporating

AI in static and dynamic analysis positively impacts

detection accuracy and improves the efficiency of operation

in the application of AST.

4.4 Case Study: E-commerce Platform

 Detection of SQL Injection Vulnerabilities: While

testing the online shopping system developed with

the proprietary framework, the integrated AI

approach flagged three new undiscovered SQL

injection types. These flaws had managed to evade

earlier static and dynamic code analysis since they

were implemented at locations that are not

frequently executed in the backend controls. The

proposed SD, which integrated semantic analysis

and dynamic information the insecurities of

constructed SQL queries and sample user inputs
accurately identified these injection points based on

the patterns of the former when matching with the

latter. These were further validated by manually

checking the vulnerabilities and doing penetration

tests on the sites, noting that the developed

framework could reveal a range of deeper-rooted

vulnerabilities that other tools fail to identify.

 Identifying libraries of an application:

Altogether, in the system, three code items were

viewed as imperfections at the coding level, and

two third-party libraries were Outdated/Associated
with known CVEs. These libraries used for payment

processing and form validation were not updated for

several months and contained vulnerabilities

referred to in CVE. The static analysis identified the

version number scanning the dependent modules,

and further, the model matched to the external

vulnerability database. They proactively identified

these components for enhancement and proposed

upgrades before the product's release to counter

well-known attacks that would otherwise have

seriously compromised the supply chain credentials

of the application in circulation.

4.5 Limitations

Nevertheless, it is also imperative to note the

weaknesses of the proposed hybrid AI framework concerning

generalization, data dependency, and behavioral generality.

Still, one of the difficulties remains in the problem of the

availability of both large and diversified training samples. In

deep learning architecture, the model can learn optimally if

Sandeep Phanireddy / IJAIDSML, 6(2), 73-82, 2025

81

and only if they are trained on a large dataset of real-world

samples and labeled codes and their corresponding

vulnerabilities or attacks. Nevertheless, such datasets are

rare, particularly in the case of proprietary software, the main

sources of which code and vulnerabilities are often withheld

for reasons of proprietary rights. Therefore, the models can
learn to optimize the characteristics of a training corpus and

fail at correctly predicting its performance across other

applications or unconventional development tendencies.

Furthermore, the dynamic part of the framework is

heavily based on the runtime behavior, and the latter is only

a small fraction of the behavior possible in the framework,

where training or testing paths are used. Suppose some

portions of an application logic are not executed during

testing because of test inputs, feature flags, or unavailable

conditions. In that case, the flaws in that unused code path

will not be found. This is especially the case when the
system being tested is a large application that has many

different workflows or when the events being tested are

asynchronous and can take a long time to complete. For

similar reasons, it is difficult to determine that anomaly

detection methods, alternatively using an autoencoder

embedded within the encoder layer, are only as good as the

“normal” behaviour it learns. The problem is that if the

training data does not include all valid behaviors, the model

may sound an alarm when none is needed or fail to sound

one when required due to a familiarity with but non-ill意
behavior patterns. Addressing these limitations will entail

research in developing better unsupervised learning,

knowledge transfer, and more efficient and effective, as well
as wider future bead range test case generation. Thus,

integrating external threat intelligence and user simulating

tools can also increase the model's exposure to various

application behaviors, aiding it in performing better in

different real-life scenarios.

5. Conclusion
Static and dynamic analysis is a strong tool that can

offer proactive, accurate and fresh solutions against the

current menace of web application security threats. While

conventional forms of security testing still serve their

purpose, they may not be able to handle the rapid

advancement and development of web applications. Namely,

if it combines static and dynamic analysis, it becomes

possible to identify vulnerabilities faster and to a greater

extent. The static analysis examines the code and the

potential bugs before the application development. In

contrast, dynamic analysis runs the code and records real-
time security threats. Integrating the two approaches

accompanied by Machine Learning algorithms leads to

discovering the susceptibilities within a relatively short time

span that would otherwise require unreasonably much time.

The combination of these two makes it relevant as machine

learning increases accuracy and efficiency by learning from

previous results and finding new patterns that were not

earlier considered more closely. It also ensures that the

vulnerabilities are detected immediately while at the same

time helping avoid the possibility of the failure to identify

other security flaws that may be present in the development

of the application.

In the future, the following factors can improve this

AI-based security strategy: One of the topics that appears to

have high potential for additional development is using NLP
methods to detect flaws in business logic. These types of

defects are usually not even recognizable by classical

security solutions as they result from the imperfections in the

behavior of an application rather than from the misprints in

source code. It can be useful in understanding the semantics

behind the code and its use and interaction with other

components; hence, better detection of such vulnerabilities

could be witnessed. Another direction is the increase in the

number of examples used for training the AI. Using various

types of architectures in the web enables the AI to be ready

to detect the vulnerabilities in different types of frameworks

and architectures of the web today. Incorporating these kinds
of AI-based security models in the Continuous Integration

and Continuous Delivery (CI/CD) pipeline could also help

automate the vulnerability scan to maintain the security

aspect from one phase to another in the SDLC. This would

help to catch those security flaws before it gets to the final

stages of development and minimize the incidences of a

security breach in the production environment.

Although it is certainly not the Holy Grail for web

app security, AI can become a powerful supplement for

conventional instruments. AP When done rightly, AI will
help approach security in a much better and non-

conventional manner to help developers and security

authorities avoid, recognize, and find counter solutions to

threats more efficiently. This may eventually reduce risks

and threats that work their way into web application

weaknesses, which would help improve the general security

of the environment.

References
[1] Arora, A., & Zelkowitz, M. (2018). "Real-world

applications of AI in dynamic security analysis."

Computational Intelligence, 34(2), 111-130. DOI:

10.1111/j.1467-8640.2018.00291.x.

[2] Mohan, K., & Soni, N. (2022). "Towards integrating

static and dynamic analysis: Opportunities and

challenges." Proceedings of the 2022 ACM Workshop

on Secure Software Engineering, 35-43. DOI:

10.1145/3554959.3557797.
[3] Bertino, E., Kantarcioglu, M., Akcora, C. G., Samtani,

S., Mittal, S., & Gupta, M. (2021, April). AI for

Security and Security for AI. In Proceedings of the

Eleventh ACM Conference on Data and Application

Security and Privacy (pp. 333-334).

[4] Al-Suqri, M. N., & Gillani, M. (2022). A comparative

analysis of information and artificial intelligence

toward national security. IEEE Access, 10, 64420-

64434.

[5] Jamal, A. A., Majid, A. A. M., Konev, A., Kosachenko,

T., & Shelupanov, A. (2023). A review on security

analysis of cyber-physical systems using Machine
learning. Materials today: proceedings, 80, 2302-2306.

Sandeep Phanireddy / IJAIDSML, 6(2), 73-82, 2025

82

[6] Hu, Y., Kuang, W., Qin, Z., Li, K., Zhang, J., Gao, Y.,

... & Li, K. (2021). Artificial intelligence security:

Threats and countermeasures. ACM Computing

Surveys (CSUR), 55(1), 1-36.

[7] Mazhar, T., Talpur, D. B., Shloul, T. A., Ghadi, Y. Y.,

Haq, I., Ullah, I., ... & Hamam, H. (2023). Analysis of
IoT security challenges and its solutions using artificial

intelligence. Brain Sciences, 13(4), 683.

[8] Fabiocchi, D., Giulietti, N., Carnevale, M., & Giberti,

H. (2024). Ai-driven virtual sensors for real-time

dynamic analysis of mechanisms: A feasibility study.

Machines, 12(4), 257.

[9] Park, J., Lee, H., & Ryu, S. (2021). A survey of

parametric static analysis. ACM Computing Surveys

(CSUR), 54(7), 1-37.

[10] Emanuelsson, P., & Nilsson, U. (2008). A comparative

study of industrial static analysis tools. Electronic notes

in theoretical computer science, 217, 5-21.
[11] Li, L., Bissyandé, T. F., Papadakis, M., Rasthofer, S.,

Bartel, A., Octeau, D., ... & Traon, L. (2017). Static

analysis of Android apps: A systematic literature

review. Information and Software Technology, 88, 67-

95.

[12] Li, P., & Cui, B. (2010, December). A comparative

study on software vulnerability static analysis

techniques and tools. In 2010 IEEE International

Conference on Information Theory and Security (pp.

521-524). IEEE.

[13] Rival, X., & Yi, K. (2020). Introduction to static
analysis: an abstract interpretation perspective. MIT

Press.

[14] Bayer, U., Moser, A., Kruegel, C., & Kirda, E. (2006).

Dynamic analysis of malicious code. Journal in

Computer Virology, 2, 67-77.

[15] Afianian, A., Niksefat, S., Sadeghiyan, B., & Baptiste,

D. (2019). Malware dynamic analysis evasion

techniques: A survey. ACM Computing Surveys

(CSUR), 52(6), 1-28.

[16] Nachtigall, M., Do, L. N. Q., & Bodden, E. (2019,

November). Explaining static analysis perspective. In

2019 34th IEEE/ACM International Conference on
Automated Software Engineering Workshop (ASEW)

(pp. 29-32). IEEE.

[17] Cuevas, M., Álvarez-Malebrán, R., Rahmann, C.,

Ortiz, D., Peña, J., & Rozas-Valderrama, R. (2024).

Artificial intelligence techniques for dynamic security

assessments survey. Artificial Intelligence Review,

57(12), 340.

[18] Kibria, M. G., Nguyen, K., Villardi, G. P., Zhao, O.,

Ishizu, K., & Kojima, F. (2018). Big data analytics,

machine learning, and artificial intelligence in next-

generation wireless networks. IEEE Access, 6, 32328-
32338.

[19] Chen, W., Wang, R., Wu, R., Tang, L., & Fan, J. (2016,

October). Multi-source and heterogeneous data

integration model for big data analytics in power DCS.

In 2016 International Conference on Cyber-Enabled

Distributed Computing and Knowledge Discovery

(CyberC) (pp. 238-242). IEEE.

[20] Yeole, A. S., & Meshram, B. B. (2011, February).

Analysis of different techniques for detection of SQL

injection. In Proceedings of the International

Conference & Workshop on Emerging Trends in

Technology (pp. 963-966).

[21] Antunes, N., & Vieira, M. (2009, September).
Detecting SQL injection vulnerabilities in web

services. In 2009 Fourth Latin-American Symposium

on Dependable Computing (pp. 17-24). IEEE.

[22] Sandeep Phanireddy. "API Security: Offensive and

Defensive Strategies", INTERNATIONAL JOURNAL

OF INNOVATIVE RESEARCH AND CREATIVE

TECHNOLOGY, 10 (4), 1-6, 2024.

[23] Sandeep Phanireddy. "Understanding of AI-Based

Network Security", IJFMR-International Journal For

Multidisciplinary Research, 6 (2), 1-7, 2024.

[24] Sandeep Phanireddy. "Securing Modern Web

Applications: Technologies, Threats, and Best
Practices", IJIRCT-INTERNATIONAL JOURNAL OF

INNOVATIVE RESEARCH AND CREATIVE

TECHNOLOGY, 10 (6), 1-14, 2024.

