
International Journal of Artificial Intelligence, Data Science, and Machine Learning

Grace Horizon Publication | Volume 6, Issue 1, 174 -185, 2025

ISSN: 3050-9262 | https://doi.org/10.63282/3050-9262.IJAIDSML-V6I1P119

Original Article

From SQL to Spark: My Journey into Big Data and Scalable

Systems How I Debug Complex Issues in Large Codebases

Bhavitha Guntupalli

ETL/Data Warehouse Developer at Blue Cross Blue Shield of Illinois, USA.

Received On: 17/12/2024 Revised On: 27/12/2024 Accepted On: 19/01/2025 Published On: 05/02/2025

Abstract - From a well-lit workshop to the vast, dynamic environment of modern big data systems is like traversing SQL

to Apache Spark. Beginning in the familiar realm of relational databases, regulated information and careful searches

dictated my road forward. But as batch projects needing hoursor even days started to demand growing data volumes, I

realized that traditional SQL systems were insufficient. At that time I asked Spark for help. The transformation was not

erratic. I started to rethink data pipelines, fault tolerance, and distributed computing. Debugging challenging problems in

large-scale Spark systems posed hitherto unmet challenges including tracking lineage using Directed Acyclic Graphs

(DAGs), memory spill management, and cluster performance optimization. I spent days reviewing Spark UI logs to find

how little coding mistakes may seriously affect performance. These encounters sharpened my intuition and made it

obvious that scalable systems demand scalable thinking: build with possible failure in mind, break out jobs for parallel

execution, and often check what you produce. The most important lesson was changing perspectivefrom seeing data

operations as individual SQL queries to seeing they were a part of a dynamic, strong architecture. Today, my Spark path

has enhanced my technological knowledge as well as my engineering abilities in terms of handling uncertainty,

scalability, and simplicity-based change. This links to the development of our cognitive processes in a period when data

grows at hitherto unheard-of speed, transcending simple tool replacement.

Keywords - Big Data, SQL, Apache Spark, Scalable Systems, Debugging, Distributed Computing, Data Engineering,

Codebase Complexity, Performance Optimization.

1. Introduction
SQL has always been the universal tongue in data

engineering. Analytics has been developed for many years

using traditional SQL-based technologies, which have enabled

ETL pipelines and running business intelligence dashboards.

Usually based on relational databases like MySQL or Postgres

or data warehouses like Oracle and Teradata, these solutions

gave dependable performance and simplicity for structured

data and moderate workloads. SQL lets data engineers and

analysts create manageable, unambiguous declarative logic for

analysis, purification, and conversion of data. As businesses

evolved and their online presence grew, the shortcomings of

these conventional technologies became ever more obvious.

The increasing data volume, diversity, and speed have

profoundly changed the topography. Instead of gigabytes,

companies were managing terabytes and petabytes of semi-

structured or unstructured data coming from various

sourcesIoT devices, application logs, social media feeds, and

others. While batch processing with overnight jobs was

inadequate, stakeholders demanded real-time information,

instantaneous alarms, and dashboards displaying current events

rather than historical summaries. Growing needs revealed the

scalability limits of monolithic SQL-based systems, which led

to a significant change towards distributed computing and

contemporary data platforms like Apache Spark.

This move presents new difficulties not only related to tool

exchange but also a question of perspective. Among the most

challenging jobs accessible is navigating and debugging big,

scattered codebases. Unlike traditional SQL scripts in which

faults are usually localized and repeatable individually,

debugging in big data systems includes negotiating execution

plans spread across clusters, concealed dependencies, data

skew, memory management concerns, and non-deterministic

failures. Particularly for programmers transitioning from SQL

to Scala, PySpark, or streaming models using Spark Structured

Streaming or Apache Kafka, the learning curve could be steep.

The initial experience of a practitioner traversing the familiar

SQL domain to the complex and strong domain of Spark-based

scalable systems is attempted to be described in this work. This

will examine the motivations for applying big data

technologies, underline the technical and conceptual

difficulties faced, and provide feasible solutions for main data

pipeline flaws. By means of practical ideas and real-world

examples, this article seeks to elucidate the strategy, thereby

giving engineers a pragmatic viewpoint on a comparable road.

Bhavitha Guntupalli / IJAIDSML, 6(1), 174-185, 2025

175

This content serves as both a guide and a source of inspiration,

whether your thoughts are about the relocation or whether you

are actively working on Spark chores and cluster logs.

Different concepts abound in scalable systems, and knowing

their navigation calls for not only a philosophical but also a

technical transformation.

Figure 1: Debugging Complex Issues in Scalable Big Data

Systems: From SQL to Spark

2. The SQL Era: Simplicity, Strengths, and

Limitations
For many data professionals, the first step into analytics

starts with SQL. It's simple, clear, and strong. SQL's

declarative structure helps analysts and engineers focus on the

intended data retrieval or transformation instead of the

computing effort the system demands. Together with decades

of growth, this abstraction helped SQL to become the main

language for handling and searching structured data.

2.1. SQL-Based Architectures: The Classic Model

Conventional SQL-based systems were developed using

Oracle, SQL Server, Teradata, ormore recentlycloud-native

replacements like Amazon Redshift and Google Big Query

around a central data warehouse. First placed into staging

tables, raw data underwent a sequence of changesjoins, filters,

and aggregationsdone via planned batch processes. Usually

working overnight to ensure reports and dashboards were ready

for the next business day, these were done using lightweight

schedulers like Airflow or DBT or cron tasks. These tools were

primarily batch-oriented. Regular daily pipelines using ETL

solutions such as Informatica or Talend could compile data

from transactional systems, convert the data through intricate

SQL scripts, and then place the final results into analytics-

ready tables. This approach performed effectively for expected

workloads based on either stagnant or progressively changing

data.

2.2. Strengths of the SQL Approach

Going back to the days of SQL, this technology was the best

known to offer certain advantages that made it the go-to data

infrastructure for the beginning of the era:

 Simplicity and Readability: SQL is not hard to

understand and to read. It has a syntax that is very

close to natural language; thus, it is understandable

also by non-engineers.

 Mature Ecosystem: Tools and practices around SQL

have matured for decades. Almost every BI tool

(Tableau, Power BI, Looker, etc.) has no problem

integrating with SQL backends.

 Robust Tooling and Support: In addition to schema

design, indexing and query optimization, SQL engines

offer various features and a rich experience that has

been tested and improved through years of use.

 Transaction Support and ACID Guarantees: SQL-

based databases are unrivaled in their ability to ensure

data integrity, which is a key characteristic of

financial and operational systems.

These qualities helped businesses to base their decisions

on data with minimal engineering effort. Teams could get by

with a few well-written scripts and scheduled jobs to deliver

insights and maintain data hygiene.

2.3. Limitations in the Age of Big Data

However, as organizations have accumulated huge

amounts of data and have required deeper insights at a faster

pace, the weaknesses of SQL-based systems have become

more pronounced.

 Vertical Scaling Constraints: More traditional

databases are scaled vertically, which implies that

they can only gain the capacity to process more by

substituting the existing machines with ones of higher

power (and more expensive). This concept has

financial and practical restrictions.

 Inefficiency with Large Datasets: Complex joins,

particularly if the tables are wide or huge, frequently

lead to long runtimes. Sorting, grouping or

aggregating a large amount of data not only drains the

system resources but also can cause the pipeline to

run very slowly.

 Long and Fragile Batch Jobs: Many ETL pipelines

depend on sequential dependencies for their

operations. If one cron job disappears, the whole

chain will get broken, and the report will not be

delivered on time, which will upset the stakeholders.

 Lack of Real-Time Capabilities: SQL systems did

not have streaming or real-time processing as their

core functionalities during their creation. If anyone

wanted to have fresh and on-demand insights, then

they were forced to use awkward workarounds or pay

a lot for the change of the architecture.

 Operational Blind Spots: SQL scripts are easily

readable but they do not have built-in observability.

To find out where the slowness or the lack of data in

some parts comes from, one needs to dig deeply into

logs or monitor dashboards.

Bhavitha Guntupalli / IJAIDSML, 6(1), 174-185, 2025

176

2.4. Case Example: Marketing Attribution Pipeline

One especially memorable incident from my past pertains

to a marketing attribution project for an internet shop. Every

transaction had to be assigned to the appropriate mix of user

touchpointsemail marketing, social media contacts, referral

programs, etc. Unprocessed data found homes in transactional

databases, site logs, and email marketing systems. We merged

this data using a multi-stage SQL pipeline. Cron duties

watched over the pipeline located on a Postgres data

warehouse. After managing several thousand daily

transactions, the work took twenty minutes initially. As the

business expanded and daily transaction totals surpassed five

million rows, the job began to last several hours. Join

operations using huge session and clickstream tables produced

disk leakage and lock contention even with indexes and query

optimization. Moreover, the restricted observability made the

identification of bottlenecks and such presumption-based

difficulties difficult. The performance dashboards utilized by

sales and marketing leadership suffered as the work routinely

fell short of the morning reporting Service Level Agreement.

The rigidity of the system discouraged iteration. Every

changeincluding changing attribution logicforced the

rebuilding of multiple closely related SQL searches. Analyzing

those modifications required repeating pipeline segments,

copying production data, and depending on no downstream

table failures during the process. Our best efforts

notwithstanding, the architecture had run its course.

2.5. Lessons from the SQL Era

Like many others, this study showed that although SQL-

based systems are ideal for fast prototyping and limited

scalability, they struggle when required to process huge

volumes or provide real-time analysis. Their preferred

monolithic techniques, centralized execution, and strong

coupling turn unfavorable as size and complexity rise. The

knowledge let me appreciate distributed execution engines,

modular design, and improved debugging tools. These

revelations finally inspired me towards Spark and big data

ecosystems, where scalability and observability define the

basic architecture. One would naturally find the SQL age to be

straightforward. It certainly helped me to understand data

modeling, transformation thinking, and the need for clarity.

However, it also underscored the shortcomings of trying to

expand existing systems outside their natural limitationsa

knowledge that motivated research into networked, scalable

data systems.

3. Enter Apache Spark: Embracing Distributed

Processing
About the scalability constraints of traditional SQL

systems, I looked for a platform able to handle the increasing

complexity of our projects and data volume. By then Apache

Spark was a distributed processing engine painstakingly

developed for best speed, scalability, and fault tolerance. Spark

first seemed difficult because of its own paradigms and

programming interfaces; yet, it provided a capacity not

accessible with SQL alone: consistent and quick processing of

enormous volumes of data over a cluster of machines.

3.1. Introduction to Spark: Core Concepts

Once I understood Spark's three main ideas, they totally

revolutionized my mindset about data processing:

 Resilient Distributed Datasets (RDDs): RDDs in

Spark are the core; they are collections of objects that

are distributed and immutable. They allowed active

control over the conversions and the operations

between nodes; however, the cost was increased

syntactic complexity and the need for human

optimization.

 DataFrames and Datasets: These APIs of high order

provide a more organized and declarative way for the

data interaction from DataFrames and Datasets, e.g.,

SQL or pandas. They permitted improvements by

means of the Catalyst query optimizer for the majority

of analytical operations, therefore generating more

output performance than bare RDDs.

 Directed Acyclic Graphs (DAGs): Spark creates a

DAG of execution based on the logical framework of

the transformations instead of actually doing each one

immediately. Spark can make the best use of the

going strategy by exploiting this lazy evaluation

approach, thus lessening the shuffles and focusing the

processes for the best performance.

 Lazy Evaluation: In contrast to SQL or the usual

imperative programming, Spark does not process

anything until an action is performed, for instance,

collect(), write(), or count(). At first, this method was

confusing; however, it turns out to be the best way

Spark saves energy and increases effectiveness.

In sum, these components affected the very concept of

designing a data pipeline. From SQL to Spark, the change was

definitely not simply a change of the language, but it was also

a change in my conceptual understanding of data flow,

memory handling, and execution strategies.

3.2. Adoption Curve: Resistance, Learning, and

Breakthroughs

Right away, my response to Spark was conflicted. Its

prospects excited me on one side; the difficulty of remote

debugging and the unknown APIs terrified me on the other.

Unlike SQL, which typically provides a detailed error message

for failed searches, Spark activities fail in mysterious ways,

including ambiguous stack traces buried in logs, serialization

problems, or executor memory failures. The Spark UI appeared

as alien an interface with its phases, chores, and DAG

representations. Disturbances also caused a loss of

productivity. Originally only just a few lines of SQL, simple

tasks today need many lines of PySpark. The repl-driven

development felt labor-intensive. The feedback loop was slow;

evaluating a modification typically meant executing a complete

Bhavitha Guntupalli / IJAIDSML, 6(1), 174-185, 2025

177

Directed Acyclic Graph (DAG) and waiting several minutes

for results. The pieces started to line up gradually. I began

efficiently cutting recomputation with persist() and cache(). I

became able to maximize partition sizes, spot and prevent

expensive shuffles, and reduce high-scale dependencies.

Originally a mystery, the Spark UI developed into a diagnostic

tool. Explain(), adaptive query execution (AQE), and broadcast

joins provide a more methodical approach to finding

performance problems.

3.3. Migration Process: Translating SQL to Spark Pipelines

Reengineering historical SQL-based ETL systems in Spark is

one of the toughest challenges. The goal transcended just

"converting" the thinking to reconceptualize it using dispersed

concepts. Reengineering of a multi-join SQL script enabled

with PySpark DataFrames integrating transaction, clickstream,

and campaign data. Originally SQL included flattening,

aggregate logic demanding sequential execution, and window

functions including nested subqueries. Spark came forth in

modular stages:

 Ingestion: Raw data originated from Parquet-style

distributed systems like S3 or HDFS.

 Transformations: Every change consisted of a set of

choose(), join(), withColumn(), and groupby()

instructions. These arrange themselves logically with

temporary storage.

 Aggregation and Enrichment: Business logic based

on attribution principles drove sequential

transformations, delaying materialization till needed.

 Output: The finished datasets for the next

investigation were either returned to Delta Lake or

data lakes.

The modular construction improved the testability and

scalability of the pipeline. Moreover, Spark's horizontal

scalability allowed the same reasoning to manage hundreds of

millions of records with little changean attempt inconceivable

in our previous SQL systems.

3.4. Key Learnings: Thinking Distributed

The biggest change by far in working with Spark was

definitely the way of thinking in parallel. Normally, SQL

processing is designed for rows; even if a number of engines

work in parallel, the main conceptual framework still works

sequentially.

 Embrace Data Partitioning: Knowing how Spark

shared data among executors became really crucial.

Adopt data splitting. Longer runtimes and data skew

resulting from less effective partitioning resulted.

Techniques of tailored partitioning improved join and

aggregation performance.

 Design for Fault Tolerance: In fault tolerance

architecture, Spark uses retries and automatically

controls node failures. This changed my viewpoint of

pipeline resilience, checkpointing, and job

idempotency.

 Tune for Performance at Scale: Mastery of the

settings of spark.sql.shuffle.partitions, executor

memory, and broadcast thresholds determines almost

everything about scalable performance. Just as

important now as developing logical reasons is

optimizing cluster resources.

 Decouple Logic into Stages: Instead of making one

large change, I began slicing segment logic into small,

verified pieces. This makes the process of realistic

fault isolation and component repurposing.

4. Debugging in Large-Scale Systems: Key

Challenges
Although Apache Spark presented several difficult and

sometimes disruptive debugging problems, the move from

traditional SQL systems helped improve processing. Errors in

extensively distributed systems are not straightforward. They

might show just under particular data volumes, show

sporadically, or change deep beneath the execution stack over a

worker node network. Over my career, I have found and

developed the ability to overcome several obstacles unique to

large companies.

4.1. Common Issues in Distributed Data Pipelines

4.1.1. Memory Leaks and OOM Errors

A lot of people have trouble remembering things, which

could make it hard to use Spark. Because each executor only

has a certain amount of memory, transformations that don't

work, like huge aggregations or not enough caching, can

quickly run out of memory (OOM). Spark will try to fix these

issues by crashing executors, but it can only do this a few times

before the job stops working. The main group by key()

operation on a field with a lot of data kept making the task fail.

Spark wanted to mix up the keys and store them all in memory,

but this caused memory leaks and other issues. Using

reduceByKey() to combine some of the data before the shuffle

saved RAM.

4.1.2. Skewed Data

When one or more partitions have a lot of data, the results

are skewed and some procedures take a lot longer than others.

This leads to long phases and an uneven allocation of

resources. Many "hot" product IDs made it hard to connect the

transaction logs and product catalog because they happened

millions of times more often than other IDs. Once you saw the

skew using the Spark UI and did salting, which means adding

random suffixes to skewed keys, the burden was evenly split

between the partitions.

4.1.3. Inconsistent Outputs

Distributed systems exhibit nondeterminism depending on

other systems, concurrent writing, or asynchronous writing.

This ambiguity can lead to difficultly replicable mistakes.

Bhavitha Guntupalli / IJAIDSML, 6(1), 174-185, 2025

178

Using operations such as collect() or take() in Spark's

production logic could generate inconsistent results unless

suitably protected with ordering or deterministic

transformations.

4.1.4. Long-Running Stages and DAG Failures

From big changes requiring join, group by, or coalesce, shuffle

operations usually follow. Unoptimized variations of these can

generate long-standing phases, either failing or stopping the

entire process and significant intermediate files. Late in the

job, life failures in Directed Acyclic Graphs (DAGs) caused by

running out of stage retries particularly irritate me.

4.2. Complexity of the Broader Ecosystem

Indeed, it is correct that Spark is very capable but it is rarely

the only component in a data pipeline network in today's

world. The data pipelines that are mentioned consist of a

number of interconnected systems that have their own

interfaces, logs, and failure characteristics:

 Kafka for ingesting real-time event streams

 HDFS/S3 for persistent data storage

 Hive/Delta Lake for metadata and table schema

management

 Airflow for DAG orchestration and job dependencies

 Monitoring tools like Datadog, Prometheus, or custom

dashboards

The integrations create a larger network of observability,

but they also increase the number of places that can cause

failures. A small issue that happens in the Kafka topic

ingestion can cause a delay in the arrival of data, and because

of this, invalid joins may be created, or the report may be

incomplete without your realizing it. There is also a possibility

that Airflow does not understand the reason for the failure of a

Spark job and therefore it continuously retries this until the

problem becomes even worse. Monitoring can show high CPU

usage, but the mystery of why a particular task is not moving

can still be there. Hunting for the problems in this complex

setup is not merely a technical job. It is also like being a

detective.

4.3. Pain Points in the Debugging Process

 Logging Granularity: Although spark logs have a lot

of scattered information that might appear

unorganized, they are quite exhaustive. At the

executor level, errors are then aggregated; therefore, it

is not easy to identify the exact part of the

transformation that is wrong. Extracting the required

information from a gigabyte of files might be a bit

challenging.

 Multilayered Stack Traces: Debugging information

can be very misleading, as failures can be from all

sorts of places, such as user-defined library functions,

external libraries, or even the cluster manager. The

most difficult part of failure is deciding exactly where

the problem has occurred by reading the system traces

and looking at the system metrics.

 Reproducibility: Distributed errors often disappear in

small or localized scenarios, making repeatability the

worst feature. If a job tested on a sample of 100,000

fails on 500 million rows, it might run without a hitch.

Therefore, local debugging becomes impossible, and

the only way is to have extensive test environments.

4.4. Case Scenario 1: The Disappearing Rows

One of our streaming ETL systems found a recurring issue

whereby the final output omitted a small fraction of enhanced

user activity data. Data from Kafka came into the pipeline,

upgraded using Hive reference data, and then was stored on S3.

Weeks of research turned up a discrepancy in a Hive metastore

schema. While a later schema modification created a new

nullable column, the Spark job kept utilizing the same schema

across joins. Spark gently eliminated data not matching the

outmoded schema's join criteria; the change did not produce an

error. Correcting the problem meant changing the Hive

configuration and deleting cached metadata.

Lesson: When interacting with outside table systems, routinely

check schema conformity. Spark's slowness in judgment could

gently highlight variations.

4.4.1. Case Scenario 2: The Skewed Join That Stalled the

Pipeline

One of the dubious problems that arose in a Spark project was

merging historical clickstream data with product information.

While the joint was permanently trapped in manufacturing, it

operated flawlessly in development. Looking at the Spark UI,

after forty minutes, two jobs were still under development

while 198 of the 200 tasks had been completed. According to a

thorough investigation, the two activities managed different

keys; certain campaign IDs had over 10 million data while the

rest had just a few thousand. We solved it by salting the hot

keys and generating bespoke join logic to distribute the data

using a skew join strategy. The running time fell from

practically one hour to just twelve minutes.

Lesson: Look for variations in partition and junction width.

Spark provides ambiguous information; use tools like

df.rdd.glom() map(len) to examine partition imbalances.

5. Debugging Strategies That Work
Large-scale data system debuggingespecially those

developed on Apache Sparkinvolves elements of science,

intuition, and investigative investigation. Defects at scale could

be difficult to identify, gently building under several layers of

abstraction, and well disguised. Dealing with these challenges

requires a mix of observability tools, Spark-specific insights,

framework-agnostic techniques, and a modular and traceable

attitude.

Bhavitha Guntupalli / IJAIDSML, 6(1), 174-185, 2025

179

5.1. Framework-Agnostic Debugging Techniques

These techniques work well on most data systems and

especially in cases when the basic reason is not clear-cut or

when systems comprise several interconnected components.

5.1.1. Binary Search in Pipeline Stages

A divide-and-conquer strategy can save hours instead of

meticulously looking over the whole pipeline. Separating the

pipeline into several phasesdata intake, enrichment, joins,

aggregation, and outputyou can carefully identify the error.

Look at the intermediate outputs at every level; should the

ultimate output be defective, then so should the others.

Determine the beginning point where the data deviates and the

last place the data seems to be true. This approach generally

generates incorrect results or a change of viewpoint and limits

the range of research.

5.1.2. Incremental Testing and Mocking

Doing large-scale projects takes time and money. Create

other smaller test cases with representative piece production

data. Model external systems like Hive or Kafka with local

equivalents or static files. This enables, apart from cluster

operation testing of transforms, solo. Mocking allows you to

replicate edge events, such as null values, nonexistent fields, or

schema incompatibilities, without affecting production data or

settings.

5.1.3. Reconstructing DAGs in Notebooks

Rebuilding DAG (directed acyclic graph) logic in Jupyter

or Databricks notebooks enhances interactive research for

challenging projects. One can view schemas, make small

adjustments, and check intermediate data frames. This helps

you to better appreciate how your code creates execution plans

and enhances troubleshooting. Every action usually reveals

minute such things as mismatched schemas, incorrect join

keys, or unanticipated null propagation by visual inspection.

5.2. Spark-Specific Debugging Techniques

Spark provides its own debugging tools and speed

enhancements. Understanding them can help to prevent

regressions and drastically lower resolution times.

5.2.1. Spark UI and Stage Analysis

Finding performance problems and stage faults calls for

the Spark UI. It clarifies job lengths, memory utilization,

execution guided acyclic graphs (DAGs), and shuffle

operations.

Use it to:

 List ongoing or abandoned initiatives.

 Discover either too much data swapping or uneven

partitions.

 Examine the executor's task distribution.

 Review logs for phases that fail.

This user interface enables you to convert raw data into

insightful analysis, thereby enabling you to respond to

questions like, Why is this phase slow? Which adjustment set

off a shuffle? Are some keys generating more than required?

5.2.2. Broadcast Joins and Shuffle Operations

Join methods will guide the decision on the success or

failure of Spark employment. Effective elimination of

expensive shuffle joins is made possible in small dimension

tables. Spark alone generates tables within a specified

threshold; hand intervention usually produces superior results.

One must be aware of how to apply broadcast joins differently

from shuffle joins and identify instances where the optimizer

makes bad decisions. This procedure tracks broadcast size,

assesses fallback behavior, and controls thresholds.

5.2.3. Understanding Lineage and Caching Behavior

Data lineage is the road data follows during changes.

Knowing lineage allows one to identify the causes of errors

and clarifies surprising outcomes. First of significance is most

certainly cache. Although caching can speed up iterative

processes, inappropriate or overly extensive use may produce

memory leaks or outdated results. Tracking the cached

DataFrames, cases of their invalidation, and necessity for

recalculation following further schema modifications is quite

important. Using cached DataFrames between jobs without

cleaning or renewing them is a typical error producing unequal

results.

5.3. Tooling and Observability

Good debugging demands outstanding observability.

Monitoring tools, log aggregators, and schedulers help to

create the context and telemetry needed for a quick diagnosis.

5.3.1. Log Aggregation Tools

Distributed systems generate several logs. Combining logs and

enabling filtering, pattern detection, and system correlation,

Datadogthe ELK stackElasticsearch, Logstash, Kibanaallows:

.

For Spark, focus on:

 Emphasize out-of-memory problems, stack traces,

task retirement, and Spark's executor logs.

 Driver notes on orchestral mistakes

 Logs of applications showing varying schema or

configuration

Mark notes to increase searchability and traceability using task

IDs, phases, and timestamps.

5.3.2. Profiling and Metrics Tools

Performance profiling tools such as Ganglia and

Prometheus offer time-series metrics that show CPU, memory,

disk, and network usage. They are the data sources that help

you track down resource bottlenecks, the thrashing of

executors, and the overhead of GC.

Bhavitha Guntupalli / IJAIDSML, 6(1), 174-185, 2025

180

Profiling is particularly beneficial for:

 Finding places where memory is being lost or the

stages showing slowdowns

 Analyzing resource saturation during the highest loads

 Matching job performance and infrastructure metrics

Also, reconfiguring metrics dashboards to send

notifications after thresholds are exceeded can allow for issue

resolution to be more proactive.

5.3.3. Airflow and Job Tracebacks

Airflow noms Spark jobs and aids in controlling

dependencies and retries. Airflow’s task logs and DAG

visualizations are vital to grasping job sequences, failure spots,

and retry behavior.

If a job fails:

 Leverage Airflow to locate the upstream dependencies

 Scan through task logs for any parameter mismatches

or environment changes

 Verify that there are no inconsistent data partitions or

that file references are not outdated

In addition, Airflow proves to be an excellent audit history

repository, where the documents are describing when and how

jobs are executed. Root cause analysis thus becomes more

organized.

5.4. Mindset Shifts for Debugging at Scale

Debugging distributed systems requires a most fundamental

change of viewpoint. Often inadequate are traditional, linear

debugging methods. Successful engineers have to adopt

specific cognitive models and adopt a holistic perspective:

 One works between layers of abstraction: Modern

pipelines span multiple layers of reasoning: spark

code, orchestration tools, storage systems, and

metadata libraries. First one has to grasp the

interactions among these parts. A problem can start in

Spark but show up as an Airflow failure or a Hive

schema difference. Good debugging calls for a fluid

navigation of these layersknowledge of log locations,

problem propagation, and tools available at every

level.

 Using clearly visible, modular code: For large

monolithic constructions, there are challenging

diagnoses. Plan your pipelines with modular phases

and well-defined constraints. Every level must be

capable of independent re-execution, observable, and

testable. Modular codes help to isolate errors and

lower the blast radius during revisions. Use consistent

measurements and orderly logging at every phase.

This enables the linking of events across systems and

helps to identify aberrant behavior.

 Inducing traceability: Traceability is the ability to

connect inputs to outputs and changes to results.

Distributed systems demand thoughtful versioning,

schema management, and metadata monitoring.

Among other tools, lineage trackers, Delta Lake, and

Hive Metastore help to maintain this chain of custody.

Traceability advances debugging, compliance,

repeatability, and data pipeline confidence.

6. Scalable Design Principles from the Field
Building scalable data pipelines goes beyond basic code

running. Growing systems manage guarantees of

dependability, performance, maintainability, and adaptation.

Having years experience negotiating real-world Spark

pipelines and large data ecosystems, I have developed a set of

design approaches that routinely generate strong and high-

performance solutions. Fundamentally grounded on knowledge

acquired via production difficulties, trial, error, and

experimentation, these methods handle operational automation,

pipeline logic, architecture, and performance optimization.

6.1. Data Pipeline Principles

6.1.1. Idempotency: The Cornerstone of Reliability

Idempotency basically means that a pipeline can be

executed again safely without any change in the result. This is

very important in distributed systems since the jobs may fail

halfway and thus, they will be retried automatically. However,

in the absence of idempotency, retries can cause the

duplication of data, the increase of the metrics beyond the real

value, or the changing of the downstream states to the wrong

ones.

Some practical examples of idempotency are

 Saving outputs to divided paths according to the

timestamp or business keys.

 Erasing or duplicating output paths before

entering new results.

 Applying merge/upsert logic where possible (for

instance, Delta Lake's MERGE INTO).

6.1.2. Checkpointing and Replayability

In large systems, mistakes are inevitable; checkpoints help

to recover. Spark lets the system recover from the most recent

successful state by enabling checkpointing for structured

streaming. By use of intermediates in batch pipelines, manual

checkpointing allows resuming without requiring all data from

the start to be reprocessed. The preservation of unchangeable

raw data calls for replayability. Running pipelines with past

inputs will thus enable you to duplicate results should the

transformation logic change.

6.1.3. Stateless vs Stateful Transformations

Transformations that do not carry state (like filters or

simple mappings) are by nature very scalable and can be easily

parallelized. Operations that carry state, however (for example,

running totals, sessionization, and deduplication), are more

Bhavitha Guntupalli / IJAIDSML, 6(1), 174-185, 2025

181

challenging to design correctly and need more attention in

order not to bloat memory and to be correct.

Some of the best practices are

 Try to keep transformations as stateless as

possible.

 When stateful logic is absolutely necessary, apply

watermarks and windowed aggregations with

time bounds in streaming pipelines.

 Save state in persistent storage if necessary (such

as Redis or Delta Lake) instead of relying only on

executor memory.

6.2. Codebase Design in Big Data Systems

6.2.1. Layered Architecture

Keep a clear distinction between various layers of your

pipeline code:

 Data Access Layer: Manages input and output

with external systems.

 Transformation Layer: Home of pure, testable

business logic.

 Orchestration Layer: Manages jobs,

dependencies, and retries.

This division not only turns the code into modular, but it also

makes debugging, maintenance, and reuse much easier tasks.

6.2.2. Reuse and the DRY Principle

Data pipelines usually have similar logic in different

domains. Avoid repeating by generalizing the common

transformation patterns into shared utility functions or libraries.

.

For instance:

 Renaming or standardizing of columns

 Handling of null and changing of data type

 Normalization of time zones

 Validation of schema

The reusable logic not only better maintains but also

reduces the incidence of bugs, especially when new data

sources are introduced or business rules are changed.

6.2.3. Testable Pipeline Designs

Unit testing Spark logic is perfectly possibleand, in fact,

necessary. Concentrate on the transformation layer, where non-

random logic can be verified with sample data.

 Unit tests: Confirm specific changes (column

derivatives, filtering logic) by employing very

small DataFrame simulations.

 Integration tests: Measure end-to-end power

over different stages with standard datasets and

temporary storage.

By simulating the outside dependencies, pipelines can be

tested independently for S3, Hive, and Kafka. Each

improvement, however, must be supported by tests that are

integrated into the CI process.

6.3. Performance Tips

6.3.1. Partition Tuning

Usually, default partitioning results in inefficiencieseither

an excess of unimportant jobs (which results in expense) or a

shortage of critical ones (which generates data skew). Spark

permits the repartition () and coalesce () adjustment of partition

counts. With repartition (n), improve parallelism and increase

partitions.

 Use coalesce(n) to reduce partitions when writing so

as to stop the development of too few output files.

 See Spark UI's partition sizes; optimum throughput

requires each job to run between 100 and 200 MB.

Pursue balance.

6.3.2. Avoiding Wide Transformations

Operations such as groupByKey (), distinct(), and wide

join() result in costly shuffles. These operations transfer data

across the cluster and are the main source of latency and

failure.

Mitigation strategies include:

 Substituting groupByKey() with reduceByKey() or

aggregateByKey()

 Opting for broadcast joins if one side is small

 Doing pre-aggregations to limit the amount of data

being processed in the wide operations

6.3.3. Minimizing Shuffles

Shuffles are expensive because they involve disk and network

I/O. Some methods to lessen or even get rid of them are

 Keep in memory intermediate results that are used

again in subsequent stages.

 Pre-sort data if the logic of the downstream requires

ordered data.

 Employ partitioning schemes that match join keys or

output locations.

By utilizing explain () to examine the physical plan, it is

possible to discover unintentional shuffles.

6.4. CI/CD for Data Pipelines

Adopting DevOps methodology in data engineering allows

one to get the same results, efficiently, and faster in building

and launching pipelines.

6.4.1. Automated Tests and Linters

Using version control repositories for data pipeline logic.

Implementing automated testing frameworks (for example,

using PyTest for PySpark) to confirm during each commit of

code that the transformations are correct. Linters and

formatters give the guarantee of code conformity in teams.

Bhavitha Guntupalli / IJAIDSML, 6(1), 174-185, 2025

182

Before merging changes, the following must be done:

 Execute all the unit and integration tests

 Ensure that the schema is compatible

 Highlight the modifications in the transformations that

are no longer in use or in the configuration that has

been changed

6.4.2. Deployment Automation

Using Airflow, Databricks tasks, and CI/CD pipelinesthat

is, GitHub Actions, Jenkins, and GitLab CIcreate, bundle, and

deploy Spark tasks to your orchestrator. Provide dependent

packaging, Spark configuration validation, environmental

impact, and environment automation.

6.4.3. Canary Runs and Data Validation Guards

Run canary activities on a smaller data set before rolling

pipeline changes globally. Review measures in line with

historical standards covering row counts, null rates, and value

distributions.

Check data quality at key points.

 Schema validation: Verify if the column types and

the number of columns are the same as what you have

in your mind.

 Volume checks: Monitor the volume by observing

row counts and distribution changes.

 Value checks: Highlight certain empty cells, repeated

cells, or wrong value verification cells.

These shields facilitate spotting bugs early and increase

pipeline output confidence.

7. Case Study: Building and Operating a Real-

Time Analytics Pipeline
From a luxury in the new digital terrain, real-time

analytics has become a basic need. Businesses have to react

fast to customer behavior, see problems straight away, and

provide operational openness with live dashboards. Using

Apache Kafka, Spark Structured Streaming, and Cassandra a

real-time customer event processing pipeline's design,

implementation, and operation are described in this case study.

Along with the methods applied, it also examines the

challenging issues encountered: backpressure control,

precisely-once processing, schema evolution, and diagnosis of

enigmatic production problems.

7.1. Background: Business Need for Real-Time Insights

On an expanding e-commerce platform, the obvious but

technically challenging business objective was enabling real-

time tracking and analytics of user activity. Marketing teams

wanted real-time access to under five-second latency product

clicks, cart adds, and transactions. The objective was to retain

data quality and completeness while filling a live dashboard

with real-time activity, even under unexpected traffic spikes.

batch processing turned out to be not enough. Even ten to

fifteen minutes delay opportunities for upselling tactics, fraud

detection, and customer service interventions. The team opted

to build a real-time data pipeline guaranteed to be robust in

absorbing, processing, and distributing millions of events every

hour.

7.2. Architecture Overview

To achieve corporate objectives, we've established a streaming

pipeline that consists of the following components:

 Kafka: Kafka was the ingestion layer and gathered

consumer events from many microservices and

browsers via REST and WebSocket APIs, and thus, it

was the ingestion layer for Kafka. Topics were set in

accordance with the type, that is, product view, add to

a basket, and checkout.

 Spark Structured Streaming: Continuous data

processing was supported by Spark Structured

Streaming. The streaming task took over raw JSON

messages and then did the aggregations that it

improved by metadata, i.e., session data and customer

attributes.

 Cassandra: Cassandra was selected as the serving

layer. Due to low-latency read and write operations,

the serving layer was easily accessible by using time-

partitioned tables, thus being able to store the

processed events for the dashboards as well as for

further microservice consumption.

 Dashboard Layer: The React-based user interface

gets near-real-time data from Cassandra; thus, it can

visualize important performance metrics such as user

sessions, conversion funnels, and top products over

certain time periods.

The pipeline was designed on Kubernetes, and Kafka

consumers, along with Spark executors, were autoscaled to

handle traffic spikes.

7.3. Complexities in the Real World

7.3.1. Handling Backpressure

Traffic was pretty up and down, reaching its highest point

around product launches or similar events. We had to ensure

that the system was capable of handling not only slow traffic

but also sudden bursts without breaking down. Even though we

had to be careful while changing the batch interval and the

maximum offset per trigger, Spark Structured Streaming's

backpressure feature was quite useful. Unfit settings could

either limit the system too much and increase the delay or

change it too much and cause memory shortages. At last, we

decided to use adaptive batching which is based on the current

latency and the system condition.

7.3.2. Exactly-Once Semantics

In a streaming setting, precisely-once delivery semantics is

notably challenging. Retries could cause events to be

replayed, copied in Kafka as a result of producer retries, or

partially handled depending on job restarts.

Bhavitha Guntupalli / IJAIDSML, 6(1), 174-185, 2025

183

To enforce exactly-once guarantees:

 Kafka offsets exactly matched successful Cassandra

writings.

 Timestamps and event IDs let the deduplication

system avoid consecutive writes.

 To check previously handled data, an idempotency

layer was set up during the write phase.

Although data integrity was quite important, this required

storing a light weight processing state and tolerating some

write overhead.

7.3.3. Schema Evolution

As the event model evolved, new fieldse.g., referrer_url,

coupon_codewere added even while existing data changed

their format. Dynamic schema parsing and version-sensitive

enrichment methods are needed for control of these

modifications free from interruption. Event generators tagged

payloads with schema versions applied a schema registry

technique. The Spark project applied appropriate deserializing

and transformation logic using these tags. Unknown domains

were forwarded for investigation to a dead-letter queue (DLQ).

7.4. Debugging in Production: A Case of Lag and Dropped

Events

The team saw occasional slowdown and missing

dashboard data following many months of perfect

performance. Tests of spark latency revealed periodic spikes;

some types of events suggested Cassandra writes interrupted

patterns. The uneven character of the problem makes

replication in smaller settings challenging.

7.4.1. Initial Observations:

 Kafka consumer lag remained high for certain

partitions.

 Spark stages appeared to be processing old data

instead of catching up.

 Cassandra writes showed fewer rows than expected

compared to raw Kafka volume.

7.4.2. Root Cause Analysis:

In our investigation of Spark logs, UIs, and config items, we

discovered that the root cause was a combination of two

misconfigurations:

 Watermark Misconfiguration: A fixed watermark

of ten minutes was agreed upon to eliminate late

events. However, due to network congestion, events

were delayed not only beyond this threshold but also

at the peak demand times, and without the knowledge

of the users, they were removed from the delayed

Spark dataset.

 Improper Checkpointing: The checkpoint position

from the last redeployment is the source of residual

state instability. As a result, Spark reprocesses a part

of the previous batches with restarts, thus elongating

the processing time and delaying the intake of new

data.

These issues are each complicated on their own but when

taken together, they conceal the actual source of the problems.

Watermarking issues resulted in data loss, checkpointing

induced latency and decreased processing speed.

7.4.3. Resolution Steps:

 Increased the watermark buffer to 30 minutes, with

monitoring on late event rates.

 Cleaned and re-initialized the checkpoint location

during a controlled downtime.

 Added structured logging for late events and dead-

letter records.

 Introduced metrics to alert on lag duration, partition

staleness, and output row counts.

7.5. Results and Key Learnings

Subsequently, with a major fix, the pipeline became much

more stable. The Kafka lag went back to almost zero, and the

data completeness improved by more than 99%. The dashboard

latency went from an average of 15 seconds to nearly 5

seconds, also under peak loads.

Key Learnings:

 Backpressure handling is a balancing act: The

choice of the batch interval and the offset may hurt

more than help. Essential are the observability and the

adaptive configurations.

 Watermarks need the never-ending adjustment: A

definite period is fine for today but could be wrong

tomorrow if the traffic conditions change. Let them be

flexible and observable.

 Checkpointing is a delicate but primary part: If

there is any corruption in the state or it becomes

inconsistent, errors like duplication, staleness, or data

loss can occur. The clean deployment processes and

the checks of state validation are so important.

 Visibility is your friend: In case of the loss, delay, or

refusal of an event, do not forget to add logs in such a

case. An idea of how many events are in each step

would be great. Without the visibility, the debugging

process can become like that of working from

guesses.

 Design for failure, not perfection. By using dead-

letter queues, retries, and idempotent writes, the

system can absorb transient and silent faults without a

glitch.

8. Conclusion and Reflections
From technical and professional perspectives, the change

from SQL-based systems to Apache Spark-powered

architectures has been transformational. SQL brought a slow

Bhavitha Guntupalli / IJAIDSML, 6(1), 174-185, 2025

184

learning curve, simplicity, and clarity. It gave the ideal basis

for orderly data storage and batch processing. Its boundaries

were obvious, though, as corporate demands for real-time

insights expanded along with data volumes. Spark allowed

scalability and speed unachievable with SQL alone by means

of its distributed computing approach. Still, extra capacity

brought complexity: observability became crucial, debugging

grew diverse, and design decisions had increasingly substantial

repercussions at scale. Based on what I have observed, not just

technicalities but also intuition and pattern identification along

with logs and stack traces, define debugging of major data

systems. Defining data lineage throughout numerous phases,

recognizing erroneous transformations, or optimizing

operations to fit the architecture instead of against it has a

subtle capacity to help with architectural fit. But it's also a

science with exact diagnostic tools, rigorous techniques, and

reproducible foundations. The basic concept is to treat systems

holistically, viewing them not simply as chores or scripts but as

linked processes demanding resilience, observability, and

deliberate design.

For those beginning this road, my counsel is to welcome

the shift with caution and inquiry. Not only the APIs; also

know the fundamental concepts. Experiment with parts all

through development to learn their manufacturing value

without delay. Discover also the holistic view of systems.

Debugging involves not only seeing the poor line of code but

also knowledge of the linkages across inputs, infrastructure,

transformations, and outputsoften in surprising directions.

Researching new paradigms with improved scalability and

developer usability interests me. Native Kubernetes spark

implementations provide elastic computing and enhanced

resource orchestration. Delta Lake brings ACID transactions

and aggregates batch-streaming capability into data lakes.

Real-time feature stores are linking production-level streaming

systems into machine learning pipelines. The process goes

beyond basic tool knowledge to include shifting our view of

data systems in an environment where dependability,

scalability, and speed are critical. Every failure and final

resolution helps us to increase our capacity as engineersnot

only of code but also of systems affecting next decisions.

References
[1] Armbrust, Michael, et al. "Spark sql: Relational data

processing in spark." Proceedings of the 2015 ACM

SIGMOD international conference on management of

data. 2015.

[2] Syed, Ali Asghar Mehdi, and Erik Anazagasty. "AI-

Driven Infrastructure Automation: Leveraging AI and ML

for Self-Healing and Auto-Scaling Cloud

Environments." International Journal of Artificial

Intelligence, Data Science, and Machine Learning 5.1

(2024): 32-43.

[3] Gulzar, Muhammad Ali, et al. "Bigdebug: Debugging

primitives for interactive big data processing in spark."

Proceedings of the 38th International Conference on

Software Engineering. 2016.

[4] Kumar Tarra, Vasanta, and Arun Kumar Mittapelly. “AI-

Driven Lead Scoring in Salesforce: Using Machine

Learning Models to Prioritize High-Value Leads and

Optimize Conversion Rates”. International Journal of

Emerging Trends in Computer Science and Information

Technology, vol. 5, no. 2, June 2024, pp. 63-72

[5] Guller, Mohammed. "Big data analytics with spark."

ISBN-13 (pbk) (2015): 978-1.

[6] Jani, Parth, and Sangeeta Anand. “Compliance-Aware AI

Adjudication Using LLMs in Claims Engines (Delta Lake

+ LangChain)”. International Journal of Artificial

Intelligence, Data Science, and Machine Learning, vol. 5,

no. 2, May 2024, pp. 37-46

[7] Karau, Holden, and Rachel Warren. High performance

Spark: best practices for scaling and optimizing Apache

Spark. " O'Reilly Media, Inc.", 2017.

[8] Chaganti, Krishna Chaitanya. "AI-Powered Threat

Detection: Enhancing Cybersecurity with Machine

Learning." International Journal of Science And

Engineering 9 (2023): 10-18.

[9] Talakola, Swetha. “The Optimization of Software Testing

Efficiency and Effectiveness Using AI

Techniques”. International Journal of Artificial

Intelligence, Data Science, and Machine Learning, vol. 5,

no. 3, Oct. 2024, pp. 23-34

[10] Marra, Matteo. A live debugging approach for big data

processing applications. Diss. Ph. D. thesis, Vrije

Universiteit Brussel, 2022.

[11] Lalith Sriram Datla, and Samardh Sai Malay.

“Transforming Healthcare Cloud Governance: A Blueprint

for Intelligent IAM and Automated Compliance”. Journal

of Artificial Intelligence & Machine Learning Studies, vol.

9, Jan. 2025, pp. 15-37

[12] Tang, Shanjiang, et al. "A survey on spark ecosystem: Big

data processing infrastructure, machine learning, and

applications." IEEE Transactions on Knowledge and Data

Engineering 34.1 (2020): 71-91.

[13] Arugula, Balkishan. “Prompt Engineering for LLMs:

Real-World Applications in Banking and

Ecommerce”. International Journal of Artificial

Intelligence, Data Science, and Machine Learning, vol. 6,

no. 1, Jan. 2025, pp. 115-23

[14] Gulzar, Muhammad Ali. Automated testing and debugging

for big data analytics. University of California, Los

Angeles, 2020.

[15] Abdul Jabbar Mohammad, and Guru Modugu.

“Behavioral TimekeepingUsing Behavioral Analytics to

Predict Time Fraud and Attendance

Irregularities”. Artificial Intelligence, Machine Learning,

and Autonomous Systems, vol. 9, Jan. 2025, pp. 68-95

[16] Damus Ros, Nicolas. "A Business Intelligence Solution,

based on a Big Data Architecture, for processing and

analyzing the World Bank data." (2023).

Bhavitha Guntupalli / IJAIDSML, 6(1), 174-185, 2025

185

[17] Veluru, Sai Prasad. “Bidirectional Curriculum Learning:

Decelerating and Re-Accelerating Learning for Robust

Convergence”. International Journal of Emerging Trends

in Computer Science and Information Technology, vol. 5,

no. 2, June 2024, pp. 93-102

[18] Jambi, Sahar Hussain. Engineering Scalable Distributed

Services for Real-Time Big Data Analytics. Diss.

University of Colorado at Boulder, 2016.

[19] Chaganti, Krishna Chaitanya. "Securing Enterprise Java

Applications: A Comprehensive Approach." International

Journal of Science And Engineering 10.2 (2024): 18-27.

[20] Bhaskaran, Shinoy Vengaramkode. "Integrating data

quality services (dqs) in big data ecosystems: Challenges,

best practices, and opportunities for decision-making."

Journal of Applied Big Data Analytics, Decision-Making,

and Predictive Modelling Systems 4.11 (2020): 1-12.

[21] Al Samisti, Fanti Machmount. "Visual Debugging of

Dataflow Systems." (2017).

[22] Balkishan Arugula, and Suni Karimilla. “Modernizing

Core Banking Systems: Leveraging AI and Microservices

for Legacy Transformation”. Artificial Intelligence,

Machine Learning, and Autonomous Systems, vol. 9, Feb.

2025, pp. 36-67

[23] Zhang, Jian. "Exploring and Evaluating the Scalability and

Efficiency of Apache Spark using Educational Datasets."

(2018).

[24] Allam, Hitesh. “Intent-Based Infrastructure: Moving

BeyondIaC to Self-Describing Systems”. International

Journal of Artificial Intelligence, Data Science, and

Machine Learning, vol. 6, no. 1, Jan. 2025, pp. 124-36

[25] Talakola, Swetha. “Transforming BOL Images into

Structured Data Using AI”. International Journal of

Artificial Intelligence, Data Science, and Machine

Learning, vol. 6, no. 1, Mar. 2025, pp. 105-14

[26] Akil, Bilal. A Comparative Study of Hadoop MapReduce,

Apache Spark & Apache Flink for Data Science. Diss.

2018.

[27] Jabbar Mohammad, Abdul. “Integrating Timekeeping and

Payroll Systems During Organizational

TransitionsMergers, Layoffs, Spinoffs, and

Relocations”. Los Angeles Journal of Intelligent Systems

and Pattern Recognition, vol. 5, Feb. 2025, pp. 25-53

[28] Veluru, Sai Prasad, and Mohan Krishna Manchala. "Using

LLMs as Incident Prevention Copilots in Cloud

Infrastructure." International Journal of AI, BigData,

Computational and Management Studies 5.4 (2024): 51-

60.

[29] Jani, Parth. "Modernizing Claims Adjudication Systems

with NoSQL and Apache Hive in Medicaid Expansion

Programs." JOURNAL OF RECENT TRENDS IN

COMPUTER SCIENCE AND ENGINEERING (JRTCSE)

7.1 (2019): 105-121.

[30] Wolohan, John. Mastering Large Datasets with Python:

Parallelize and Distribute Your Python Code. Simon and

Schuster, 2020.

[31] Datla, Lalith Sriram. “Infrastructure That Scales Itself:

How We Used DevOps to Support Rapid Growth in

Insurance Products for Schools and

Hospitals”. International Journal of AI, BigData,

Computational and Management Studies, vol. 3, no. 1,

Mar. 2022, pp. 56-65

[32] Kupunarapu, Sujith Kumar. "Data Fusion and Real-Time

Analytics: Elevating Signal Integrity and Rail System

Resilience." International Journal of Science And

Engineering 9 (2023): 53-61.

[33] Allam, Hitesh. “Code Meets Intelligence: AI-Augmented

CI CD Systems for DevOps at Scale.” International

Journal of Artificial Intelligence, Data Science, and

Machine Learning, vol. 6, no. 1, Jan. 2025, pp. 137-46

[34] Sangaraju, Varun Varma, and Senthilkumar Rajagopal.

"Applications of Computational Models in

OCD." Nutrition and Obsessive-Compulsive Disorder.

CRC Press, 2023. 26-35.

[35] Bagherzadeh, Mehdi, and Raffi Khatchadourian. "Going

big: a large-scale study on what big data developers ask."

Proceedings of the 2019 27th ACM joint meeting on

european software engineering conference and symposium

on the foundations of software engineering. 2019.

[36] S. S. Nair, G. Lakshmikanthan, J.ParthaSarathy, D. P. S,

K. Shanmugakani and B.Jegajothi, ""Enhancing Cloud

Security with Machine Learning: Tackling Data Breaches

and Insider Threats,"" 2025 International Conference on

Electronics and Renewable Systems (ICEARS), Tuticorin,

India, 2025, pp. 912-917, doi:

10.1109/ICEARS64219.2025.10940401.

[37] R. Daruvuri, K. K. Patibandla, and P. Mannem, “Data

Driven Retail Price Optimization Using XGBoost and

Predictive Modeling”, in Proc. 2025 International

Conference on Intelligent Computing and Control Systems

(ICICCS), Chennai, India. 2025, pp. 838–843.

