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Abstract - As the global economy becomes more uncertain and systemic vulnerabilities increase, financial institutions are 

growingly becoming resilient through the use of intelligent systems to assess resilience. Although it forms a basis of stress 

testing, traditional methods might not be sufficient to reflect the realities of contemporary financial settings. In this paper, 
a critical review of how the area of financial stress testing is changing towards machine learning (ML) technologies, such 

as supervised learning, unsupervised learning, reinforcement learning, and hybrid frameworks, is provided. In order to 

maximize model transparency and regulatory compliance, it goes into depth on how to include Explainable AI (XAI) 

approaches. Also, the paper provides the technological framework, including TensorFlow, Keras, and Apache Spark, 

which makes it possible to implement it on a large scale and in real-time. Important issues like data integrity, 

interpretability and model governance are also tackled. The paper also outlines the research gaps for the future and 

suggests a framework on how ML-based stress testing can be aligned with the global regulatory expectations. This review 

helps to orientate oneself in the future outlook of ML-based stress testing by mapping the major regulatory frameworks, 

practical challenges, and emerging tools through which ML-based stress testing can transform financial risk management 

and system-wide stability. 
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1. Introduction 
In this modern financial environment, financial institutions are under increased pressure to assess and strengthen their 

vulnerability to possible economic shocks. These shocks could be as a result of market turbulence, geopolitical conflicts, pandemics, 

or technological shocks which can disrupt the financial systems. Stress testing has become an important tool used in evaluating the 

capacity of an institution to survive under unpleasant conditions [1]. However, the traditional stress testing models may rely on 
linear, scenario-based models that have pre-determined assumptions and as such, they may not be suitable in projecting outcomes in 

dynamic and nonlinear environment. The emergence of ML provides a revolutionary change in the arena of financial risk analysis. 

ML methods make it possible to automatically learn from large, high-dimensional financial data [2][3], which can then be used to 

more accurately determine risk factors, quicker detect vulnerabilities, and more realistically generate scenarios.  

 

The default prediction and credit risk assessment are applied on supervised models (such as LR, SVM, RF, etc.), whereas 

unsupervised methods (k-means, DBSCAN, etc.) reveal latent patterns and systematic anomalies. Reinforcement learning plays a 

role in tuning long-term choice of decision-making strategy in stressful situations, and ensembles of methods perform better than 

individual ones.Besides, active research in Explainable AI (XAI) tools, including SHAP and LIME, ensures the important issue of 

interpretability is considered, allowing financial analysts and regulators to gain insights into the rationale behind ML-based 

predictions. Predictive performance is also boosted by the availability of alternative data sources, like social media sentiment, 
macroeconomic indicators and transactional data [4], especially in real-time uses.  

 

Recent frameworks, such as TensorFlow, scikit-learn, Keras, XGBoost, and cloud computing platforms, such as Google Cloud 

and Apache Spark, offer the infrastructure required to develop at scale and robust ML-based stress testing systems. Such 

technological innovations can not only provide quicker processing of sophisticated data, but can also be built into the regulatory 
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process, which will lead to better transparency, compliance and resilience of the financial system. With financial institutions still 

braving uncertainty, the presence of smart models in stress tests becomes more and more inevitable. 

 

1.1. Structure of the Paper 

This paper is structured as follows: Section II invests into conceptual roots of financial stress testing. Section III reviews ML 
methodologies. Section IV discusses emerging trends and technological platforms. Section V presents a literature review. Section VI 

concludes with future directions. 

 

2. Conceptual Foundations Of Financial Stress Testing 
Financial stress testing is a proactive risk management tool employed by financial firms and regulators to analyze the resilience 

of financial systems under negative and unfavourable conditions; by creating plausible but extreme economic or financial event 

scenarios- such as liquidity crunch, market sell off, or macroeconomic recession this can evaluate the impact on a portfolio, balance 
sheet or other aspects of the firm or financial health [5]. Primarily, stress testing is useful for revealing vulnerabilities that are not 

apparent in normal situations, as well as ensuring entities have sufficient capital or risk mitigate strategies to withstand the 

implications of stress testing. historically, stress testing has relied on deterministic models where the organization develops test 

scenarios determined either by historic crises or expert judgment.  

 

Although there is some value to these consumer use models, there are certainly challenges in capturing sometimes the rarer, and 

often more complicated, non-linear behaviours and interactions within and among financial variables are more often ignored or 

missed. As systems further develop into the more interconnected and modifications to real-time, growing flux operational forms and 

market contexts, financial stress testing now requires increased demand for more dynamic, adaptive and exploratory data-based 

alternatives [6]. Consequently, financial systems are incorporating machine learning (ML) approaches to stress testing, allowing 

exploration of additional types of predictive strength, more flexibility in target and scenario generation and the possible ability to 
find patterns and/or relationships existing in massive datasets previously hidden from view, while addressing complex data 

dependencies. 

 

2.1. Regulatory Frameworks and Compliance Requirements 

Regulatory frameworks for financial stress testing have evolved to ensure that institutions maintain resilience under adverse 

conditions and aid in maintaining a consistent financial system. Supervisory authorities have established detailed guidelines 

requiring banks, insurance companies, and other financial institutions to integrate stress testing into their internal risk management 

and capital planning processes. These frameworks are commonly risk-focused, and they focus on quantitative rigor as well as the 

relevance of the scenarios. Prudential regulations require stress testing, which is usually found in wider risk management standards 

and capital adequacy tests. Credit, market, operational, and liquidity risk assessments are required by banks on a regular basis [7]. 

The results of such tests should be recorded and analyzed by the top management and should be reflected in the strategy-making and 

capital allocation policy. In addition, firms should also be able to create institution-specific stress scenarios, taking into account their 
distinctive risk profiles and business models. 

 

The regulatory demands also touch on the internal governance, model validation, and data integrity. To ensure the high quality 

of the stress testing process, institutions are supposed to have effective internal controls, such as independent validation of the 

models, good documentation standards [8], and an effective board-level oversight. Supervisory stress tests to examine system-wide 

vulnerabilities may also be performed by the regulatory bodies, and firms must engage in them with standardized assumptions and 

templates. Regulatory action, capital surcharges or limits on dividend payments may follow failure to match regulatory expectations. 

As a result, financial institutions have been ramping up investments in state-of-the-art modeling capacity, data systems, and risk 

analytics systems to achieve compliance requirements and to improve their risk culture across the board. 

 

2.2. Conventional Methodologies in Stress Testing 
The conventional methods of stress testing can be mainly divided into sensitivity analysis, scenario analysis and reverse stress 

testing. The said methodologies have already been the long-standing tools used in assessing how resilient financial institutions can 

be in unfavourable circumstances. Sensitivity analysis is concentrated on the assessment of the possible effects of the isolated 

changes of a single risk variable, e.g., interest rates, exchange rates, or credit spreads on a portfolio or balance sheet [9]. It is 

practical in the determination of vulnerability to particular risk exposures and does not put into consideration the interaction of risk 

factors. In comparison, scenario analysis evaluates the effect of a conjunction of unfavourable economic and financial variables, 

which are frequently characterized by macroeconomic declines or market interferences. They can be historically motivated or 

hypothetically built and may vary in their mild or extreme versions.  
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The approach gives a wider picture of how the risks can develop jointly and the overall impact on capital adequacy and liquidity 

[10]. Reverse stress testing works backwards by determining the kind of extreme yet realistic events that may jeopardize the 

solvency of a firm or cause violation of regulations. It is constructed to reveal unfitness behind the scenes and condition institutions 

against worst-case scenarios. These traditional approaches are mostly deterministic and based on stationary assumptions, past data 

trends and expert opinion. They are useful in control amplification and internal risk analysis but fail to capture much of the 
interaction structure, feedback loops and time-varying dynamics of financial systems. They consequently wear out in very dynamic 

market conditions or in unprecedented market situations. 

 

2.3.Challenges and Opportunities in Stress Testing 

 Technological Complexity and Costs: Advanced stress testing models cannot be implemented without heavy investments 

into advanced IT infrastructure. Financial institutions have to invest enormous resources not only in the purchase of 

hardware, but also in the creation and support of sophisticated analytical models [11], which require very specialized 

technical skills. 

 Data Management Requirements: Stress testing requires the ability to manipulate large and diverse data. Institutions are 

struggling to develop powerful data management systems that can guarantee data quality, consistency and security which 

are key elements in ensuring that models give the right output. 

 Regulatory Adaptability: The regulatory framework involving financial stress testing is constantly changing in 

accordance with the developments in the global economic environment and risk scenario. One way is to ensure that the 

models used by the institution are up to date with the changing requirements, as in the case of transition between the 

previous regulatory standards and the stricter ones, models would have to be continuously modified. 

 Compliance and Future-Proofing: In addition to the existing requirements, banks are expected to look into the future of 

regulation. This vision is essential to remain compliant in the long run, prevent the expensive model re-designs, and make 

the stress testing an efficient risk managing tool despite the fluidity of regulations. 

 

2.4. Opportunities 

 Bridging Technology and Regulation: The technology planning professionals are especially placed in bridging the gap 

between innovative technological solutions and the regulatory requirements. They are able to spearhead the implementation 

of advance tools and techniques and at the same time ensure that such approaches satisfy compliance requirements, thereby 
enhancing innovation and risk management. 

 Enhanced Predictive Analytics: Improved data analytics and machine learning techniques allow for the development of 

stress testing models with higher predicted accuracy. This enhancement will allow the financial institutions to detect the 

possible weaknesses in advance and plan better to face the unfavourable economic conditions. 

 Improved Transparency and Trust: Distributed ledger technologies present viable opportunities to increase transparency 

and integrity of the stress testing processes and reporting. This greater visibility can help build more confidence with the 

regulators and investors and other stakeholders. 

 Development of Dynamic Models: The shift of the scenario-based, formerly used testing methods, towards the dynamic 

models of stress testing enables real-time adjustments to the changing economic environments. These models allow a more 

realistic and opportune evaluation of the financial risks, thus enhancing the decision-making and resilience. 

 Collaboration with Regulators: Continued engagement between technology planners and regulators will affirm that new 
stress testing practices can be executed in line with standards and be appropriately assimilated into regulatory frameworks 

so that implementation and acceptance become easier. 

 

3. Machine Learning Methodologies For Financial Stress Testing 
In financial supervision, machine learning (ML) provides a versatile toolbox of algorithms which can be fruitfully used in stress 

testing and systemic risk analysis [12]. These models are different in terms of complexity, interpretability and computation needs 
and have particular advantages in modelling capital stress scenarios and also present detailed comparative table, using Table II below 

to compare and contrast supervised, unsupervised, and reinforcement learning approaches as they pertain to financial stress testing: 

 

3.1. Supervised Learning Techniques 

Financial stress testing heavily relies on supervised learning methods to model input-output relationships on historical data that 

can then be used to correctly predict and measure risk in stressed conditions.  

 

Three popular models of supervised learning that are frequently used in this field are mentioned below: 
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3.1.1. Logistic Regression 

As a fundamental classification approach, LR finds widespread use in financial risk modelling.  Through the use of a number of 

explanatory factors, it attempts to estimate the probability of a binary result, such as default or non-default. Its interpretability and 

statistical robustness make it suitable for regulatory environments where transparency is essential [13]. 

 
3.1.2. Random Forest 

In order to generate more accurate and resilient classifications, RF use an ensemble learning technique that combines the 

predictions of several decision trees.  Compared to individual DT, it is less likely to overfit and works well with nonlinear and high-

dimensional data. Stable out-of-sample forecasts, identification of the most important risk factors, and modelling of complicated 

interconnections are all tasks performed by random forests in financial stress testing. 

 

3.1.3. Support Vector Machine (SVM) 

In high-dimensional domains, SVMs perform exceptionally well as classifiers, particularly in stress testing, separating data 

points into distinct categories and modelling non-linear decision boundaries using kernel functions. 

 

3.2. Unsupervised Learning Techniques 

The clustering technique is the foundation of most unsupervised classification systems.  Within the provided feature space, 
clustering algorithms identify the most appropriate natural groupings.  As a feature vector, this study takes into account the subjects' 

stress and non-stress sensor data.   

 

Chapters that follow provide an overview of the study's most popular unsupervised classifiers: 

 

3.2.1. K-Mean Classifier 

An unsupervised learning classifier that sees a lot of action is the K-mean classifier. Each data point is assigned a group label by 

the algorithm in order to minimise the total variance of each cluster [14]. By treating each centroid as a cluster, the method begins 

with a randomly selected set of centroids and iteratively adjusts their positions through computations. 

 

3.2.2. DBSCAN 
DBSCAN can detect outliers and find clusters of any shape since it is a density-based clustering method that organizes data 

points according to the density of their geographical distribution. As an alternative to centroid-based approaches like k-means, 

DBSCAN is able to handle datasets with varying degrees of noise and abnormalities without requiring a predetermined number of 

clusters. 

 

3.2.3. T-Distributed Stochastic Neighbor Embedding (T-SNE) 

T-SNE is a nonlinear method for cluster identification, local structure preservation, and high-dimensional data visualisation. It 

aids in detecting risk clusters and anomalous behaviour, and supports exploratory analysis, aiding analysts and regulators in 

understanding systemic interactions and latent structures in financial data. 

 

3.3. Reinforcement Learning and Its Applications 

A subfield of ML known as Reinforcement Learning (RL) teaches agents to maximize their cumulative rewards through 
sequential decision-making in response to environmental cues. Random forest (RL) is useful for complicated and dynamic decision-

making situations because, unlike supervised learning, it learns optimal policies by trial and error rather than assuming labelled 

input-output pairings. 

 

3.3.1. Deterministic Policy Gradient (DPG) 

In high-dimensional continuous action spaces, the Deterministic Policy Gradient (DPG) technique improves convergence and 

performance by directly learning a deterministic policy[15]. Such extensions as Deep Deterministic Policy Gradient (DDPG) and 

Neural Fitted Q Iteration with Continuous Actions (NFQCA) apply function approximation to enhance the stability of training. 

 

3.3.2. Stochastic Policy Gradient (SPG) 

Stochastic Policy Gradient algorithms approximate the gradient of the anticipated benefit via a random policy gradient through 
sampling. The policy emits a distribution over actions, which permits exploration and resilience in doubtful settings. The likelihood 

ratio trick is used to obtain the gradient estimate, and makes it possible to optimize efficiently using algorithms such as 

REINFORCE[16]. A large degree of variability is possible with this straightforward approach, although it is typically manageable 

with the help of variance reduction techniques. 

 



Srikanth Reddy Vangala et al. / IJAIDSML, 4(1), 40-50, 2023 

 
44 

3.3.3. Q-Learning 

Q-learning is a pioneer value-based reinforcement learning algorithm, which aims at approximating the optimal action-value 

function Q*(s,a)Q^*(s,a)Q∗(s,a), the maximum expected future reward attainable in states by executing action a. It iteratively 

updates the Q-values with Bellman equation, and this makes the agents to obtain optimal policies in unknown dynamic 
environments. 

 

3.3.4. Deep Q-Networks (DQN) 

To handle complicated settings, DQN integrate Q-learning with deep neural networks; these networks have learnt control 

strategies for ATARI games; and deep Q-Networks incorporate experience replay and target networks.   

 

Principal points outlining RL applications: 

 Adaptive Risk Management: The RL models have the ability to learn optimal hedging and risk mitigation strategies 

which are dynamically adapted to the changing market stress scenarios. 

 Portfolio Optimization Under Stress: By simulating sequential decision-making under uncertainty, RL allows designing 

investment strategies that maximize the returns and minimize losses during bad economic times. 

 Regulatory Policy Simulation: RL frameworks have the ability to assess the effects of various regulatory interventions by 
simulating the process by which financial institutions adjust their behaviors towards the new stress-testing regulations. 

 Systemic Risk Monitoring: By modeling agent interaction and contagion dynamics on financial networks amid stress RL 

can locate the harmful nodes of systematic vulnerability. 

 Early Warning Systems: RL models can identify the precursors of financial distress and issue an early warning by 

learning the past crisis data. 

 Scenario Generation: RL can be used to generate realistic stress scenarios, by searching a large number of potential future 

states, even rare, but significant events. 

 

Table 1: Supervised vs. Unsupervised vs. Reinforcement Learning in Financial Stress Testing 

Criteria Supervised Learning Unsupervised Learning Reinforcement Learning 

Primary 

Objective 

Predict outcomes based on 

labeled historical data 

Discover hidden patterns or 

groupings in unlabeled data 

Find the best policies for making 

decisions by making mistakes. 

Input Data Labeled (input-output pairs) Unlabeled Environment with states, actions, 

rewards 

Learning 
Approach 

Transferring data from one 
set of inputs to another 

Identifying structure within 
data 

Achieving maximum benefit through 
environmental interaction 

Common 

Algorithms 

Logistic Regression, 

Random Forest, SVM 

K-Means, DBSCAN, T-SNE Q-Learning, Deep Q-Network (DQN), 

DDPG, SPG 

Output Type Predictive (classification or 

regression) 

Descriptive or visual patterns Policy or action strategy 

Application in 

Stress Testing 

Default prediction, risk 

scoring, scenario 

classification 

Risk clustering, anomaly 

detection, exploratory analysis 

Adaptive stress management, scenario 

generation, systemic risk simulation 

Data 

Requirements 

Requires large, clean, and 

labeled datasets 

Requires sufficient variance 

and meaningful patterns in 

unlabeled data 

Requires simulation environment and 

iterative interaction 

Strengths High accuracy, 

interpretability, regulatory 

acceptance 

No need for labeled data, 

effective for exploratory 

insights 

Dynamic learning, handles sequential 

decision-making, adapts to changing 

environments 

Limitations Limited by availability and 

quality of labeled data 

May produce ambiguous or 

hard-to-interpret clusters 

High computational cost, sensitive to 

hyperparameters, may suffer from 

convergence instability 

Use Case 
Example 

Predicting bank default 
probability during economic 

downturns 

Detecting hidden stress 
patterns among financial 

institutions 

Designing investment strategies under 
hypothetical stress events 

 

3.4. Hybrid Approaches 

The possibility for hybrid approaches to improve forecasting accuracy and stability by combining several learning algorithms 

has piqued the curiosity of financial stress testers. 
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3.4.1. Genetic Algorithms (GA) in Hybrid Models 

GA have also been used commonly to do feature selection and hyper-parameter optimization in hybrid models, i.e. using GA 

with neural networks MLP or SVM. These hybrids jointly optimize the model structure and parameters, and they show better 

prediction of the financial distress or bankruptcy. 

 
3.4.2. Rough Sets for Feature Selection 

The rough set theory can also be effectively used to reduce the dimensionality via dimensionality before model training [17]. 

Rough sets can be used to improve the accuracy and interpretability of models when used with classifiers such as SVM or fuzzy k-

nearest neighbours; this is important in stress-testing situations where model transparency is needed to meet regulatory requirements. 

 

3.4.3. Improving Model Transparency with Fuzzy Systems and SOM 

The stakeholders and regulatory oversight require the transparency of financial stress testing models. The hybrid methods 

combine fuzzy rule-based systems or neuro-fuzzy models to produce explainable decision rules to interpret financial distress 

predictions. 

 

3.5. Ensemble Modelling Methods 

High volatility and non-linearity of the financial systems make these approaches especially useful in stress testing. Ensemble 
models have the advantage of combining the decisions of many different learners, and hence reducing the effects of any single bias, 

and of picking up a wider variety of patterns. 

 Bagging (Bootstrap Aggregating): Bagging, or training many models on bootstrapped data, helps reduce variance and 

overfitting, so it can be effective with financial data which contains noise. 

 Boosting: Sequential models such as AdaBoost and Gradient Boosting Machines algorithms are boosting algorithms that 

have shown to outperform other algorithms in financial default prediction and systemic risk assessment [18]. 

 Stacking: Stacked generalization involves training many base learners and then relying on a meta-learner to aggregate 

outputs to enhance robustness and accuracy in financial stress testing by assembling a variety of model types. 

 

4. Emerging Trends, Technological Tools And Platforms 

The Future trends of financial stress testing lie in the use of advanced analytical techniques, greater automation, real-time stress 

testing, and elastic infrastructures, to make the process of risk analysis more accurate, efficient, and flexible to operate within the 

dynamic and complex financial conditions. 

 

4.1. Explainable Artificial Intelligence and Model Interpretability 

As the use of ML methods in financial stress testing grows, it is crucial to focus on the transparency and interpretability of those 

models in parallel. State-of-the-art ML models (e.g., ensemble methods and DNN) are sometimes referred to as black boxes, which 
makes them less useful in regulated financial settings. A recent development that may be of critical importance [19] is XAI, which 

provides methods like SHAP and LIME to explain the behaviour of complex models [20]. The techniques allow stakeholders to 

determine the most significant variables during stressed conditions, thus assisting regulatory compliance and model governance. 

 

4.2. Incorporation of Alternative Data Sources 

Incorporation of alternative data sources into financial stress testing systems is also an upcoming topic of study, with the aim of 

making the ML models deeper and more predictive. Alongside traditional financial information, e.g., macroeconomic variables, 

market returns, and balance sheets of Institutional investors, practitioners and researchers have started to investigate unconventional 

sources of data. These are social media sentiment, news analytics, internet search trends, and satellite imagery. Conventional metrics 

may miss this type of data's real-time insights into customer behaviour, market sentiment, and external risk factors. ML models are 

specifically well aligned to work with high dimensionality and unstructured format of such dataset, capable of detecting high-order, 

non-linear patterns of interest in stressful situations. 
 

4.3. Advancements in Real-Time and Dynamic Stress Testing 

Advances in data processing power and machine learning methods have helped make such a transition, which aims to better 

reflect the dynamics of the real world. Conventional methods. Sometimes, stress testing is based on predetermined scenarios and 

regular assessments, which could not be sufficient to reflect the dynamic nature of financial markets. By contrast, dynamic stress 

testing uses continuously refreshed data feeds, such as market volatility indices, macroeconomic variables and transaction histories 

to flexible models that react to evolving risk factors. Stress testing in real-time helps financial institutions to track exposures and 

systemic weaknesses as situations develop, which enhances risk forecasting and decision-making. This evolution is backed by 
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machine learning models that allow quicker data absorption[21], automatic identification of patterns, and the creation of future stress 

scenarios using real-time inputs. 

 

4.4. Integration of Macroprudential and Microprudential Stress Testing 

A combination of the macroprudential and macroprudential stress testing systems is an important innovation in financial risk 
management. Conventionally, macroprudential stress tests are concerned with the health of individual financial institutions and 

conducted by testing the capital adequacy of financial institutions in bad scenarios, however, macroprudential stress tests look at 

systemic risks and overall financial system stability [22]. Having noticed the linkage between the institutional weakness and the 

overall economic state, the tendency has been to integrate these approaches to include feedback loop and contagion effects. 

 

4.5. Transfer Learning and Domain Adaptation Strategies 

As a result of data scarcity and distributional variations, domain adaptation and transfer learning have been suggested as 

potential remedies.  Challenges associated with financial stress tests. Conventional machine learning models, to be trained 

successfully, need large quantities of high-quality labeled data, which may be restricted in stress testing situations by the rare 

incidence of extreme stress occasions. Transfer learning alleviates this by using the knowledge acquired on related tasks or domains, 

like in other markets or other institutions or other economic conditions, etc, and transferring it to target stress testing models [23].  

 

4.6. Machine Learning Frameworks, Tools, and Analytical Platforms 

The development of robust frameworks, tools, and analytical platforms has significantly facilitated the application of ML in 

financial stress testing. These resources support the entire ML pipeline from data pre-processing and model training to evaluation, 

deployment, and monitoring enabling more efficient and scalable risk modelling practices. Eminent machine learning libraries offer 

a wide variety of algorithms and tools for applying ensemble learning, classification, and regression methods. Scikit-learn, 

TensorFlow, Keras, and XGBoost are just a few examples. These frameworks are widely used for building interpretable and high-

performing models tailored to the complex and high-dimensional datasets found in financial systems[24]. In addition to algorithmic 

development, modern ML platforms often incorporate automated machine learning (AutoML) capabilities, facilitating model 

selection, hyperparameter tuning, and performance benchmarking with minimal manual intervention.  

 

Integration with big data processing tools like Apache Spark,  Hadoop, and SQL-based data warehouses allows institutions to 
process large volumes of structured and unstructured data efficiently. Analytical platforms also increasingly emphasize model 

governance, version control, and explainability, integrating with tools for visualization (e.g., Matplotlib, Seaborn, Tableau) and 

interpretability (e.g., SHAP, LIME) to ensure transparency and regulatory compliance. These components are essential for 

documenting assumptions, validating model outputs, and communicating results to stakeholders, including regulators and risk 

committees. 

 

5. Literature of Review 
This review examines short-term and long-term risk assessment using machine learning in financial stress testing.  It shows how 

advanced models capture complex temporal, macroeconomic, and financial information to improve prediction accuracy and risk 

management and regulatory compliance.  

 

5.1. Reviewing several studies: 

Brummelhuis and Luo (2019) this research looks into NIM forecasting using non-linear ML and linear regression at the level of 

individual banks. They look at 162 models employing 11 distinct regression approaches to compare the accuracy of NIM forecasts. 

The results disprove the usefulness of stress testing by demonstrating that some linear and Machine Learning methods may 

outperform the random-walk benchmark in terms of accuracy. This study demonstrates a multi-step forecasting process employing 

iterative forecasting, rolling-origins, and recalibration to predict bank-specific NIM. It is the first systematic study of its kind.  When 

dealing with outliers in forecasts, robust regression was useful [25]. 
 

Finck, (2019) study on stress testing in bank risk management reveals a methodical strategy for uncovering novel, intense 

situations.  A Vector-Autoregressive time series model is used to get the necessary scenario distribution from historical time series.  

With elliptic constraints and box constraints on scenario variables, the worst-case search is an optimisation issue.  Applying the 

Evolution Strategy, they consider the optimisation issue as a black-box optimisation problem.  The paper delves into various 

algorithm design options and provides an explanation of the necessary algorithm changes.  The findings are proven to be satisfactory 

when using a straightforward approach to addressing box constraints and fixing improbable circumstances [26]. 

 

Gramlich (2018) highlights the importance of incorporating sustainability risks into stress testing models for financial systems to 

assess their exposure to these risks and explore risk mitigation strategies. The major challenges in conceptualizing an SST 
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framework include modelling sustainability stress factors, their propagation within the system, and the system's response. The 

architectural form and the dynamic behaviour of the financial system have to be viewed as forward-looking in order to sufficiently 

model the SST framework [27]. 

 

Jacobs Jr (2018) study presents one of the models in machine learning is the multivariate adaptive regression splines approach.  
This model outperforms a VAR model and is more accurate when estimated using Fed Y-9 filings and macroeconomic factors, 

leading to more sensible forecasts regarding quality and conservatism [28]. 

 

Gao, Mishra and Ramazzotti (2017) proposed a novel approach to stress testing financial portfolios using traditional machine 

learning classification algorithms in conjunction with Suppes-Bayes Causal Networks (SBCNs). This method outperforms the 

conventional Monte Carlo Simulations in terms of accuracy and computing simplicity when simulating stress testing situations, and 

it can pinpoint the interdependencies among the financial factors impacting portfolios. The approach here answers the call of 

verisimilar financial stress tests, where it centers on probabilistic causation and extreme rare cases of generating financial stress 

scenarios [29]. 

 

Hemakom et al. (2016) performed an investigation of the characteristics of financial stress indices in order to develop a robust 

indicator of financial stress levels.  Under times of financial strain, they used intrinsic multiscale analysis to quantify the complexity 
loss hypothesis. The study looks at four major US stock indexes during the last quarter of a century: the Dow Jones Industrial 

Average, the NASDAQ Composite, the S&P 500, the Russell 2000, the FTSE 100, the CAC 40, and the exchange rates.  High levels 

of stress were seen throughout the era of the subprime mortgage crisis and the fall of the Internet bubble, which is consistent with the 

EMH theory [30]. 

 

Table II provides an overview of the significant studies in the area of machine learning approaches to financial stress testing, 

revealing the type of models, issues, application scenarios, and perspectives on enhancing the predictive power of models and 

ensuring their use in sound financial risk management and regulatory decision-making. 

Table 2: Summary of related work based on Machine Learning Techniques for Financial Stress Testing 

Reference Focus On Approach Key Findings Challenges Limitations/Gaps 

Brummelhuis 
and Luo, 

(2019) 

The prediction of 

net interest 
margins (NIMs) 

for individual 

banks 

Analysis of 162 

models using 
linear and non-

linear ML 

regression methods 

Some ML and 

linear models 

outperform 
random-walk 

benchmarks; robust 

regression 

beneficial with 

outliers 

Forecasting 

individual bank 
NIM with sufficient 

accuracy; market 

confidence in stress-

test models 

Focus mostly on NIM 

forecasting accuracy, 
not direct stress-test 

integration; market 

confidence issues 

remain unresolved 

Finck, (2019) 

Stress test 

scenario 

generation and 

optimization 

Vector-

Autoregressive 

model for scenario 

distribution; 

Evolution Strategy 

optimization 

Simple constraint 

handling combined 

with scenario repair 

yields good results 

in black-box 

optimization 

High-dimensional 

constrained 

optimization in 

stress scenario 

search 

Optimization focused 

on scenario generation, 

less on integration with 

broader risk assessment 

or ML techniques 

Gramlich, 

(2018) 

Incorporating 
sustainability risks 

into stress testing 

Conceptual 
framework design 

for sustainability 

stress tests (SST) 

Emphasizes 

systemic structure 
and behavioral 

dynamics; need for 

forward-looking 

modeling 

Modeling 

propagation of 
socio-ecological 

risks through 

financial systems 

Lacks concrete 
quantitative models or 

ML implementations; 

conceptual stage 

Jacobs Jr, 

(2018) 

CCAR stress 

testing segment-

level modelling 

using 

macroeconomic 

data 

Multivariate 

Adaptive 

Regression Splines 

(MARS) vs. 

Vector 

Autoregression 

(VAR) models 

MARS outperforms 

VAR in accuracy 

and out-of-sample 

performance; 

provides more 

reasonable and 

conservative 

forecasts 

Modelling complex, 

non-normal 

macroeconomic 

relationships; 

regulatory 

acceptance of newer 

models 

Focus on CCAR 

modelling segments; 

adoption in practice 

still limited; requires 

further validation and 

regulatory buy-in 
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Gao, Mishra 

and 

Ramazzotti, 

(2017) 

Financial portfolio 

stress testing via 

causation 

Suppes-Bayes 

Causal Networks 

(SBCNs) with ML 

classifiers 

SBCNs improve 

causal analysis and 

stress scenario 

simulation accuracy 

and computational 

efficiency 

Discovering true 

causal relationships; 

scalability and 

complexity of 

models 

Limited to portfolio 

stress testing; 

applicability to bank-

wide or systemic stress 

testing unclear 

Hemakom et 

al., (2016) 

Financial stress 

measurement via 

market indices 

Multiscale sample 

entropy; proposed 

ALIS metric 

Validated analogy 
between market 

stress periods and 

physiological 

stress; supports 

Efficient Market 

Hypothesis (EMH) 

Capturing 

complexity loss in 

financial stress 

indices 

Focused on index-level 

stress detection, not 

predictive or bank-level 

stress testing; no ML 

model development 

 

6. Conclusion And Future Work 
The stress testing of financial institutions is a tool that forms the basis of testing the stability of the institutions in unfortunate 

economic circumstances, and its development is inextricably connected with the development of analytical techniques. ML has 

become an increasingly strong facilitator in this space in recent years, with the ability to turn the conventional stress testing 

structures into more dynamic and intelligent structures. Institutions can improve the accuracy and speed of risk detection, scenario 

generation and capital adequacy assessment by using supervised, unsupervised and reinforcement learning methods. Nevertheless, 

issues regarding interpretability of models, data quality, regulatory compliance and computational complexity represent an ongoing 
obstacle. Emphasis should be put on creating more explainable and auditable ML models, integration of real-time and alternative 

data sources, and creation of common frameworks which can meet the expectations of the global regulations. Also, the investigation 

of hybrid models, federated learning, and privacy-preserving AI may open the door to more secure and collaborative stress testing 

ecosystems and eventually make the financial system more resilient to never-before-seen shocks. 
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