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Abstract - Machine learning has significantly enhanced predictive accuracy in credit scoring systems, however, it has
also intensified concerns regarding algorithmic bias and fairness. This paper introduces an analytical framework that
integrates fairness constraints into neural network optimization to mitigate such biases. We propose a constrained
optimization methodology based on Lagrangian relaxation and fairness-aware loss functions to align predictive
performance with equity objectives. Using a real-world credit dataset, we demonstrate that the proposed framework
effectively reduces disparate impact across sensitive attributes such as race and gender while maintaining predictive
performance. Additionally, the model incorporates group fairness constraintssuch as demographic parity and equal
opportunitydirectly into the neural network’s loss function. Empirical evaluations show that our method consistently
outperforms baseline models in terms of both fairness metrics and classification accuracy. This study offers a
systematic approach to ethically aligning financial decision-making algorithms with broader societal fairness
imperatives.
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1. Introduction
1.1. Background and Motivation

In the age of algorithmic decision-making, machine
learning (ML) systems are increasingly deployed in high-
stakes financial domains, particularly in credit scoring. These
systems aim to evaluate a borrower's creditworthiness based
on historical data and a wide array of features, often resulting
in faster, scalable, and seemingly objective lending
decisions. Neural networks, in particular, have been widely
adopted due to their superior ability to model complex,
nonlinear relationships within financial datasets. However,
this shift toward algorithm-driven credit assessment has
brought renewed scrutiny over fairness, transparency, and
accountability. There is a growing body of empirical
evidence indicating that ML modelstrained on historical data
reflecting social inequitiestend to reproduce and even
amplify existing patterns of discrimination. For example, if
historically disadvantaged groups have had less access to
favorable loan conditions, this bias may be encoded in
training data and perpetuated by the model. This systemic
risk introduces ethical and legal concerns, particularly under
regulatory frameworks such as the Equal Credit Opportunity
Act (ECOA) and the General Data Protection Regulation
(GDPR), which mandate non-discriminatory treatment and
algorithmic explainability. Thus, the motivation behind this
study stems from the urgent need to reconcile the benefits of
machine learning in credit scoring with ethical principles and
fairness constraints.

1.2. Problem Statement

While the field of fairness in machine learning has made
considerable progress, practical applications in credit scoring
remain limited and fragmented. Existing techniques for
mitigating algorithmic bias generally fall into three
categories: pre-processing (altering training data to remove
bias), in-processing (modifying learning algorithms), and
post-processing (adjusting the model outputs). Most
deployed solutions rely on data pre-processing or post hoc
adjustments that do not modify the internal learning
mechanisms of the model. These techniques can be
insufficient for addressing deep-seated biases, especially
when sensitive information is encoded in non-obvious
correlations or proxy variables. Moreover, these adjustments
often result in a trade-off between fairness and predictive
accuracy, without offering a principled way to balance the
two. The lack of integrative frameworks that incorporate
fairness as a first-class objective during model training
hinders the deployment of ethical, high-performance credit
scoring systems. In particular, there is a need for constrained
optimization frameworks that allow fairness goals to be
explicitly encoded in the loss function of neural
networksthus enabling dynamic trade-offs and empirical
control over disparate outcomes.

1.3. Contributions of the Study

To address these challenges, this paper proposes a novel
analytical framework that integrates group fairness
constraints directly into the neural optimization process used
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for credit scoring. The core contribution lies in the
development of a fairness-constrained neural optimization
algorithm, which augments the standard classification loss
function with fairness penalty termsspecifically designed to
reduce group disparities based on sensitive attributes such as
race, gender, or age. We employ Lagrangian relaxation
techniques to  handle these constraints  during
backpropagation, allowing the model to minimize prediction
loss while simultaneously maintaining fairness. The
methodology supports multiple fairness definitions,
including Demographic Parity, Equal Opportunity, and
Equalized Odds, enabling a modular approach adaptable to
varying regulatory and ethical contexts. Using two
benchmark datasetsthe German Credit Dataset and a subset
of COMPASwe conduct empirical evaluations showing that
our method significantly reduces disparate impact and false-
positive rate disparities, without incurring substantial losses
in accuracy or AUC. Additionally, we perform ablation
studies to investigate the sensitivity of fairness-performance
trade-offs to different constraint intensities. These
contributions extend both the theoretical literature on
fairness-constrained optimization and offer practical
implications for fair financial modeling.

2. Literature Review
2.1. Hardt, M., Price, E., & Srebro, N. (2016).

This foundational work introduces the notion of Equal
Opportunity as a fairness criterion in supervised learning,
specifically focusing on equalizing true positive rates across
protected groups. The authors argue that traditional fairness
measures like Demographic Parity may not align with ethical
goals in decision-making contexts, such as hiring or lending,
where base rates differ. Instead, they propose Equal
Opportunity as a way to ensure that qualified individuals
have equal chances of favorable outcomes, regardless of
group membership. This paper is especially relevant to credit
scoring, where ensuring fairness for qualified applicants (i.c.,
those likely to repay loans) is critical. The Fairness-
Constrained Neural Network in this study directly
operationalizes the Equal Opportunity principle proposed
here through differentiable loss penalties.

2.2. Barocas, S., Hardt, M., & Narayanan, A. (2019).

This influential book-length manuscript offers a
comprehensive overview of fairness in machine learning,
covering legal, ethical, and technical dimensions. It
addresses the inherent trade-offs among different fairness
definitions, the limits of technical solutions to social
problems, and the challenges of aligning ML systems with
broader normative goals. The work emphasizes that fairness
is not a one-size-fits-all problem and requires context-
sensitive solutions. This insight directly informs the current
paper’s use of multiple fairness criteria (e.g., Demographic
Parity and Equal Opportunity) and the decision to allow for
trade-offs via tunable constraints in the loss function.

Mehrabi, N. et al. (2021). This comprehensive survey
categorizes sources of bias (data, model, outcome) and
reviews over 150 fairness techniques across pre-processing,
in-processing, and post-processing stages. The paper
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highlights the strengths and limitations of different
approaches, with a strong emphasis on in-processing
methodsthose that modify the learning algorithm itself, as
this study does. Mehrabi et al. also underscore the need for
multi-metric evaluation frameworks, supporting the current
work’s adoption of both utility (AUC, accuracy) and fairness
(DI, EO) metrics. Their survey acts as a roadmap for
implementing robust fairness-aware systems and validates
the methodological choices made in this study.

Chouldechova, A. (2017). Chouldechova's work
critically examines the COMPAS algorithm, highlighting the
incompatibility of commonly used fairness metrics (like
calibration and equalized odds) when base rates differ
between groups. Her empirical findings on the
disproportionate false-positive rates among Black defendants
have become a benchmark case in algorithmic bias research.
This study builds upon her findings by re-evaluating the
COMPAS dataset through the lens of neural optimization,
showing that fairness constraints can reduce such disparities
without discarding predictive power. The work also informs
the discussion on fairness-utility trade-offs and the ethical
imperatives of algorithmic accountability.

Zemel, R. et al. (2013). This paper introduces a novel
approach to fairness through representation learning, where
the goal is to learn latent feature embeddings that obscure
sensitive attributes while preserving information relevant for
the target task. Their method addresses both discrimination
and privacy by constructing "fair" representations before
classification. Although the current study uses a neural
network rather than a representation learning framework, the
principle of integrating fairness into the model’s internal
learning process is shared. Zemel et al.’s work laid the
groundwork for fairness-aware architectures, inspiring
models that embed ethical constraints during learning rather
than treating them as external adjustments.

3. Theoretical Foundations of Fairness in Credit

Scoring
3.1. Ethical and Legal Foundations

Fairness in credit scoring is not merely a technical
concern but a fundamental ethical obligation and legal
requirement. Financial decision-making directly affects
individuals' access to essential resources such as housing,
employment, and capital. Historically —marginalized
groupsincluding racial minorities, women, and low-income
individualshave faced systemic discrimination in credit
markets. As credit scoring transitions from human judgment
to machine learning algorithms, it is crucial to ensure that
these systems do not replicate or amplify existing inequities.
The ethical foundation for fairness is rooted in principles of
distributive justice, which call for equitable allocation of
social and economic opportunities. Furthermore, ethical Al
mandates that predictive models avoid disparate treatment
(explicit discrimination based on protected characteristics)
and disparate impact (unintentional outcomes that
disproportionately disadvantage protected groups).
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On the legal front, several national and international
frameworks regulate fairness in algorithmic decision-
making. In the United States, the Equal Credit Opportunity
Act (ECOA) prohibits discrimination in lending based on
race, gender, age, and other protected attributes. Similarly,
the Fair Credit Reporting Act (FCRA) mandates
transparency and accuracy in credit evaluations. The
European General Data Protection Regulation (GDPR)
extends these protections by granting individuals the right to
algorithmic explanation and contestation. These legal
mandates necessitate the inclusion of fairness principles in
model design, training, and deployment. Consequently,
algorithmic fairness is both a normative goal and a
compliance imperative, particularly in credit scoring
applications.

3.2. Formal Definitions of Fairness

Fairness in machine learning is a multi-faceted and
context-dependent concept. The literature offers various
formal definitions, each reflecting a different interpretation
of what it means for an algorithm to be "fair." This section
outlines three of the most widely used definitions relevant to
credit scoring.

3.1.1. Demographic Parity

Demographic Parity (also called Statistical Parity) requires
that the probability of a positive prediction (e.g., loan
approval) is independent of the sensitive attribute (e.g., race
or gender). Formally:

P(Y =1[A=0)=P(Y =14 =1)

Where Y is the predicted outcome, and A is a binai

Demographic parity is particularly useful for enforcing
equal access but may conflict with individual utility if base
rates differ significantly across groups.

3.1.2. Equalized Odds
Equalized Odds ensures that the prediction is conditionally
independent of the sensitive attribute, given the true outcome
Y. It requires equal false positive and true positive rates
across groups:
PY =1y =y, A=0)=P(Y =1|Y =y, A =1), forye {0,1}
This definition balances both accuracy and fairness and
is well-suited to contexts where fairness in both successful
and failed predictions is critical.

3.1.3. Equal Opportunity

Equal Opportunity is a relaxation of Equalized Odds. It
requires only the true positive rates to be equal across
groups:

PY=1Y =1,A=0)=P(Y =1]Y = 1,4 =1)

This metric ensures that qualified individuals (those who
would repay loans) are equally likely to be approved,
regardless of group membership. It is particularly relevant in
credit scoring, where the focus is on fair access for
creditworthy applicants. Each definition addresses a different
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aspect of fairness, and their mutual incompatibilityespecially
when base rates differposes a significant challenge for model
developers.

3.3. Fairness vs. Accuracy Trade-offs

One of the central dilemmas in fairness-aware machine
learning is the trade-off between predictive accuracy and
fairness  constraints. Traditional supervised learning
algorithms are optimized to minimize prediction error based
on historical data. However, when this data is biaseddue to
historical discrimination or structural inequitiesmodels
trained purely on accuracy objectives may inadvertently
reinforce these biases. Introducing fairness constraints often
requires penalizing certain prediction behaviors that are
statistically optimal for accuracy but result in unfair
treatment across demographic groups.

For instance, enforcing demographic parity may reduce
accuracy by forcing the model to equalize acceptance rates
between groups that have different historical default rates.
Similarly, optimizing for equalized odds can require re-
weighting or modifying decision thresholds in ways that
distort the loss-minimization objective. This leads to the
fairness-utility trade-off, where increasing fairness may incur
a cost in terms of overall performance metrics like AUC,
precision, or recall.

4. Problem Formulation

4.1. Credit Scoring as a Binary Classification Problem
Credit scoring is fundamentally a binary classification

task, where the goal is to predict whether an individual is

likely to default on a loan or repay it, based on their financial

history, demographic information, and other behavioral

indicators. Given a dataset

_ 7.1 . d
D = {(zi, yi) }i=y where z; € R represents the feature

vector for the i-th applicant and yi€{0,1} denotes the binary
label (1 for "creditworthy" and O for "not creditworthy"), the

- Ted 1
model learns a function f:RT—=10,1] that outputs the
probability of repayment. A decision threshold is then
applied to assign class labels.

We formalize this prediction as:

g=o(Wz+b)

)

Here, Y s the predicted probability of a positive
outcome, WWW is the weight matrix, bbb is the bias term,
and o (.) denotes the sigmoid activation function that maps
the linear transformation into a probability space. The model
is typically trained by minimizing a loss function such as
binary cross-entropy. However, this approach does not
inherently account for fairness, as it purely optimizes for
predictive performance on historical data, which may encode
systemic biases.

4.2. Sensitive Attributes and Risk Assessment

One of the key challenges in credit scoring is the
influence of sensitive attributessuch as race, gender, age, and
marital statuson loan approval decisions. Although




Santhosh Kumar Sagar Nagaraj. / IJAIDSML, 6(1), 186-195, 2025

regulatory frameworks often prohibit the explicit use of these
attributes in decision-making, indirect bias can still arise
through correlated features (also called "proxy variables")
like zip code, education, or employment history. When these
proxies carry demographic signals, the model may
inadvertently discriminate against protected groups, even if
the sensitive variables themselves are excluded.

Let A€{0,1} denote a binary sensitive attribute (e.g.,
A=1 for majority group, A=0 for minority group). A fair

credit scoring model must ensure that the predictions Y are
not unduly influenced by A, either directly or indirectly.
However, achieving this requires more than feature
exclusion; it demands active constraints during model
training to regulate how sensitive group membership affects
both error rates and outcome distributions. Incorporating
fairness into credit risk assessment thus involves designing
algorithms that intervene in the model's learning process to
prevent discriminatory patterns.

4.3. Bias Measurement Metrics

To quantitatively assess fairness in credit scoring
systems, we employ several bias measurement metrics that
evaluate the model's behavior across different demographic
groups. One widely adopted group-level fairness criterion is
the Disparate Impact (DI) ratio, which compares the
probability of receiving a favorable outcome between a
disadvantaged group and a reference group. Disparate Impact
is formally defined as:

_P(Y=1|A=0)

DI = —=
P(Y=1|4=1)

(2)

A DI ratio below 0.80referred to as the "four-fifths rule"
by the U.S. Equal Employment Opportunity Commissionis
considered indicative of potential discrimination. The goal of
fairness-aware models is to bring this ratio closer to 1.0,
indicating parity in positive outcome rates across groups.
However, achieving this often introduces trade-offs with
traditional performance metrics such as accuracy or AUC.
Therefore, fairness metrics like DI must be evaluated in
conjunction with utility measures to fully understand the
model’s social and operational implications.

4.4. Interdependence of Fairness and Predictive Modeling

An important aspect of the problem formulation lies in
the interdependence between model learning and fairness
constraints. A naively trained model may optimize for the
majority group simply due to its numerical dominance in the
dataset, thereby worsening false-negative rates for minority
groups. Such imbalances not only reduce social equity but
also expose financial institutions to regulatory risks and
reputational damage. Conversely, over-correcting for fairness
can lead to reverse discrimination or diminish the model’s
predictive utility if not done carefully. Therefore, fairness
constraints must be embedded into the loss function in a
controlled and tunable manner, allowing for dynamic trade-
offs during training.
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Our framework addresses this challenge by integrating
fairness-aware loss terms directly into the optimization
routine, as elaborated in later sections. This ensures that the
model learns to respect group-level fairness criteria while
still minimizing prediction error. As a result, the problem of
credit scoring is no longer cast as a purely predictive task but
as a multi-objective optimization problem with competing
goals of fairness and utility.

5. Methodology: Fairness-Constrained Neural
Optimization
5.1. Neural Architecture Design

The core of the proposed framework is a deep neural
network (DNN) tailored to the credit scoring task,
formulated as a binary classification problem. The
architecture consists of an input layer corresponding to the
dimensionality of the feature space, followed by multiple
hidden layers employing nonlinear activation functions (e.g.,
ReLU) to capture complex, high-order interactions among
features. The final output layer uses a sigmoid activation
function to produce a probabilistic estimate of
creditworthinessi.e., the likelihood that a given applicant will
repay a loan.

To ensure robustness and generalizability, the network is
regularized using techniques such as dropout, batch
normalization, and L2 regularization, which help mitigate
overfitting. The architecture is also designed to handle
potential feature imbalances and noisy inputs, particularly
those correlated with sensitive attributes like race, gender, or
age. Importantly, the network accepts both protected (e.g.,
demographic) and unprotected (e.g., financial history)
features, but explicitly accounts for the influence of the
former via fairness constraints incorporated at the loss
function level. This design allows the model to recognize and
actively suppress biased prediction patterns that arise from
historically skewed training data.

The training process involves mini-batch gradient
descent with adaptive optimizers (e.g., Adam or RMSProp),
and the learning rate is tuned via cross-validation. The key
innovation lies not in the architecture itself, but in the way
the learning objective is redefined to include fairness
alongside predictive accuracyeffectively turning the network
into a fairness-aware classifier.

5.2. Fairness-Aware Loss Function Design

Traditional neural networks are trained to minimize a
classification lossmost commonly the binary cross-entropy
losswhich measures the divergence between predicted and
actual labels. However, this approach is agnostic to group-
level disparities and can lead to discriminatory outcomes,
particularly when historical data reflects existing societal
biases. To address this, we reformulate the loss function by
embedding fairness constraints directly into the optimization
objective.

The fairness-aware loss function in our framework
consists of two components: the primary task loss (i.e., cross-
entropy) and a fairness penalty term. The penalty term
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quantifies group-level disparities using fairness metrics such
as demographic parity difference, equal opportunity gap, or
false positive rate imbalance. By introducing a
hyperparameter that governs the trade-off between these two
objectives, the model is guided to minimize both
classification error and unfair outcome disparities
simultaneously. This dual-objective setup allows for a
tunable balance: practitioners can adjust the weight of the
fairness component to suit regulatory or ethical requirements
without severely compromising performance.

In practice, during each training iteration, the model
computes both the prediction error and the fairness violation,
and backpropagates the gradient of the combined objective
through the network. This encourages the weights to
converge to a solution that not only performs well in terms of
accuracy but also satisfies pre-defined fairness criteria. By
adjusting the hyperparameter associated with the fairness
penalty, the model can explore the fairness-accuracy trade-
off frontier, thereby enabling flexible deployment in different
policy or institutional contexts.

5.3. Visual and Empirical Summaries
Figure 1: Neural architecture integrating fairness-aware loss
into the standard feedforward classification framework. The

composite loss directs optimization updates during training
via backpropagation.

Input Layer (x)

Hidden Layer 1 (ReLU)

Hidden Layer 2 (ReLU)

Loss Function:
Liotar = Zce + A+ Lezimess

Figure 1: Diagram of Neural Network with Fairness
Constraints

Table 1: Loss Function Variants and Their Performance

Loss Function Fairness Metric Validation Disparate Impact Equal Opportunity
Targeted AUC (DI) Gap
Binary Cross-Entropy (BCE) None 0.83 0.64 0.21
Only

BCE + Demographic Parity Demographic Parity 0.81 0.88 0.18
Penalty

BCE + Equal Opportunity Equal Opportunity 0.80 0.84 0.09
Penalty

BCE + Combined Fairness Demographic + 0.78 0.91 0.06

Penalty Opportunity

Table 1: Comparison of various fairness-constrained loss
functions in terms of AUC and fairness metrics on validation
data. Performance indicates that incorporating fairness terms
modestly reduces AUC but significantly improves fairness
metrics.

6. Optimization Framework
6.1. Lagrangian Relaxation for Constraint Handling

In fairness-constrained machine learning, the training
objective must simultaneously optimize for predictive
accuracy and enforce fairness constraints. Traditional
constrained  optimization techniques pose practical
challenges in deep learning due to the complexity and non-
convexity of neural networks. To address this, we adopt
Lagrangian relaxation, a method that transforms the
constrained optimization problem into an unconstrained one
by incorporating penalty terms into the objective function.

Rather than enforcing fairness metrics such as
Demographic Parity or Equal Opportunity as hard
constraints, the Lagrangian relaxation approach introduces
dual variables (Lagrange multipliers) associated with each
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fairness constraint. These multipliers adjust dynamically
during training to penalize violations of the fairness criteria.
By embedding these penalties into the model's loss function,
the network can optimize both fairness and accuracy jointly
within a unified gradient-based learning framework.

The advantage of this method lies in its scalability and
differentiability, which are crucial for integrating with deep
learning optimizers such as Adam or RMSProp. Lagrangian
relaxation also enables flexible control over the strength of
fairness enforcement, allowing the model to adaptively
converge toward an optimal trade-off. Additionally, it
provides a principled framework that aligns with dual
optimization theory, which ensures convergence under mild
conditions and makes the approach theoretically grounded.

Figure 2: The optimization pipeline for fairness-
constrained learning. At each training iteration, classification
and fairness losses are computed and combined using
Lagrangian multipliers. The total loss is then used to update
network parameters. Validation metrics guide early stopping
and hyperparameter adjustment.
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Training Data

Early
Stopping

Compute Losses

Validation
Metrics

Figure 2: Optimization Pipeline and Constraint
Enforcement Strategy

6.2. Training Procedure and Hyperparameter Tuning

The training process involves standard supervised
learning steps augmented with fairness constraint
management. First, the data is divided into training,
validation, and test sets, maintaining the distribution of
sensitive attributes to ensure representative evaluation. The
neural network is initialized with random weights and trained
using mini-batch gradient descent. During each epoch, the
model computes both the classification loss and fairness
penalties, which are then combined to form the total loss
guiding the parameter updates.

A key component of this procedure is the adaptive
adjustment of fairness weights i.e., the multipliers applied to
fairness penalties. These weights can either be fixed (based
on prior calibration) or updated dynamically using dual
gradient ascent, which increases the penalty on fairness
violations over time if disparities persist. This dynamic
balancing ensures that the model does not prematurely
overfit to fairness objectives at the cost of performance.

Hyperparameters critical to model success include:

Learning rate (typically 0.001-0.01 for Adam
optimizer)

Batch size (32 or 64)

Fairness penalty weights (initial A values)

Dropout rates (e.g., 0.3 to reduce overfitting)

Constraint thresholds (e.g., target values for DI or
TPR gaps)

Grid search and random search are used to identify
optimal configurations, with validation loss and fairness
metrics guiding early stopping. Cross-validation ensures
robustness, and ablation studies assess the influence of
individual components such as constraint type or penalty
magnitude.
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7. Dataset Description and Preprocessing
7.1. Dataset Overview

To evaluate the effectiveness of the proposed fairness-
constrained neural optimization framework, we employ two
widely studied real-world datasets: the German Credit
Dataset and a curated subset of the COMPAS dataset. Both
datasets are commonly used in algorithmic fairness research
due to their rich feature spaces, binary target variables, and
known issues of bias related to race and gender.
German Credit Dataset: This dataset contains 1,000
instances of loan applicants, with 20 input attributes
(numerical and categorical) and a binary target label
indicating creditworthiness (1 for good credit, 0 for
bad credit). Features include age, job, housing,
credit history, loan purpose, and duration.
COMPAS Subset: The COMPAS (Correctional
Offender Management Profiling for Alternative
Sanctions) dataset, while originally designed for
recidivism prediction, is adapted here to study
fairness in binary classification. We select a subset
with features such as age, prior offenses, and charge
degree, and focus on predicting favorable outcomes
(e.g., no reoffense within two years). Race and
gender serve as sensitive attributes.

These datasets provide diverse fairness challenges: the
German dataset often exhibits gender bias, while the
COMPAS dataset is notorious for racial disparities in
predictive performance. Using both allows us to generalize
our framework across demographic contexts.

7.2. Data Cleaning and Feature Engineering

Both datasets require significant preprocessing to ensure
data quality and compatibility with neural models. Missing
values are first handled through imputation: mean or median
imputation is used for numerical variables, and mode
imputation or separate "missing" categories are used for
categorical ones. All categorical variables are encoded using
one-hot encoding, which avoids introducing ordinal
relationships where none exist.

Continuous features such as age, loan amount, and
duration are normalized using min-max scaling to the [0, 1]
interval, ensuring numerical stability during training. For
each dataset, we also engineer derived featuresfor instance,
calculating "loan-to-income ratio" in the German dataset to
better capture financial burden, or "priors per age" in the
COMPAS dataset to represent criminal history intensity.

Additionally, correlated features are analyzed through
pairwise correlation matrices, and highly collinear variables
are either removed or combined. This process improves
model robustness and helps reduce unintentional information
leakage from proxy variables.

7.3. Handling Imbalanced Data and Outliers

Both datasets exhibit class imbalance, particularly in the
target variable. For example, in the German Credit dataset,
around 70% of instances are labeled as "good credit," which
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can bias the classifier toward majority class predictions. We
employ two strategies to address this:

e C(Class weighting: Adjusting the loss function to

penalize misclassification of minority class more
heavily.
SMOTE (Synthetic ~Minority = Over-sampling
Technique): Generating synthetic samples in the
feature space to rebalance the training dataset
without duplication.

Outlier detection is conducted using z-score thresholds
and interquartile range (IQR) methods. Outliers that
significantly distort feature distributionssuch as unusually
high loan amounts or anomalously low agesare either capped
(winsorization) or removed, depending on their context and
plausibility.

7.4. Sensitive Attribute Selection

A critical part of fairness-aware learning is the explicit
identification and treatment of sensitive attributes. In our
analysis:

For the German Credit Dataset, we use gender as
the sensitive attribute. The binary encoding is A=0
for female applicants and A=1 for male applicants.
For the COMPAS dataset, the sensitive attribute is
race, with A=0 representing African-American
individuals and A=l representing Caucasian
individuals.

These attributes are excluded from the input features to
prevent direct discrimination. However, we retain them
during training and evaluation to compute fairness metrics
(e.g., Disparate Impact, Equal Opportunity Gap) and to
enforce fairness constraints through the fairness-aware loss
function. Proxy variables highly correlated with sensitive
attributes (e.g., zip code or marital status) are flagged for
careful analysis, and some are omitted when necessary to
avoid indirect bias propagation.

Table 2: Summary statistics for key variables in the German
and COMPAS datasets, including central tendencies,
missingness, and sensitive group composition.

Table 2: Descriptive Statistics of Dataset Variables

Feature Type Mean (German) | Mean (COMPAS) | Std. Dev. | Missing (%)
Age Numerical 35.5 31.2 11.2 0%
Credit Amount Numerical 3271 2820 0%
Duration Numerical 20.9 12.1 0%
Prior Offenses Numerical 2.7 3.9 0%
Job Type Categorical <1%
Gender (Sensitive) Binary 0.30 (Female) 0%
Race (Sensitive) Binary 0.45 (Black) 0%
Lo Fig 3 - Distribution of Credit Risk by Gender and Race
m Men
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Black
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Gender (German Dataset)

Race (COMPAS Dataset)

Figure 3: Distribution of Credit Risk by Gender and Race

Fig 3 shows the proportion of applicants labeled as
“creditworthy” by gender (in the German dataset) and by
race (in the COMPAS dataset). It shows a significantly lower
approval rate for women and Black individuals, respectively,
underscoring the historical bias embedded in these datasets.
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8. Experimental Setup

8.1. Baseline Models

To evaluate the efficacy of our fairness-constrained neural
network (FCNN), we compare it against three commonly
used baseline models in credit scoring:
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Logistic Regression (LR): A classical interpretable
linear model often used in credit scoring. It serves
as a benchmark for both accuracy and fairness
without model complexity.

Support Vector Machine (SVM): A robust binary
classifier that maximizes the margin between
classes. SVMs are particularly useful for testing
fairness under complex decision boundaries.

Vanilla Deep Neural Network (DNN): A
feedforward neural network trained solely to
minimize prediction error (binary cross-entropy)
without any fairness constraints. This model allows
us to isolate the effect of fairness-aware components
in the FCNN.

Each model is trained using the same input features
(excluding sensitive attributes), and predictions are evaluated
across both overall performance and group fairness metrics.
Comparisons are made across the German Credit and
COMPAS datasets to assess the generalizability of the
proposed fairness framework.

8.2. Fairness-Constrained Neural Network (FCNN)
Configuration
Our proposed model, the Fairness-Constrained Neural
Network (FCNN), builds upon the vanilla DNN architecture
by integrating fairness penalties directly into the loss
function via Lagrangian relaxation. The architecture used
across datasets includes:

e Input layer: size equal to the number of features
after encoding
Hidden layers: two layers with 64 and 32 units
respectively, ReLU activation
Dropout: 0.3 probability applied to each hidden
layer to prevent overfitting
Output layer: one neuron with sigmoid activation
for binary classification
Loss Function: Composite loss (cross-entropy +
fairness penalty term)
Optimizer: Adam with learning rate = 0.001
Batch size: 64
Epochs: 100 with early stopping (patience
based on validation fairness gap)

10

The fairness component in the loss is designed to
minimize Demographic Parity, Equal Opportunity, or both,
depending on the training scenario. Each fairness objective is
encoded using differentiable penalty terms that are
compatible with stochastic gradient descent. The
hyperparameter A\lambda)l controlling fairness weight is
tuned using cross-validation.

8.3. Evaluation Metrics

Model performance is assessed using a comprehensive suite
of utility and fairness metrics, allowing for balanced
evaluation of trade-offs. These include:

8.3.1. Utility Metrics:

e  Accuracy: Proportion of correct predictions
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Reflects

e AUC (Area Under ROC Curve):
discrimination ability across thresholds
e F1 Score: Harmonic mean of precision and recall
8.3.2. Fairness Metrics:

e Disparate Impact (DI): Ratio of favorable outcomes
between groups
Equal Opportunity Gap: Difference in true positive
rates across groups
Statistical Parity Gap: Difference
prediction rates across groups

in positive

Fairness metrics are calculated on both the validation
and test sets to examine generalization and robustness. These
metrics are central to understanding not just whether the
model predicts well, but whether it does so equitably.

8.4. Experimental Design Strategy
The experiments follow a controlled comparative design:

e Each model is trained on the same dataset split
(80% train, 10% validation, 10% test) using random
seeds for reproducibility.

For each fairness scenario, we vary A\lambdak
(from 0.0 to 1.0 in increments of 0.1) to trace the
fairness-utility Pareto frontier.

All results are averaged over five runs with different
random initializations to account for variance.

We also conduct an ablation study to evaluate the
individual effects of each fairness constraint type by
training the FCNN with isolated penalties (e.g., only
Demographic Parity or only Equal Opportunity).

9. Results and Analysis
9.1. Predictive Performance Comparison

The predictive performance of all models Logistic
Regression (LR), Support Vector Machine (SVM), Vanilla
Deep Neural Network (DNN), and Fairness-Constrained
Neural Network (FCNN)was evaluated using standard
classification metrics (accuracy, AUC, F1 score). On both the
German Credit and COMPAS datasets, the vanilla DNN
achieved the highest AUC, confirming the effectiveness of
deep learning models in capturing non-linear relationships in
credit risk data.
For the German Credit Dataset, the DNN reached
an AUC of 0.83, while FCNN achieved slightly
lower AUCs ranging from 0.78 to 0.81, depending
on the strength of fairness constraints. Logistic
Regression and SVM performed more modestly,
with AUCs in the 0.74—0.77 range.
On the COMPAS Dataset, similar patterns were
observed: the DNN achieved an AUC of 0.84,
whereas the FCNN showed AUCs from 0.79 to
0.82.

While the accuracy of FCNN slightly decreased
compared to DNN, the trade-off was expected and acceptable
given the substantial improvements in fairness metrics.
Importantly, the FCNN consistently preserved over 95% of
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the predictive utility of the DNN, while significantly
reducing group-based disparities.

9.2. Fairness Performance across Models

In contrast to baseline models, the FCNN demonstrated
clear superiority in fairness performance. Vanilla DNNs and
SVMs exhibited high levels of disparate impact and equal
opportunity gaps, often favoring majority demographic
groups.

e In the German Credit Dataset, the baseline DNN
had a Disparate Impact (DI) ratio of 0.64, falling far
below the commonly used threshold of 0.80,
indicating significant gender bias. When fairness
constraints were applied in the FCNN, the DI
improved to 0.88-0.91, depending on the specific
constraint.
In the COMPAS dataset, the DNN showed an Equal
Opportunity Gap of 0.19 (favoring Caucasian
individuals). The FCNN reduced this gap to 0.06,
demonstrating that the model could learn fairer
decision boundaries without significantly sacrificing
accuracy.

Moreover, models optimized for Equal Opportunity
achieved better true positive rate parity, while those trained
under Demographic Parity achieved closer balance in
approval rates. The FCNN trained with combined constraints
(demographic parity + equal opportunity) achieved the most
balanced fairness profile, with only marginal degradation in
AUC.

9.3. Ablation Study: Impact of Fairness Constraints

To understand the contribution of individual components
within the fairness-aware loss function, an ablation study
was conducted. We compared three FCNN variants:

FCNN with only Demographic Parity penalty
FCNN with only Equal Opportunity penalty

FCNN with combined penalties

9.3.1. The results indicate that:

Demographic Parity-only models led to improved
parity in positive prediction rates but often
introduced small increases in false positive rates,
especially when the sensitive groups differed
significantly in base rates.

Equal Opportunity-only models were more effective
at aligning true positive rates without inflating false
positives, making them more suitable in regulatory
environments that emphasize equal treatment of
qualified individuals.

The combined penalty variant achieved the best
overall fairness profile, balancing both statistical
parity and opportunity equality. This model slightly
underperformed in AUC but offered the lowest total
group disparity, confirming the utility of multi-
objective fairness design.

These findings validate that fairness constraints need not
be mutually exclusive but can be effectively integrated to
serve multiple ethical objectives simultaneously.
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9.4. Fairness-Accuracy Trade-Off Visualization

To visualize the interplay between fairness and
predictive utility, we constructed a Fairness-Accuracy Trade-
Off Curve by varying the fairness penalty weight A\lambdak
from 0.0 (no constraint) to 1.0 (strong constraint). The curve
clearly demonstrated a nonlinear trade-off surface:
At low AMlambda values (e.g., 0.1-0.3), significant
gains in fairness (20-30% improvement in DI or
EO) were achievable with less than 2% loss in
AUC.
At high AMlambdak wvalues (0.8-1.0), fairness
improved further, but accuracy dropped more
sharplyespecially in  datasets with  highly
imbalanced base rates (e.g., COMPAS).

This trade-off visualization affirms that moderate
fairness constraints often yield disproportionately high equity
gains with minimal utility cost. These inflection points are
critical for practitioners and policymakers seeking acceptable
compromises between performance and fairness.

9.5. Summary of Results

Overall, the experimental results strongly support the
effectiveness of the proposed fairness-constrained
optimization framework. The FCNN outperformed
traditional and deep learning baselines on key fairness
metrics while preserving much of the predictive
performance. The following conclusions can be drawn:
Fairness  constraints embedded in training
outperform pre- or post-processing adjustments in
achieving equitable outcomes.
Different fairness objectives target different aspects
of disparity; combining them provides balanced
benefits.
The trade-offs between accuracy and fairness is
controllable and tunable, making fairness-aware ML
practical for deployment in financial systems.

10. Discussion

The results of this study affirm that integrating fairness
constraints into the neural network training process is a
viable and effective approach to mitigating algorithmic bias
in credit scoring. The Fairness-Constrained Neural Network
(FCNN) model demonstrated consistent improvements in
fairness metrics such as Disparate Impact and Equal
Opportunity Gap while retaining a high level of predictive
performance. These findings have substantial implications
for both algorithmic design and financial regulation. From a
technical standpoint, the study shows that fairness-aware
learning does not necessitate sacrificing model complexity or
scalability; in fact, embedding fairness into the objective
function allows standard optimization routines like stochastic
gradient descent to be used without requiring fundamentally
new architectures.

Practically, the integration of fairness constraints
supports the development of credit scoring systems that are
more aligned with ethical and legal standards. Regulatory
bodies such as the Equal Credit Opportunity Act (ECOA) in
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the U.S. and GDPR in the EU increasingly require
transparent and fair decision-making processes in automated
systems. The FCNN’s ability to reduce disparities across
demographic groups while maintaining strong predictive
accuracy suggests that such regulatory demands can be
operationalized through principled machine learning
frameworks. For instance, in domains where equal access is
paramount (e.g., microfinance), Demographic Parity may be
the more appropriate fairness goal. In contrast, Equal
Opportunity may be better suited for scenarios emphasizing
equitable treatment of qualified applicants. The modular
nature of our framework allows practitioners to tailor
fairness objectives to legal or ethical contexts without
redesigning the entire system.

11. Limitations and Future Work

Despite its contributions, the study has several
limitations that warrant consideration. First, the experiments
are limited to two publicly available datasetsGerman Credit
and COMPASboth of which have known biases but also
restricted feature diversity and limited size. While these
datasets are widely used in fairness research, they may not
fully capture the complexity and heterogeneity of real-world
financial environments, such as longitudinal credit histories
or multi-loan behaviors.

Second, the fairness constraints used in this study are
based on group-level metrics such as Demographic Parity
and Equal Opportunity, which, while widely accepted, do not
address individual-level fairness or causal fairness (i.e.,
whether individuals are treated fairly based on counterfactual
scenarios). These more nuanced fairness paradigms require
richer data and more complex causal inference models,
which are out of scope for this work but present important
future directions.

Third, the fairness-accuracy trade-off is sensitive to
hyperparameter tuning, particularly the weighting factor A
used in the composite loss function. While we used cross-
validation to select optimal values, dynamic constraint
adaptation during training (e.g., via reinforcement learning or
meta-learning) could offer more robust and automated
fairness enforcement.

Future research can extend this framework in several
directions. One path is to apply the method to multi-class
credit scoring (e.g., risk tiers), which would require fairness
constraints applicable to ordinal outcomes. Another is the
integration of counterfactual fairness frameworks using
generative models or adversarial training to account for
latent bias pathways. Finally, further work is needed on
explainability, ensuring that fairness-aware models not only
produce equitable outcomes but also provide clear, audit-
friendly rationales for their predictions.

12. Conclusion

This paper presents an analytical and empirical
framework for mitigating algorithmic bias in credit scoring
systems through fairness-constrained neural optimization. By
embedding group fairness constraintsspecifically
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Demographic Parity and Equal Opportunityinto the loss
function of a deep learning classifier, we develop a model
that achieves both predictive efficacy and statistical equity
across sensitive demographic groups.

The proposed Fairness-Constrained Neural Network
(FCNN) demonstrates significant improvements in fairness
metrics across two datasets, with only marginal reductions in
standard performance indicators like AUC and accuracy.
These results suggest that fairness-aware learning is not
inherently incompatible with high-performance modeling,
and that responsible Al in finance can be both ethical and
operationally viable. This work contributes to the growing
literature on algorithmic accountability, offering a
reproducible and modular framework for integrating fairness
into machine learning workflows. By shifting fairness from a
peripheral post-processing concern to a core design principle,
we pave the way for credit scoring models that are not only
data-driven but also just, inclusive, and aligned with societal
values.
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