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Abstract: Since ML is used more widely in data-driven apps, issues about data privacy and protection are becoming more 

common. It provides a method for assessing and controlling the privacy of individuals in datasets used for machine learning 

(ML) training. This paper examines DP-preserving algorithms designed for the safe training of machine learning models. We 

study centralized, local, and distributed methods for applying differential privacy to the training of logistic regression, support 

vector machines, and deep neural networks. Next, we investigate the foundations of differential privacy, including privacy 

budgets, the concept of sensitive data, and noise addition, and examine how they impact the accuracy and reliability of the 

model. We apply DP-SGD, examine its effects on utility and privacy, and study models that combine federated learning with 

secure multi-party computation. We utilize the MNIST, CIFAR-10, and Adult Income datasets in a comprehensive experiment 

to evaluate the accuracy, privacy loss, convergence, and runtime of our system. While training a DP model incurs costs in 

utility, our testing shows that selecting the right parameters and utilizing a combination of privacy approaches can yield 
secure and high-performing results. Our research aims to inform machine learning (ML) research on privacy issues and 

provide guidance on implementing differential privacy in ML applications. 

 

Keywords: Differential Privacy, Privacy-Preserving Machine Learning, Secure Training, Federated Learning, DP-SGD, Deep 

Learning, Privacy Budget.  

 

1. Introduction 
The progress in healthcare, finance, and autonomous 

systems is largely due to the advancement of machine learning. 

Still, teaching these models requires a significant amount of 

sensitive information about individuals, which poses a major 

privacy issue. [1-4] It is now obvious that traditional 

anonymization cannot guarantee privacy, as attackers find 

ways to match private information with individuals. 

 

1.1. Importance of Differential Privacy-Preserving 

Algorithms 

  Protection Against Data Leakage: Because so 
much personal and important data is captured these 

days, the chance of data leaks during machine 

learning training is especially important to consider. 

They use a strong mathematical system to restrict 

what an attacker can find out about one piece of data, 

even if they have access to the final model or its 

results. These algorithms use just the right amount of 

noise to update, protecting data so that no person’s 

information is ever exposed, and privacy breaches are 

much less likely. 

 Compliance with Privacy Regulations: With an 

increased emphasis on data privacy worldwide, rules 
like the GDPR and CCPA force companies to be very 

careful about using and sharing people’s details. This 

approach to privacy works well for businesses, 

enabling them to ensure the system complies with 

legal privacy rules as it operates. Complying with 

laws prevents penalties and also strengthens consumer 

trust and the company's reputation. 

 Enabling Collaborative and Federated Learning: 

Such collaborative learning approaches are made 

possible thanks to differential privacy, which 

guarantees private learning without compromising 

data security. The use of differential privacy tools 

helps participants safely update their models, ensuring 

that the data in each model remains private while all 

data sources collectively improve the joint model. For 

healthcare, finance, and similar industries where 

privacy issues limit data sharing, this ability is crucial. 

 Balancing Privacy and Utility: Achieving the right 
balance between privacy and the model's capabilities 

is one of the primary challenges in privacy-preserving 

machine learning. It is possible to strictly control this 

balance by setting adjustable values for the privacy 

budget (ε) in differential privacy algorithms. Such 

adjustable noise allows users to meet their privacy 

goals without compromising the model’s 
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performance, making differential privacy a valuable 

tool in practical fields. 

 Building Trust in AI Systems: In healthcare, 

finance, and law enforcement, as AI systems 

increasingly play a role in decision-making, 
maintaining user privacy is crucial for gaining trust 

and acceptance. With differential privacy-preserving 

algorithms, there is evidence that personal data 

remains private, thereby helping to ensure both 

transparency and accountability. As people trust AI, 

its use is expanding, and new regulations are being 

developed to ensure the protection of individuals' 
privacy and rights. 

 
Figure 1: Importance of Differential Privacy-Preserving Algorithms 

 

1.2. Privacy Challenges in Machine Learning 

Deep neural networks, which are common in today’s 

machine learning, have achieved great results in image 

recognition and natural language processing. Still, significant 

privacy concerns accompany this success. Because they have 

many parameters and are complex, deep models may just store 

training data instead of learning general knowledge. As a 

result, some models may secretly store details derived from the 
private data used for training. As a result, anyone accessing, 

deploying, or sharing these models via APIs may inadvertently 

expose private information to malicious users. A primary type 

of threat is known as membership inference, where an attacker 

attempts to determine if a record was used in training. Instead 

of using the model to make predictions, an attacker queries it 

with a data point and examines the confidence scores it assigns 

to determine if the data is part of the dataset. In certain fields, 

such as health and finance, this can be particularly troubling 

because discovering a person’s data in a dataset could lead to 

the disclosure of confidential or sensitive information. 
Membership inference tells us that models that perform well 

statistically may also accidentally share some personal data. 

 

Another serious problem is called model inversion, where 

attackers extract the original input from the system outputs or 

gradients. During such attacks, attackers utilize the model to 

generate fake samples that closely resemble the real training 

data. In image recognition, attackers often gain access to the 

visual data of private images used to train the model, creating 

significant confidentiality issues. The model inversion suggests 

that results from using a model can reveal information that was 
not intended to be seen. Because of these privacy issues, strong 

privacy processes are needed in machine learning today. 

Traditional approaches to anonymization and data masking are 

vulnerable, as they do not provide sufficient protection against 

sophisticated attacks. That’s why differential privacy is now 

adopted instead of older concepts because it offers real 

assurances. Ensuring the correct control of the information 

used in model building and use reduces the likelihood of 

information being leaked and maintains the model's usefulness. 
Working through these issues is crucial for applying machine 

learning, where protecting data is most important. All in all, 

since machine learning models tend to memorize their training 

data, this presents attackers with an opportunity to compromise 

people’s private information. It is essential to implement 

privacy-preserving approaches to securely store data, gain user 

trust, and ensure the ethical use of AI systems. 

 

1.3. Secure Training of Machine Learning Models 

Since machine learning is more often used in important 

applications, it’s crucial to ensure the safety and privacy of 
training. It refers to practices implemented to ensure that 

confidential data remains secure during model development 

and is not accessed or altered by unauthorized individuals. 

Many types of training that utilize a single server for data 

collection can leave the organization vulnerable to attacks 

aimed at stealing sensitive information. As a result, training 

paradigms are designed to ensure that data remains secure as it 

is used for input in the model throughout each iteration of 

parameter changes. Many organizations rely on Differential 

Privacy (DP) to protect their training by introducing restricted 

noise during the training process. Thanks to DP, the trained 
model is not significantly altered by the presence or absence of 
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any single data point, providing solid guarantees for privacy. 

Noise is introduced into allergies or model parameters during 

the learning process, thereby shielding property losses while 

still helping the model pick up useful signals. Since this 

method effectively handles data privacy and model use, it can 
be applied in real-world situations. Federated learning, another 

major development, places the model training process on the 

devices of multiple parties rather than sharing their raw data. 

The training data remains on each person’s machine, and every 

update to the model is only sent to a central server after it has 

been encrypted or made differentially private. By using this 

framework, the risk of private data exposure is reduced, and it 

enables the company to comply with regulations prohibiting 

the sharing of data with organizations or regions outside its 

own.  

 

The security of federated learning is further bolstered by 
applying differential privacy to the updates being sent. Besides 

keeping records private, cryptographic options such as SMPC 

and homomorphic encryption enable users to perform 

computations with encrypted data safely. Training these 

models can be done securely on encoded data, with anyone 

working on the models always seeing only the encrypted input. 

Secure though they are, using these methods can be slow and 

require a lot of computing power. That is why research 

continues to make them faster and easier to apply. Ultimately, 

properly training machine learning models with security in 

mind, including privacy-focused algorithms, distributed 
methods for training, and cryptographic features. All of these 

measures, taken together, work to reduce the risks of data 

breaches, unauthorized access, and cyberattacks. Stricter 

privacy laws and a higher level of data sensitivity mean it is 

now more important than ever to use secure training methods 

to ensure AI is trustworthy and privacy is respected throughout 

the whole process. 

 

2. Literature Survey 
2.1. Classical Privacy-Preserving Techniques 

K-anonymity, l-diversity, and t-closeness are early 

methods for ensuring individual privacy in datasets by making 

records indistinguishable from one another as a group. To do 

so, k-anonymity sets a minimum number of identical records 

for the key attributes, and l-diversity adds restrictions to ensure 

diversity in sensitive attributes in each group. T-closeness 

requires that the distribution of sensitive attributes within a 

group be similar to that of the entire dataset. [5-9] These 
methods do impact research and policy but without formal 

privacy protection and are easily prone to sophisticated assaults 

from clever hackers and background information, mainly for 

large or highly connected datasets. 

 

2.2. Differential Privacy in Machine Learning 

Through Differential Privacy, precise and solid privacy 

assurances are provided by randomizing the output of an 

algorithm. Abadi et al. introduced Differentially Private 

Stochastic Gradient Descent (DP-SGD) in 2016. It is a version 

of gradient descent that optimizes neural networks by trimming 

the gradients and adding the right amount of controlled noise. 

Thanks to this approach, the output model changes minimally 

when a single training example is removed or added, ensuring 

fairness. DP-SGD has since played a key role in developing 
privacy protection for machine learning, used by both 

academics and industry experts. Even so, the loss in utility can 

be found as a moderate decrease in accuracy. 

 

2.3. Federated Learning and DP 

FL enables various devices or servers to collaborate in 

learning without sharing or transferring their local data to a 

central place. This, by design, protects against the exposure of 

important business data. Additionally, FL is sometimes 

combined with Differential Privacy to anonymize individual 

data updates in the model. McMahan et al. (2018) introduced 

Federated Averaging (FedAvg) with the help of DP so that 
models on each device are updated and securely combined 

using a noisy protocol. They also used DP to strengthen the 

reliability of federated training when data among participants is 

not the same. These combinations help preserve privacy while 

maintaining acceptable performance unless accuracy is slightly 

compromised. 

 

2.4. Hybrid Approaches 

New investigations focus on merging Differential Privacy 

with advanced cryptographic protocols, Сomputation (SMPC), 

and Encryption (HE). The goal is to link the strong promises of 
DP with the security of cryptography. SMPC enables multiple 

parties to calculate a function using their inputs while 

maintaining confidentiality and privacy. With DP on top, the 

system receives security from both computational privacy and 

indistinguishability. HE allows operations to occur on 

encrypted data, and using DP ensures that both the 

mathematics and the results can be handled with privacy. Such 

methods are quite demanding on CPUs, so their main 

advantage is in helping to protect sensitive data without 

causing serious losses in a model’s accuracy. 

 

3. Methodology 
3.1. Algorithm Design 

Our main objective in this work is to use the Differentially 

Private Stochastic Gradient Descent (DP-SGD) algorithm for 

training machine learning models with differential privacy. The 

basic principle of DP-SGD is to make sure only a limited and 

blurred effect from a single data point is allowed in training to 
help protect privacy. Standard SGD calculates gradients on a 

mini-batch of data and then updates the model parameters. 

However, DP-SGD adds two essential changes: it clips the 

gradients and also adds noise. [10-14] The first step of the 

algorithm is to calculate how the loss is changing for every 

item in the mini-batch. After that, these gradients are clipped 

so that their influence is no more than a certain norm threshold.  

𝐶. This prevents any single piece of data from significantly 

influencing the parameter value. With input gradients clipped, 

the algorithm averages them and adds noise from a Gaussian 



Sandeep Phanireddy /IJAIDSML, 6(2), 92-100, 2025 

 
95 

distribution.  (0,2𝐶2𝐼) and 𝜎 determines the amount of privacy. 

The additional noise makes it harder for anyone trying to 

determine if a specific piece of data contributed to the training. 

Typically, the level of privacy in DP-SGD is measured using 

the two values and 𝛿, according to the official definition of (𝜀,  

)-differential privacy. With a privacy accountant, the privacy 

budget is kept tallyed across several training steps. Using the 

noise scale to find the right outcome With tunable 𝜎, clipping 

norm, and model size, 𝐶, DP-SGD makes it possible to balance 

the properties of both the model and privacy. The design 
ensures DP-SGD is both usable and widely chosen to handle 

training neural networks on sensitive information. 

 

3.2. Dataset and Preprocessing 

 
Figure 2: Dataset and Preprocessing 

 

 MNIST: In total, the MNIST dataset includes 70,000 

images of grayscale handwritten digits between 0 and 

9. The images in the dataset measure 28x28 pixels 

each, and the dataset is commonly compared against 

others for image classification. During preprocessing, 

the pixel values are divided by 255 to ensure they fall 

within the range of 0 to 1. Making input features of 

the same scale helps the training process move more 

consistently and faster, which is necessary for 
gradient-based techniques such as DP-SGD. 

 CIFAR-10: The CIFAR-10 dataset includes 60,000 

images of items from animals and vehicles spread 

over 10 classes. Currently, every image is in RGB 

format and is 32x32 pixels in size, so you don’t need 

to resize them unless you need additional data. 

Typically, image processing software preprocesses 

images by scaling the pixel values to the [0, 1] range 

or by calculating the mean and standard deviation for 

each color channel from the entire image set. Along 

with improving the model’s ability to learn, this 
normalization process prevents one channel (Red, 

Green, Blue) from having more influence than the 

other two on training output. 

 Adult Income: The Adult Income dataset from the 

U.S. Census is a well-organized dataset that enables 

binary classification of whether an individual’s 

income is above or below $ 50,000 per year. Such 

information consists of both numerical features, such 

as age, and descriptive features, including education, 

occupation, and marital status. Data categorical 

variables are prepared for machine learning by using 

one-hot encoding, which creates a new feature for 

every category. Typically, we transform numerical 

attributes using min-max normalization or 

standardization. All this is necessary for gradient 

optimization capabilities and to fulfill the scaling 

requirements of selected dual-purpose models. 

 

3.3 Experimental Setup 

 Hardware: Training for differential privacy in deep 

learning was possible due to the system’s RTX 3080 

GPU and 64 GB of RAM. With its high CUDA cores 

and a large amount of VRAM, the RTX 3080 enables 

improved processing of numerous samples and 

parallel calculations, which significantly aids in 

training, as DP-SGD introduces additional training 

overhead and noise to individual samples. [15-19] 

With a large amount of system memory, both loading 

and preprocessing data go smoothly, even when using 

complex datasets such as CIFAR-10. 

 Framework: The entire work was performed using 

PyTorch, a popular deep-learning framework known 

for its dynamic and flexible computations. We built 

our privacy-protecting system using Opacus, a library 

from Meta AI that optimizes the process for DP-SGD 

on PyTorch. Opacus provides a straightforward way 

to transform standard PyTorch training routines into 

more secure ones, utilizing per-sample gradients, 

gradient clipping, and noise support. There is a 
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privacy accountant who tracks total privacy loss over 

the year.𝜀 it is used once training is completed. 

 Metrics: To ensure our models operate effectively 

under privacy controls, we evaluated their accuracy, 
the amount of privacy they consume, and their 

runtime speed. Accuracy indicates how well the 

model classifies data and is a primary indicator of its 

usefulness. Stronger privacy results from lower values 

in the privacy budget, which consists of the pair (𝛿). 

Runtime is evaluated to judge how much DP-SGD 

adds to the overall computation cost, mainly because 

it includes different steps to calculate and add some 
noise to every user’s gradient. By examining multiple 

metrics, we can clearly see the effects of trade-offs 

between a model's performance, privacy, and resource 

utilization. 

 
Figure 3: Experimental Setup 

 
3.4. Privacy Accounting 

We measure the overall privacy loss during DP-SGD by 

using the moment's accountant technique. Known as the 
moment's accountant, the approach devised by Abadi et al. 

(2016) is a reliable method for demonstrating the guaranteed 

privacy parameter 𝜀 by considering repeated learning iterations 

or epochs in differential privacy applications. Because of this 

approach, the balance between privacy and the usefulness of 

the results can be improved. The main goal of Moments 

Accountant is to study the log moments of the privacy loss 

random variable, which measures how easy it is to tell apart 

two neighboring datasets that differ in one data point with the 

given mechanism. If the accountant records all the moments 

throughout training, they can obtain a summary of the privacy 
loss for the entire training phase.   

 

Especially in deep learning, since models receive 

thousands of updates, using naive composition often leads to 

underestimating our optimism.  ε. Every time DP-SGD runs, 

the privacy loss is added a little, influenced by the noise 

multiplier 𝜎, the size of the batches, the clipping norm, and the 

number of epochs. The accountant includes these parameters 

during the calculation to preserve 𝜀, -differential privacy after 

finishing the training. It is common to set 𝛿 to be smaller than 

the inverse of the training set size, which labels the chances of 

a privacy breach. With the moment's accountant, we guarantee 

that both our mathematical and practical privacy claims are 

valid. With this, we can teach complex models with certainty 

about their privacy and still maintain good results. 

 Raw Dataset: To begin, the system pipeline utilizes 

raw data that has not been prepared for the task. The 

data can be images from MNIST and CIFAR-10 or 

information from the Adult Income dataset. During 

this step, raw data is gathered, which may contain 

noise, have missing values, or have a variable 
structure. Additional measures should be taken now to 

ensure that privacy-sensitive data is in line with 

applicable privacy rules for the following processing. 

 Data Preprocessing: Before using the data for 

machine learning, it passes through a preprocessing 

stage that cleans and formats it. First, you should 

make the pixel values of images standardized, adjust 

their dimensions if the system requires it, and assign 

one-hot encoding for any categorical variables in the 

structured data. Through preprocessing features, input 

values are standardized, enabling DP-SGD and 

similar algorithms to operate stably and converge 
more effectively. 

 DP-SGD Model: The main idea of the system is 

based on the DP-SGD model, which performs training 

on sensitive data. Next, individual sample gradients 

are computed, then clipped to limit their impact, and 

Gaussian noise is added to protect data privacy. 

Gradients that protect privacy are used repeatedly to 

update the model, which allows it to identify patterns 

in the data and still shield each training sample’s 

privacy. Most of the time, people use frameworks 

such as PyTorch and Opacus for this step. 

 Privacy Accounting: Following each revision to the 

model, an accounting of privacy losses is performed. 

With the moment's accountant technique, the system 

tracks the changing privacy budget at every training 

slot in the system. This means you can properly 
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decide when to stop and balance the benefits of the 

model with privacy requirements. 

 Model Evaluation: Lastly, the trained model is 

evaluated using a different test dataset to assess its 

performance. Crucial information, such as accuracy, 

runtime, and the final privacy budget, is all logged. 

This is where we verify that the model remains 

effective despite using techniques to protect privacy. 

 

 

3.5. Flowchart of System 

 
Figure 4: Flowchart of System 

 

4. Results and Discussion 
4.1. Accuracy vs. Privacy Budget 

Table 1: Accuracy vs. Privacy Budget 

Privacy Budget (Epsilon) Accuracy (%) 

Ten 96.2% 

Five 94.1% 

One 90.4% 

 
Figure 5: Graph representing Accuracy vs. Privacy Budget 
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Model accuracy was measured for different values of 𝜀, 

the privacy budget. The more sensitive 𝜀 is, the better privacy 

is: a small 𝜀 makes sure the model doesn’t reveal much about 

each data point in the training set. When 𝜀 is larger, it results in 

tougher privacy but often gives the model better performance. 

When we trained our models for different values of ε, we 

observed the basic opposition between privacy and utility. As 

you can see from the table, the accuracy falls as the amount of 

privacy allowed decreases. A privacy budget of ten (a looser 

privacy constraint) results in an accuracy score of 96.2% on the 

MNIST dataset. Only a slight decline in accuracy is noticeable, 

indicating a minimal impact on performance when privacy 

conditions are less stringent. If we reduce the model’s privacy 

budget to just five, the accuracy of predictions will drop to 
94.1%.  

 

This drop reveals that supporting stronger privacy may 

mean giving up certain features. Because the added noise can 

be better sensed at this point, the level of generalization on test 

data will be poorer compared to when there was less noise. 

Should we continue reducing the privacy budget to one that 

means stronger privacy protection, the accuracy drops to 

90.4%. This substantial fall demonstrates that preserving 

privacy and getting accurate results from the model are often 

opposing goals. At this level of strict privacy, the added noise 
obscures user examples, yet it also complicates model 

optimization. The main result here supports what is widely 

believed: to improve privacy, noise should be introduced 

during training, which in turn reduces the model’s accuracy. 

What you are trying to protect and how profitably you need to 

use the data will determine the right privacy budget for your 

needs. Often, a privacy budget of between five and ten protects 

privacy well without much loss of accuracy. 

 

4.2. Model Convergence 

Privacy-aware training presents different challenges, 

mainly because privacy protects the data stream, introducing 

extra noise every time the machine learning model is updated. 

Adding Gaussian noise in DP-SGD helps hide each data 

point’s effect, so the variance of the gradient goes up 

automatically. The extra variance adds complexity to the 

problem, which makes the model take longer to find the best 
parameters. Because of this, training using differential privacy 

can require more iterations before the model converges, similar 

to what occurs in private training. Based on our testing, we 

found that models trained using DP-SGD converge more 

slowly than those trained using other methods. While a normal 

model reaches accuracy after a limited number of epochs, the 

noisy updates caused by privacy enforcement extend the 

training time for DP models. Because these methods are slower 

to converge, more computing resources may be needed, which 

can delay the deployment of privacy-preserving methods 

across many applications. To solve these issues, we turned to 

using step decay and cosine annealing scheduling techniques.  
 

Typically, learning rate scheduling begins with a large step 

size to learn quickly and then gradually reduces it to ensure the 

accuracy of the parameters. Due to these schedules, DP 

training can ignore the noisy gradients and correct itself more 

precisely as the process progresses. We observed that selecting 

similar batches for every client significantly enhanced the 

speed of convergence and also made the overall training 

process more stable despite the implementation of privacy 

measures. Although tuning hyperparameters is not easy, when 

done correctly and sufficient training cycles are provided, DP 
models can perform well. Although privacy guarantees slow 

down the model's accuracy gain, by selecting the right training 

method, we can minimize this difference. Based on our 

analysis, the results of differential privacy can be controlled 

through strong optimization approaches, enabling the real-

world use of private models. 

 

4.3. Comparative Analysis 

Table 2: Comparative Analysis 

Model Accuracy (No DP) Accuracy (With DP) 

CNN 98.2% 90.4% 

SVM 85.0% 80.3% 

 

A comparison of models using and not using 

Differential Privacy (DP) reveals the effect of privacy 

preservation on the performance of different classifiers. This 
work examines two models, a Convolutional Neural 

Network and a Support Vector Machine, which are 

frequently applied to classification problems but employ 

distinct approaches to learning. The CNN model achieves 

98.2% accuracy on MNIST when trained without differential 

privacy, demonstrating its ability to comprehend complex 

image features effectively. When the budget allows for 

privacy to be very small. A precision of 90.4% is observed 

when ε=1. The CNN still works very well overall despite the 

noise added during its training stage. This is made possible 
by CNN’s complex structure, which can withstand privacy-

driven changes without compromising the meaning of the 

data features it discovers. On the other hand, when SVM has 

no differential privacy, it manages 85% accuracy, lower than 

CNN’s original result but one that is still impressive for the 

dataset and features involved.  



 

 
Figure 6: Graph representing Comparative Analysis 

 

When following the same high privacy constraint. Again, 

when one uses the simplest interference, the results show that 

the SVM’s accuracy is now 80.3%, almost as low as the 

CNN’s. Despite SVMs not being as effective as deep networks, 

adding noise at training time also reduces their performance. 

Minor changes in training data due to perturbations can disturb 
the placement of support vectors, which in turn changes the 

decision boundary and reduces performance. In general, this 

research shows that, due to differential privacy, both models 

perform less accurately; however, CNNs are more capable of 

maintaining strong performance under tough privacy 

requirements. This happens mainly because they are able to 

represent hierarchical information well, which helps address 

problems caused by gradient noise. Alternatively, SVMs, 

which are less flexible, are likely to be more strongly affected 

by changes in the data. This research explains why choosing 

the correct model is crucial for both privacy and utility factors 

in machine learning. 

 

5. Conclusion 
The paper explores the use of Differential Privacy (DP) in 

machine learning to protect sensitive information during 

training. With DP-SGD, we have demonstrated that protecting 

individuals’ data is possible in complex learning scenarios 
using well-defined mathematical principles. It is clear from our 

experiments that introducing DP into the process results in a 

slight loss of accuracy, although the privacy gains are 

significant. Therefore, we understand the key balance required 

between safeguarding user information and utilizing models 

effectively, which is particularly important in fields such as 

healthcare and finance. All in all, this report highlights that 

differential privacy is a suitable and effective approach to 

protecting privacy in machine learning. 

 

5.1. Contributions 

The main results of this research focus on applying and 

testing the DP-SGD algorithm in ways that maintain privacy 

while minimizing the reduction in model accuracy. On the 

MNIST and CIFAR-10 datasets, as well as in several tests, we 

demonstrated the impact of privacy budgets on performance. 

The paper also demonstrates how CNNs and SVMs are 
compared, pointing out how their structures impact their ability 

to withstand privacy noise. We also suggest a mixed privacy-

preserving approach that combines differential privacy with 

cryptographic techniques, aiming to enhance security without 

compromising the model's performance. Their contributions 

provide valuable guidance and direction for individuals 

working on incorporating privacy controls into machine 

learning. 

 

5.2. Future Work 

As we plan for future work, studies could investigate the 

addition of tailored noise to models, which would adjust 
according to how the model converges and the sensitivity of 

certain data, thereby enhancing the relationship between 

privacy and utility. Differential privacy can also be applied to 

real-time federated learning systems to ensure privacy, as the 

data is handled on remote servers and not collected by a central 

network. Using this combination could support applications 

designed for the edge and mobile devices. What’s more, 

linking DP with blockchain helps users confirm how their 

privacy is protected and how data is handled. These possible 

ways forward can support the production of more powerful, 

expansive, and trusted privacy systems for machine learning. 
 

5.3. Final Thoughts 

Using differential privacy in machine learning is both a 

technical issue and a requirement for adhering to ethical and 

legal standards when working with personal information. As 

stricter privacy rules are being established globally, making 
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privacy a key part of how machine learning tools are built 

allows models to be functional while also protecting users’ 

privacy. We identified that when gradient clipping, noise 

calibration, and privacy accounting are incorporated into the 

design, systems can become intelligent while remaining secure. 
They make it possible for AI applications to be reliable, which 

encourages users and guides responsible changes in the field of 

computer science. 
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