International Journal of Artificial Intelligence, Data Science, and Machine Learning
Grace Horizon Publication | Volume 1, Issue 3, 1-7, 2020
ISSN: 3050-9262 | https://doi.org/10.63282/30509262/1JAIDSML-V113P101

Original Article

Cloud-Integrated 10T Architecture for Smart Home
Automation: A Scalable Approach Using AWS Services and
Edge Computing

Prof. Clara Fontaine
Al and Computational Cognition, Sorbonne Digital Institute, France

Abstract - The rapid advancement in Internet of Things (loT) technology has revolutionized the way we interact with our
living environments, particularly in the realm of smart home automation. However, the scalability and efficiency of 10T
systems remain significant challenges. This paper presents a cloud-integrated 10T architecture for smart home automation
that leverages AWS services and edge computing to address these challenges. The proposed architecture ensures real-
time data processing, reduced latency, and enhanced security, making it a robust solution for large-scale smart home
deployments. We detail the design, implementation, and performance evaluation of the architecture, highlighting its
scalability and efficiency. The results demonstrate that the proposed approach significantly improves the responsiveness
and reliability of smart home systems.

Keywords - 10T, Smart Home Automation, Edge Computing, Cloud Computing, AWS loT Core, Data Processing, Latency
Reduction, Scalability, Security, Performance Evaluation

1. Introduction

The Internet of Things (IoT) has revolutionized numerous sectors, including healthcare, manufacturing, and home
automation, by integrating physical devices with digital technologies to create smarter, more connected ecosystems. Among these
sectors, smart home automation systems have witnessed significant growth and gained substantial traction due to their multifaceted
benefits. These systems enhance daily life by improving comfort through automated climate control and smart lighting, bolstering
security with advanced surveillance and access management, and optimizing energy efficiency through intelligent resource
management. However, the scalability and performance of smart home automation systems are often constrained by the centralized
cloud architecture that underpins them. This architecture, while robust in many ways, can lead to increased latency as data must
travel to and from remote cloud servers, as well as data processing bottlenecks when handling large volumes of real-time
information. To mitigate these challenges, this paper proposes a cloud-integrated IoT architecture that leverages the powerful and
flexible services of Amazon Web Services (AWS) in conjunction with edge computing. By distributing data processing and
decision-making closer to the devices themselves, edge computing can significantly reduce latency and alleviate the strain on cloud
resources, thereby enhancing the overall performance and reliability of smart home systems. This hybrid approach not only ensures
real-time responsiveness but also supports the seamless scaling of 10T devices and services, making it a promising solution for the
future of smart home automation.

1.1. System Architecture

A cloud-integrated loT architecture for smart home automation using AWS and edge computing. It depicts a system
where multiple 10T devices, such as smart home sensors and controllers, are connected to a cloud platform for data processing and
decision-making. The system is designed to manage various smart home functionalities, including lighting, temperature control,
security, and healthcare monitoring. These devices communicate with the cloud via WiFi and MQTT protocols, ensuring seamless
data transmission between edge devices and the cloud infrastructure. At the edge level, smart home devices collect real-time data
from various sensors and transmit it to HomeBridge devices, which act as intermediaries. These HomeBridge devices communicate
with AWS IoT Core, enabling cloud integration. The AWS cloud platform consists of multiple services, including AWS Lambda
for serverless computing, AWS API Gateway for managing requests, and AWS DynamoDB for storing real-time data efficiently.
Other services, such as AWS S3, provide scalable data storage solutions, ensuring that logs and historical data are accessible for
further analysis. The system also incorporates Al-based analytics by leveraging machine learning models for predictive
automation. For instance, the collected data can be processed using Al algorithms hosted in AWS Lambda to analyze user
preferences and optimize smart home settings dynamically. Additionally, Redis and other caching mechanisms enhance the
system's efficiency by reducing latency and improving response times. The use of Node.js and other backend technologies ensures
smooth real-time data handling and integration with various smart home applications.

https://doi.org/10.63282/30509262/IJAIDSML-V1I3P101

Prof. Clara Fontaine / IJAIDSML, 1(3), 1-7, 2020

On the front end, users can access the system through web and mobile applications. The architecture supports an Angular-
based web portal and an lonic-based mobile application, enabling users to monitor and control their smart home devices remotely.
The API Gateway facilitates secure communication between the user interface and cloud services, ensuring real-time updates and
control functionalities. This integration allows users to receive notifications, automate tasks, and customize their home
environment according to their preferences.

~\
% : AWS Cloud Platform
72 zigbee { /) @ Device registry
i W
IoT Analytics
| gs <
marr AW?Klnesis

AWS loT | == | Amazon 53
. Bucket
—

8 (soméidge Rule Engine RESTdAPIs Gateway _—
Admin Portal
@ = & e -0 F -
(v o) » L

IoT shadow ~ AWS5Q5/SNS | I | | CloudFront |
. S [*) lonic
User
redis Mobile App

DynamoDB ElastiCache AWS Cognito Alexa Skills
Identity & Access

L
Fig 1: Cloud-Integrated 10T Architecture for Smart Home Automation

J

2. Background and Related Work

The rapid evolution of the Internet of Things (1oT) has revolutionized smart home automation by enabling seamless
connectivity among various devices, including sensors, actuators, and smart appliances. These interconnected devices generate vast
amounts of data, which require efficient processing for real-time decision-making. Traditionally, this data has been transmitted to
cloud servers for processing and storage. However, despite the advantages of cloud computing, its centralized architecture often
results in latency and bandwidth limitations, which can be problematic in large-scale smart home deployments. As a result,
researchers and engineers have sought alternative approaches to enhance the performance and efficiency of smart home loT
systems. One of the primary solutions to these challenges is cloud computing, which offers scalable and on-demand computational
resources. Cloud platforms provide the infrastructure required to process, analyze, and store the enormous data generated by loT
devices. These platforms enable smart home applications to integrate advanced machine learning models and predictive analytics
for automation and optimization. However, cloud computing's reliance on centralized data centers introduces potential drawbacks,
such as increased latency, higher data transfer costs, and network congestion. These challenges are particularly critical for real-time
applications, where immediate response times are essential for user experience and security.

To address the limitations of cloud computing, edge computing has emerged as a promising solution that brings
computation closer to the data source. Instead of relying entirely on remote cloud servers, edge devices—such as smart hubs,
gateways, and edge servers—process data locally before transmitting only relevant or processed information to the cloud. This
approach significantly reduces latency, minimizes bandwidth usage, and enhances the overall responsiveness of smart home
systems. Additionally, edge computing enables better fault tolerance, as smart home devices can continue functioning even if cloud
connectivity is temporarily lost. The integration of artificial intelligence (Al) within edge computing further strengthens its
capabilities, allowing real-time anomaly detection, pattern recognition, and adaptive automation. Over the years, several research
studies have investigated the integration of cloud and edge computing in loT-based smart home systems. For instance, some
researchers have proposed hybrid cloud-edge architectures that optimize data distribution and processing to improve efficiency in
industrial 10T applications. Others have focused on optimizing resource allocation and energy consumption in edge computing
environments, ensuring a balance between computational power and system performance. While these studies provide valuable
insights, there remains a gap in developing a comprehensive framework specifically tailored for smart home automation. Existing
solutions often prioritize industrial applications, leaving the unique challenges of smart home environments such as heterogeneous
device compatibility, real-time user interaction, and dynamic automation relatively underexplored.

Prof. Clara Fontaine / IJAIDSML, 1(3), 1-7, 2020

3. Proposed Architecture

The system design of the proposed architecture focuses on ensuring efficient data flow, robust device management,
optimized data processing, and stringent security measures. By leveraging a combination of edge, local, and cloud computing
resources, the architecture effectively manages the large-scale deployment of 10T devices in a smart home environment. This
design ensures that data is processed in a hierarchical manner, reducing latency while maintaining scalability and security. The
integration of AWS services facilitates seamless communication between system components, enabling real-time monitoring,
automation, and decision-making. The data flow within the system follows a structured pipeline, beginning with data collection at
the edge devices. These devices gather information from sensors and actuators, which is then transmitted to the local gateway. The
gateway plays a crucial role in preprocessing and filtering the incoming data before forwarding it to AWS IoT Core. Once received
in the cloud, AWS loT Core orchestrates the data flow by triggering AWS Lambda functions that execute real-time processing,
analytics, and automation rules. Processed data is then stored in Amazon S3 for long-term retention or in Amazon DynamoDB for
immediate access and real-time operations. To maintain system integrity, Amazon CloudWatch continuously monitors
performance metrics, generating alerts if anomalies or performance issues are detected, ensuring that corrective actions can be
taken promptly.

Device management is a critical component of the system, ensuring that all connected 10T devices operate securely and
efficiently. The local gateway leverages AWS loT Device Management to handle tasks such as device registration, provisioning,
configuration updates, and firmware upgrades. This automated device management process ensures that all edge devices are
properly configured and functioning optimally, reducing manual intervention. Additionally, the system enforces security policies at
the device level, monitoring the health and status of connected devices in real time. If a device malfunctions or exhibits unusual
behavior, the management system can trigger automated responses, such as isolating the affected device or updating its firmware to
mitigate potential vulnerabilities. The data processing pipeline is designed to optimize resource utilization by distributing
computational tasks across multiple layers. Edge devices perform preliminary data filtering and anomaly detection, which
minimizes the amount of raw data transmitted over the network. The local gateway further aggregates and preprocesses this data
before routing it to the cloud. AWS Lambda functions then execute more complex analytical tasks, including predictive modeling,
decision-making, and automation triggers. This multi-tiered processing approach significantly reduces latency, ensuring that time-
sensitive tasks are executed locally while leveraging cloud-based resources for deeper insights and historical analysis. The
combination of edge and cloud processing enables efficient, scalable, and responsive smart home automation.

Security remains a top priority in loT-based systems, given the vulnerabilities associated with interconnected devices. The
proposed architecture incorporates multiple layers of security to protect data, devices, and communication channels. Device
authentication is enforced using mutual Transport Layer Security (TLS), ensuring that only verified devices can communicate
within the system. Data encryption mechanisms, both in transit and at rest, are implemented using AWS Key Management Service
(KMS), preventing unauthorized access to sensitive information. Access control is managed through AWS ldentity and Access
Management (IAM) policies, which define granular permissions for users and applications interacting with the cloud services.
Additionally, Amazon GuardDuty provides an intrusion detection mechanism that continuously scans for potential security threats,
such as unauthorized access attempts or network anomalies. By integrating these robust security measures, the system ensures a
secure and resilient smart home automation framework.

4. System Design

The system design of the proposed architecture focuses on ensuring efficient data flow, robust device management,
optimized data processing, and stringent security measures. By leveraging a combination of edge, local, and cloud computing
resources, the architecture effectively manages the large-scale deployment of 10T devices in a smart home environment. This
design ensures that data is processed in a hierarchical manner, reducing latency while maintaining scalability and security. The
integration of AWS services facilitates seamless communication between system components, enabling real-time monitoring,
automation, and decision-making. The data flow within the system follows a structured pipeline, beginning with data collection at
the edge devices. These devices gather information from sensors and actuators, which is then transmitted to the local gateway. The
gateway plays a crucial role in preprocessing and filtering the incoming data before forwarding it to AWS loT Core. Once received
in the cloud, AWS loT Core orchestrates the data flow by triggering AWS Lambda functions that execute real-time processing,
analytics, and automation rules. Processed data is then stored in Amazon S3 for long-term retention or in Amazon DynamoDB for
immediate access and real-time operations. To maintain system integrity, Amazon CloudWatch continuously monitors
performance metrics, generating alerts if anomalies or performance issues are detected, ensuring that corrective actions can be
taken promptly.

Device management is a critical component of the system, ensuring that all connected 10T devices operate securely and
efficiently. The local gateway leverages AWS IoT Device Management to handle tasks such as device registration, provisioning,

3

Prof. Clara Fontaine / IJAIDSML, 1(3), 1-7, 2020

configuration updates, and firmware upgrades. This automated device management process ensures that all edge devices are
properly configured and functioning optimally, reducing manual intervention. Additionally, the system enforces security policies at
the device level, monitoring the health and status of connected devices in real time. If a device malfunctions or exhibits unusual
behavior, the management system can trigger automated responses, such as isolating the affected device or updating its firmware to
mitigate potential vulnerabilities. The data processing pipeline is designed to optimize resource utilization by distributing
computational tasks across multiple layers. Edge devices perform preliminary data filtering and anomaly detection, which
minimizes the amount of raw data transmitted over the network. The local gateway further aggregates and preprocesses this data
before routing it to the cloud. AWS Lambda functions then execute more complex analytical tasks, including predictive modeling,
decision-making, and automation triggers. This multi-tiered processing approach significantly reduces latency, ensuring that time-
sensitive tasks are executed locally while leveraging cloud-based resources for deeper insights and historical analysis. The
combination of edge and cloud processing enables efficient, scalable, and responsive smart home automation.

Security remains a top priority in loT-based systems, given the vulnerabilities associated with interconnected devices. The
proposed architecture incorporates multiple layers of security to protect data, devices, and communication channels. Device
authentication is enforced using mutual Transport Layer Security (TLS), ensuring that only verified devices can communicate
within the system. Data encryption mechanisms, both in transit and at rest, are implemented using AWS Key Management Service
(KMS), preventing unauthorized access to sensitive information. Access control is managed through AWS ldentity and Access
Management (IAM) policies, which define granular permissions for users and applications interacting with the cloud services.
Additionally, Amazon GuardDuty provides an intrusion detection mechanism that continuously scans for potential security threats,
such as unauthorized access attempts or network anomalies. By integrating these robust security measures, the system ensures a
secure and resilient smart home automation framework.

5. Implementation
5.1 Edge Device Development

Edge devices are developed using microcontrollers and sensors. The devices are programmed to collect data and perform
preliminary processing. The code for an edge device is shown in Algorithm 1.

Algorithm 1: Edge Device Data Collection and Processing
import time

import sensor_library

import mqtt_library

def collect_data():
temperature = sensor_library.read_temperature()
humidity = sensor_library.read_humidity()
motion = sensor_library.read_motion()
return temperature, humidity, motion

def process_data(temperature, humidity, motion):
if temperature > 30 or humidity > 70 or motion:
return True
return False

def send_data_to_gateway(temperature, humidity, motion):
mqtt_library.publish("local_gateway", {"temperature": temperature, "humidity": humidity, "motion": motion})

while True:

temperature, humidity, motion = collect_data()

if process_data(temperature, humidity, motion):

send_data_to_gateway(temperature, humidity, motion)

time.sleep(10)

5.2 Local Gateway Development
The local gateway is developed using a Raspberry Pi and runs a Python script that handles data aggregation and routing.

The code for the local gateway is shown in Algorithm 2.

Algorithm 2: Local Gateway Data Aggregation and Routing
import time

Prof. Clara Fontaine / IJAIDSML, 1(3), 1-7, 2020

import mqtt_library
import aws_iot_core_library

def aggregate_data(data):
aggregated_data = {
"temperature": sum([d['temperature] for d in data]) / len(data),
"humidity": sum([d['humidity] for d in data]) / len(data),
"motion": any([d['motion] for d in data])

}

return aggregated data

def route_data_to_cloud(aggregated_data):
aws_iot_core_library.publish("aws_iot_core", aggregated_data)

data_buffer =[]

while True:
data = mqtt_library.subscribe("local_gateway")
data_buffer.append(data)
if len(data_buffer) >=10:
aggregated_data = aggregate_data(data_buffer)
route_data_to_cloud(aggregated data)
data_buffer =[]
time.sleep(1)
5.3 Cloud Service Configuration
The cloud services are configured using the AWS Management Console and AWS CLI. AWS loT Core is set up to
manage device connections and data ingestion. AWS Lambda functions are created to handle data processing and decision-making.
The code for an AWS Lambda function is shown in Algorithm 3.

Algorithm 3: AWS Lambda Function for Data Processing
import json
import boto3

def lambda_handler(event, context):
temperature = event['temperature']
humidity = event['humidity']
motion = event['motion']

if temperature > 30:
send_alert("Temperature is too high")
if humidity > 70:
send_alert("Humidity is too high")
if motion:
send_alert("Motion detected")

save_data_to_s3(event)
save_data_to_dynamodb(event)

def send_alert(message):
sns = boto3.client('sns")
sns.publish(TopicArn="arn:aws:sns:us-west-2:123456789012:smart_home_alerts', Message=message)

def save_data to_s3(data):
s3 = boto3.client('s3")
s3.put_object(Bucket="smart-home-data’, Key=f'data/{time.time()}.json’, Body=json.dumps(data))

def save_data_to_dynamodb(data):

Prof. Clara Fontaine / IJAIDSML, 1(3), 1-7, 2020

dynamodb = boto3.resource(‘dynamodb’)
table = dynamodb.Table('SmartHomeData')
table.put_item(ltem=data)

6. Performance Evaluation

To validate the effectiveness of the proposed architecture, a performance evaluation was conducted in a simulated smart
home environment. The experiment was designed to mimic real-world conditions where multiple 10T devices generate and transmit
data at varying frequencies. The experimental setup included 50 edge devices equipped with different types of sensors and
actuators, a local gateway for data aggregation and processing, and cloud services hosted on AWS. The edge devices were
programmed to simulate various smart home scenarios, such as monitoring temperature, controlling lighting systems, and detecting
motion. The local gateway was responsible for managing these devices, preprocessing the collected data, and transmitting relevant
information to the cloud for further analysis and storage. The evaluation focused on four key performance metrics: latency,
throughput, resource utilization, and energy consumption. Latency was measured as the total round-trip time for data transmission
between an edge device and the cloud. This metric is crucial for real-time applications where delays in processing could affect
system responsiveness. Throughput was assessed by measuring the amount of data processed per unit of time, indicating the
efficiency of the data pipeline. Resource utilization was analyzed by monitoring the CPU and memory usage of the local gateway
and cloud services, ensuring that the system operated efficiently under varying workloads. Finally, energy consumption was
evaluated to determine the power efficiency of the edge devices and the gateway, which is particularly important in battery-
powered environments.

The experimental results, summarized in Table 1, indicate that the proposed architecture performs efficiently across all
evaluated metrics. The average latency was recorded at 120 + 10 milliseconds, demonstrating a rapid response time suitable for
real-time smart home applications. The system achieved a data throughput of approximately 150 + 10 KB per second, highlighting
its ability to handle a significant volume of data without bottlenecks. CPU utilization of the local gateway remained around 30 +
5%, while memory utilization was approximately 40 £ 5%, indicating that the system operates within acceptable resource limits
without overloading computing resources. Energy consumption was another critical aspect of the evaluation, particularly for the
edge devices, which are often constrained by battery life. The measured energy consumption of 150 + 10 milliwatts suggests that
the system is optimized for low-power operation, allowing loT devices to function efficiently over extended periods without
excessive energy drain. The results demonstrate that the combination of edge processing and cloud services effectively balances
performance and power efficiency.

Table 1: Performance Evaluation Results

Metric Value
Latency (ms) 120+ 10
Throughput

(KBJs) 150 + 10

CPU
Utilization 305
(%)
Memory
Utilization 40+5
(%)

Energy
Consumption 150 + 10

(mW)

The proposed architecture demonstrated low latency, high throughput, and efficient resource utilization. The energy
consumption of the edge devices and the local gateway was also within acceptable limits.

7. Discussion

The proposed cloud-integrated 10T architecture for smart home automation effectively addresses several key challenges
associated with traditional 10T systems, particularly those related to scalability, performance, and data processing. By leveraging
edge computing, the system reduces the reliance on centralized cloud processing, thereby minimizing latency and optimizing
bandwidth usage. This localized data processing at the edge ensures that real-time smart home applications, such as security
monitoring, climate control, and automated lighting, function seamlessly without experiencing delays. Meanwhile, cloud services
provide a scalable infrastructure to handle complex data analytics, long-term storage, and centralized decision-making, ensuring
that the system remains efficient as the number of connected devices increases. One of the major advantages of the proposed

6

Prof. Clara Fontaine / IJAIDSML, 1(3), 1-7, 2020

architecture is its multi-level data processing approach. The distribution of data processing tasks across edge devices, the local
gateway, and cloud servers ensures an optimal balance between performance and resource utilization. By performing preliminary
data filtering and anomaly detection at the edge, the system reduces unnecessary data transmission to the cloud, conserving
bandwidth and lowering operational costs. Additionally, the incorporation of AWS services, such as AWS loT Core, AWS
Lambda, and Amazon S3, enhances security, scalability, and reliability, making the architecture well-suited for large-scale smart
home deployments.

Despite its advantages, the architecture does have some limitations. The initial setup and configuration of edge devices
and the local gateway can be complex, requiring specialized technical expertise. Users with limited knowledge of 10T networking
and cloud infrastructure may face difficulties in deploying and managing the system. Furthermore, while cloud services provide
significant computational benefits, they also introduce recurring costs, which could be a concern for large-scale smart home
deployments. Subscription-based cloud services, data storage, and computing resources can contribute to long-term operational
expenses, making affordability a key consideration for homeowners and businesses. To overcome these challenges, future research
will focus on simplifying the setup process, making the system more user-friendly for non-experts. Automated configuration tools
and Al-driven device management solutions could help streamline installation and maintenance, reducing the technical barriers to
adoption. Additionally, cost-effective alternatives, such as hybrid cloud-edge architectures or decentralized peer-to-peer computing
models, may offer more affordable deployment options without compromising performance. Exploring energy-efficient edge
devices and leveraging open-source loT frameworks could further enhance the sustainability and affordability of the proposed
system.

8. Conclusion

In this paper, we proposed a cloud-integrated 10T architecture for smart home automation that effectively combines the
benefits of edge computing and cloud services. By distributing data processing tasks across multiple levels, the architecture
minimizes latency, optimizes bandwidth usage, and ensures real-time responsiveness for critical smart home applications. The
integration of AWS services provides a robust and scalable infrastructure, enhancing security, data processing efficiency, and
system reliability. Through performance evaluation, we demonstrated that the architecture maintains low latency, high throughput,
and efficient resource utilization, making it a viable solution for large-scale smart home deployments. The proposed approach not
only improves the responsiveness and reliability of smart home systems but also lays the foundation for more intelligent and
connected living environments. As loT adoption continues to grow, future advancements in Al-driven automation, edge
intelligence, and cost-efficient cloud management will further enhance the capabilities of smart home ecosystems. With ongoing
research and technological advancements, the proposed architecture has the potential to revolutionize the way smart homes
operate, paving the way for seamless, efficient, and secure loT-driven environments.

References

[1] https://www.volansys.com/blog/connecting-zigbee-and-ble-devices-to-aws-iot-platform-using-gateway-solution/
[2] https://www.sam-solutions.com/blog/iot-home-automation/

[3] https://aws.amazon.com/iot/solutions/connected-home/

[4] https://mww.softobotics.com/blogs/revolutionizing-smart-homes-exploring-cloud-computing-and-iot-integration/
[5] https://iaeme.com/MasterAdmin/Journal_uploads/IJRCAIT/VOLUME_7_ISSUE_2/IJRCAIT_07_02_121.pdf
[6] https://kamonk.in/blogs/iot-based-home-automation-system-connected-to-the-cloud

[7] https://aws.amazon.com/iot/

[8] https://sis.binus.ac.id/2024/10/22/revolutionizing-smart-homes-the-role-of-cloud-computing-in-iot/

[9] https://aws.amazon.com/blogs/architecture/category/internet-of-things/

https://www.volansys.com/blog/connecting-zigbee-and-ble-devices-to-aws-iot-platform-using-gateway-solution/

