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Abstract - Synthetic identity fraud has become one of the most significant problems for financial institutions and 

online services. This is because synthetic identities can use a combination of real and false information, and through 

non-linear relationships and changing patterns, are difficult to identify using conventional procedures. This paper 

will explore Graph Neural Networks (GNNs) in the context of synthetic identity detection, which lies in their potential 

to capture the structure underlying relational data and learn complex network representations. As an adaptive way of 
thinking, GNNs utilise the graph structure to represent the identities of users, transaction histories, and social ties, 

taking into account dependencies and abnormal patterns that are not captured by traditional machine learning 

algorithms. We present our solution that consists of feature engineering, graph construction, and classification using 

GNNs, which shows its efficiency, built on benchmark datasets. There will be an increase in detection, a decrease in 

false positives, and an increase in interpretability. This paper proposes a contribution to the field of fraud detection 

by combining deep learning methods with graph-based learning to achieve a scalable and dynamic algorithm for 

classifying synthetic names in dynamic, networked digital environments. 

 

Keywords - Synthetic Identity, Fraud Detection, Graph Neural Networks, Anomaly Detection, Machine Learning, 

Graph Embedding. 

 

1. Introduction 
Synthetic identity fraud has also become one of the rapidly developing types of financial crime, presenting complex issues 

to credit providers, banks, and other financial entities worldwide. In comparison to the classical situation of identity theft or its 

misappropriation, which presupposes the theft or misuse of already existing personal information of an individual, synthetic 

fraud is more advanced in that it is characterized by the creation of new, fictitious identities based on the combination of pieces 

of some true information and fake details. For example, someone posing as a fraudster might use a valid Social Security 

number in conjunction with a false name, address, or date of birth to create a synthetic identity that appears realistic. [1-3] 
these fake identities are subsequently used to open bank accounts, obtain loans, obtain government benefits or get into all types 

of financial transactions. The worst aspect of synthetic identity fraud is that it can remain undetected for extended periods. 

 

In contrast to stolen identities, where theft can usually be detected by a legitimate owner, synthetic identities will not have 

a back door to report peculiar activity. Moreover, the non-linearity and decentralization of financial and personal data across 

the industry allow them to be used by modern detection systems that rely on rule-based checks or account-level anomalous 

behavior standards, which are not able to detect any suspicious activity. Fraudsters are also able to establish credibility with 

such synthetic identities over time by keeping the fraud small and low-risk, only to later exploit the trust through large and 

high-risk actions, which can cause significant losses to organizations. This mix of stealthiness, elasticity, and its late isolation 

makes it even more critical to establish more sophisticated, analytics-driven methods of combating synthetic identity fraud at 

all levels. 

 

1.1. Evolution of Synthetic Identity Detection 
The detection of synthetic identity fraud has undergone a significant shift in recent years, as fraudsters have become 

increasingly sophisticated and the security processes in place have reached their limits. Initially, financial institutions relied on 

rule-based systems, through which predetermined limits such as unusually high transaction values, sudden increases in activity, 

or clashes of demographic details were used to identify potentially suspicious accounts. Although useful in identifying simple 

anomalies, these static systems were not very flexible, and fraudsters soon figured out how to exploit their various systems to 

ensure that they did not exceed their cutoff points. The subsequent development involved the use of supervised machine 

learning algorithms, such as logistic regressions, random forests, and support vector machines, based on past information on 

fraud to identify accounts as authentic or fraudulent. These models enhanced the accuracy of detection by modeling on the 

structured constructs of activity on the account, the frequency of transactions, and demographic covariates. Nevertheless, their 

application requires labeled datasets, and their inability to resolve cross-boundary relationships affecting multiple entities 
limited the possibility of counter synthetic identities that tend to exist across devices and accounts as well as networks. To 

overcome these weaknesses, scientists started to investigate anomaly detection tools that should detect unusual patterns 

without having large amounts of labeled information.  
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Such unsupervised methods were highly flexible but commonly generated a significant rate of false positives because they 

are unable to distinguish between warranted yet infrequent behavior and real fraud. In recent years, graph modelling has gained 

prominence, utilising relations between entities (such as accounts, devices, IP addresses, and social interactions) as 

interconnected networks. The paradigm enables the identification of fraud rings and concealed correlations that are impossible 

to discover through an on-account analysis. Empowered by this, Graph Neural Networks (GNNs) have emerged as the state-of-

the-art offering a method to combine node features and the relational structure of a graph in order to define context-sensitive 
representations. Such evolution constitutes a transformation of rule-based detection to an advanced, data-driven, and relational 

approach that can support the increasing sophistication of synthetic identity fraud. 

 

1.2. Importance of Graph Neural Networks 
GNNs have become an effective paradigm to model the interconnected, complex data, and therefore, it is particularly effective 

in addressing synthetic identity fraud. [4,5] They are important in this sphere in various aspects: 

 

 
Fig 1:  Importance of Graph Neural Networks 

 

 Capturing Relational Dependencies: Conventional machine learning models do not consider all the associations 

between entities by treating each account or transaction as an independent point in the data. By contrast, GNNs have a 

strong ability to capture relational dependencies, as they represent the relationships in a dataset as a graph, verifying 
its nodes (such as users, accounts, or devices) and edges through interactions like transactions or logins. This 

relational modeling is critical in synthetic identity detection because fraudulent identities are commonly in possession 

of shared resources such as devices, IP addresses or social assets that only emerge when studied in the context of a 

network. 

 Learning Context-Aware Representations: The idea of aggregating information about adjacent nodes is one of the 

strongest advantages of GNNs, as it enables the formation of context-aware representations. An example is that a 

single account can look clean on its own, and, once a connection is made to other suspicious nodes where articles 

were accessed on the same device or there is a large number of transactions at unexpected or uncharacteristic times, 

then the context of the very single account changes and poses a risk. GNNs can reveal these underlying patterns by 

repeatedly relaying information throughout the graph, making the process a more robust and comprehensive way of 

perceiving fraudulent activity. 

 Scalability to Complex Fraud Schemes: Synthetic identity fraud often exhibits long-term dependencies between or 

among various entities, such as networks of accounts with interactions on multiple time scales. In contrast to shallow 

or rule-based models, GNNs can scale their models to connect multifaceted fraud schemes across both local and 

global graph structures. This capability allows them to detect fraud rings and coordinated attacks, which conventional 

systems often fail to detect. 

 Superior Performance in Fraud Detection: Experiments on various models, including scanning credit card frauds, 

insurance claims, and internet payment frauds, have repeatedly demonstrated that GNNs outperform other models in 

terms of accuracy, recall, and overall robustness. By combining structural and attribute-level features, they possess the 

undeniable advantage of synthetic identity detection, as complex patterns and implicit correlations are crucial to the 

success of such systems. 

 

2. Literature Survey 
2.1. Traditional Detection Methods 

Historically, synthetic identity detection has been largely dependent on rule-based, supervised learning, and anomaly 

detection technologies. Rule-based techniques are one of the oldest and simplest, involving the application of predefined 

threshold values or patterns, such as a frequency of transactions, shifting usage, and an exceptionally short account lifespan. 
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[6-9] They are easy to implement and interpret, and quite rigid and may not follow the evolving fraud schemes and advanced 

synthetic identity approaches. Supervised learning techniques, such as logistic regression, decision trees, random forests and 

support vector machines, have been utilized in general terms of classifying accounts as either fraudulent or genuine. These 

models also utilize labeled data and structured data (account activity, demographic data and transaction patterns). Although 

very effective with well-defined and feature-rich data, these methods fail to model complex interrelationships between 

different entities and, as such, cannot detect the synthetic identities that tend to have many accounts or interactions. 
 

2.2. Graph-Based Approaches 
Due to the drawbacks of conventional techniques, graphical methods have become highly popular in detecting fraud. 

These methods represent users, accounts, and transactions as nodes and links in a graph, allowing the identification of intricate 

patterns and interconnections that are otherwise difficult to discern. Graph embeddings, link prediction and community 

detection are frequently applied to detect anomalies and suspicious groups of activity. Other graph-structure preservative 

algorithms, e.g., node2vec, produce low-dimensional representations of graph nodes, enabling better similarity and anomaly 

analysis. Equally, Graph Convolutional Networks (GCNs) utilise the node attributes and topology of a graph in their message 

passing, whereby various pieces of information are aggregated from neighbours to detect minor and decentralised patterns of 

fraud. Such methods are especially well-suited to identifying relational dependencies and, as such, may be effective at mapping 

synthetic identities with coordinated or networked behaviours. 

 

2.3. Applications of GNNs in Fraud Detection 

Graph Neural Networks (GNNs) represent an extension to general graph analysis that allows to learn end-to-end on input 

graph-structured data with both node and edge features. In fraud detection, GNNs have proven useful in various fields, 

including credit card fraud, insurance premium fraud, and Internet payment fraud. As the nodes that provide information are 

neighbors to each other, GNNs can identify very fine and contextual anomalies, hidden correlations and model relationships 

that classical machine learning models might miss. For example, GNN can detect a suspicious group of transactions that share 

common devices, IP addresses, or mediators, which might otherwise seem harmless when viewed in isolation. The distributed 

nature of GNNs has repeatedly demonstrated their superiority to classic models in environments where fraud is exhibited as a 

coordinated effort or organisation between accounts. With the ability of GNNs to seamlessly integrate structural graph features 

and attribute-level features, they show a clear advantage in environments where fraud is highly networked. 

 

2.4. Research Gap 
Although the effectiveness of graph-based methods and GNNs in detecting transaction-level fraud has been demonstrated, 

their limited use in detecting synthetic identity fraud remains a concern. Synthetic identity fraud is necessarily more elaborate 

than ordinary transactional fraud, involving multiple accounts, falsified personal data, and cross-entity interdependencies that 

span long periods of time. Components. The existing studies tend to focus on short-term anomalies in transaction behaviour 

without considering multi-entity relations, as well as time series characteristics of synthetic identities. This space reveals a 

requirement for specialised graph-based models that can model such complex dependencies. The limitation of current 

technology that our approach overcomes is that a GNN-based methodology enables us to detect coordinated, multi-entity fraud 

that would otherwise be difficult or impossible to detect within a large dataset. 

 

3. Methodology 
3.1. Data Collection and Preprocessing 

 
Fig 2: Data Collection and Preprocessing 
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The initial stage of synthetic identity detection involves extracting corresponding information using various systems. 

Records on transactions provide information on financial transactions made by customers, such as deposits, withdrawals, 

transfers, and purchases, which can reveal abnormal trends that may be signs of fraud. [10-12] The information in the user 

profile, such as demographical information, date of account creation and the attributes of identity, can be used to identify real 

accounts versus synthetic ones. Additionally, social connections and network data, such as relationships with other accounts, 

shared devices, or IP addresses, provide valuable context to identify coordinated fraud. Combining these various sources of 
data enables the model to have a comprehensive picture of user activities and potential anomalies. 

 Data Cleansing and Standardisation: Data cleaning and normalisation are essential processes to ensure data 

quality and consistency. Cleaning involves the process of eliminating duplicates, correcting user data errors, and 

removing irrelevant and corrupted data. Normalization transforms numeric characteristics, e.g. amounts of 

transactions or account balances, to a comparable range so that larger-scaled features cannot disproportionately 

impact the process. Such measures aid in noise reduction, model convergence and the comparison of accounts and 

transactions across the board. 

 Subaccount feature engineering: Feature engineering converts the original data into valuable inputs for the model. 

Examples of feature engineering in synthetic identity detection include the frequency of transactions, average 

transaction balance, account age, device usage, and network connectivity. Ratio, time trend, or clustering scores are 

examples of derived features that can point to hidden patterns that denote synthetic or coordinated behavior. The 
features chosen to run the model are well-designed to discriminate between the two accounts. This is because the 

model will perform better in detecting fraudulent accounts. 

 Dealing with Missing Values and Outliers: To avoid bias and enhance the robustness of a model, it is crucial to 

handle missing values and outliers effectively. Missing values may exist as a result of incomplete records or user 

input errors and are usually corrected using imputation methods, which include mean substitution and k-neighbour 

methods. Transactions that introduce more outliers, e.g. unusually large transactions or excessive activity spikes, may 

indicate either real anomalies or fraud. Close attention to the presence and treatment of outliers (by capping, 

transforming outliers, and flagging) prevents an inaccurate model from being taught something different based on 

anomalous data points. 

 

3.2. Graph Construction 

To best represent the relationship between entities in synthetic identity detection, the dataset is treated as a heterogeneous 
graph. A heterogeneous graph is useful for building a complex model of interactions between users, accounts, devices, and IP 

addresses by enabling various types of nodes and edges. This representation is useful for identifying coordinated activities, 

concealed relationships, and trends that are easily undetectable in traditional tabular forms of information alone. The given 

framework can utilise both relational and attribute-based information to identify synthetic identities that are explicitly 

represented in graph form. 

 

 
Fig 3:  Graph Construction 

 

 Nodes: The nodes in the graph symbolize the major objects operating in the system. These are described as users, 

accounts, devices, and IP addresses. Each type of node records a different dimension of the ecosystem: user nodes 

represent demographic and personal data, account nodes represent financial or service accounts, device nodes 

represent hardware identifiers, and IP nodes provide network contextual information. Modeling them as nodes allows 

the system to identify indirect connections and malicious patterns between different entities, multiple accounts on the 

same device/IP address. 

 Edges: Edges define communication or relations between nodes and are important to model any behavioral patterns. 

Edges represent transactions between accounts, logins between users and accounts, or social relationships, such as 

similar contacts or affiliations. Timestamps and the amount of a transaction are two examples of attributes that give a 

graph a time dimension and a quantitative dimension, allowing the graph to distinguish not only with whom one 

interacts but also the nature and strength of that interaction. These edges are useful in disclosing orchestrated 

engagement common to synergetic identity schemes. 
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 Features: Both nodes and edges are augmented with features that characterise their nature. Features may include 

demographics, account age, and historical interaction levels, while edge features may contain information such as 

transaction amount, time/date, frequency, or type of interaction. Integrating such features within the graph enables the 

training of a Graph Neural Network to create meaningful representations that incorporate both structural and attribute-

level data. This enables the model to uncover some of the mild correlations as well as anomalies that can help identify 

synthetic identities that might not be detected through traditional techniques. 
 

3.3. Graph Neural Network Architecture 
Graph Neural Networks (GNNs) are designed to leverage both the features of nodes and the graph structure to capture 

meaningful representations. [13-15] This is done through a Graph Convolutional Network (GCN) that propagates information 

along edges of connected entities to identify synthetic identities. The CNs will be especially appropriate since this will enable 

them to capture complex and context-sensitive relationships, which are suggestive of fraud. The architecture has an input layer, 

several graph convolution layers and an output layer that is customized based on a fraud probability prediction. 

 

 
Fig 4:  Graph Neural Network Architecture 

 

 Input Layer: Node Characteristics: The first layer of GCN uses the node features as the initial representation. 

ACLs are used to provide explicit control of what nodes can do. Each node in the graph —users, accounts, devices, or 

IPs —is assigned characteristics in terms of demographics, account ages, activity history, and device usage. The 

network then uses these characteristics as input data, providing the other layers with sufficient context to learn how 

normal and suspicious activity occurs. This input layer encodes rich node-level information on which message 

passing and feature aggregation operations in the graph are based. 

 Graph Convolution Layers: The heart of the GCN is graph convolution layers, in which the individual nodes update 
their node embedding by aggregating over their neighbors. The update rule is shown as 

 

Here,   
   

 Is the feature vector of a network node v at the level K, N(v) are the nodes adjacent to node v.      is the 

weight matrix to be trained at the level K, and   is an activation function such as ReLU. This integration enables the 

model to recognise the structures and relationships surrounding each node, thereby providing both direct and indirect 

relationships. The GCN can operate on more than a single layer and learn long-range dependencies, which is essential 

to capture synthetic identities across obstacles, devices, and accounts. 

 Output Layer: Classifier softmax: The last section is a layer of softmax that adopts a classifier that predicts the 
chances of a node (account or user) being signed up as a fraud. Finally, the node representations after several graph 

convolution layers have neighbourhood information aggregated to them, and both structural and attribute patterns can 

be generalized. These learned embeddings are converted to probabilities using the softmax function, which allows for 

clear differentiation between real and fake identities. This results in effective synthetic identity detection because the 

GCN end-to-end is learning to assign high probabilities to nodes that are likely to be fraudulent, while normal 

accounts have a low probability under the training data. 

 

3.4. Training and Evaluation 

The training and evaluation of the Graph Neural Network are essential procedures to provide proper synthetic identity 

detection. This procedure entails a feasible loss function as well as selecting an optimization plan together with metrics of 

performance. The model can be trained to acquire meaningful representations of nodes and minimize the errors, but evaluation 
quantifies how well it can distinguish between synthetic and real accounts. 
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Fig 5: Training and Evaluation 

 

 Loss Function: The loss function is used to measure the deviations between the resultant probabilities of fraud and 

the exactly annotated labels. In binary classification tasks, e.g. synthetic identity detection, the binary cross-entropy 

loss is often employed. This loss punishes more for misprediction, with a greater penalty on mispredictions that are 
distant. Reduction of the loss on training motivates the network to give correct probability estimations so that 

fraudulent accounts get high (predicted probabilities) and genuine accounts get low probabilities. 

 Optimization: Optimization is the algorithm of adjusting the weights as a network is trained. Stochastic Gradient 

Descent (SGD) or gradient-based optimizers, including Adam, are commonly used to minimize the loss function. The 

optimizers tune the weights of the GCN layers through methods that calculate gradients to the loss with regard to 

parameters and iteratively adjust them. Learning rate scheduling and weight regularization can also enhance faster 

convergence and avoid overfitting, making them generalize well to unseen data. 

 Metrics: The performance measures gauge the trainability of the sensitive model in recognizing synthetic identities. 

Standard measures are accuracy, precision, recall, F1-score and area under the Receiver Operating Characteristic 

curve (AUC-ROC). Precision indicates how accurately predicted fraudulent accounts are in reality, and recall 

indicates how many actual fraudulent accounts are correctly classified. The F1-score combines precision and recall in 
a balanced measure, and AUC-ROC illustrates the model's potential to classify classes at different thresholds. The 

events defined in these metrics give the model a holistic evaluation in real-life fraud detection situations. 

 

3.5. Feature Set Description 
Regarding synthetic identity discrimination, feature selection and feature design are of critical importance in 

encompassing behavioral as well as structural dynamics, which distinguish between authentic accounts and fake ones. [16-18] 

the first product is the Account Age, and it reflects how long an account has been in existence, usually expressed in terms of 

days. Previous accounts are usually more credible than new ones, because they have a history of transactions and they have a 

track record of behavior. New accounts are more likely to cause concern, especially when they are enrollments in a synthetic 

identity where the number of accounts is created quickly. Transaction Count is another important functionality that measures 

the number of transactions an account is connected to. This metric shows the overall levels of user activity for each account; 

abnormal numbers of transactions per account age can be a hint of abnormal activity.  
 

Accounts that have been used to commit synthetic identity fraud typically exhibit anomalous transaction patterns, with 

either intense periods of transactions to replicate an authentic customer experience or rare periods of transactions to avoid 

detection. Device Type gets the type of device used to log in to the account, including mobile phones, tablets, or desktops. 

Telemetry evidence of fraudulent accounts can reveal signs of device sharing or of switching devices regularly, which may 

also indicate multiple synthetic accounts being accessed with a single device. Social Links quantify the size of linked objects, 

friends, accounts, or contact networks. Synthetic identities have fewer natural social relationships or unnatural groupings than 

real users, which can make this feature a significant source of information for use in graph-based detection. Finally, Average 

Transaction Amount presents the average Transaction value. Deviations of regular transaction size, especially in combination 

with other attributes like the number of transactions and social or interpersonal links, will raise suspicions. Integrating these 

features allows the model to model both individual account features and relationships amongst the accounts comprising the 
network, modeling the dynamic and realistic model necessary to determine synthetic identities. 

 

4. Results and Discussion 
4.1. Dataset Description 

 Synthetic identity detection. Such data contains a dense amount of information to represent the diversity of synthetic 

fraud, including information on user profiles, transaction records, and linkages between accounts and devices. Customer 
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information typically includes demographic data, such as age, gender, and location, as well as account-related attributes, 

including the date of account creation, verification stage, and historical activity. This information is vital in developing 

baseline behavioral trends and the development of deviations that would signify that synthetic identities may be present. 

Transaction records generate in-depth information about financial or service-related activity, including attributes such as 

transaction amount, timestamp, transaction type and frequency. Patterning of activity in these transactions, such as bursts of 

activity or recurrent patterns of transactions, can be very powerful clues to possible fraud. Additionally, the dataset provides 
connection data, including relationships between various entities such as shared devices, IP addresses, and social/network-

based affiliations. Such relationships are especially vital to graph-based methods, as they enable the model to infer 

relationships and interactions that are not apparent in the disaggregated accounts. By transitioning these dependencies to edges 

in a heterogeneous graph format, the framework can take advantage of both structural and attribute-based patterns in 

identifying coordinated or collusive activity. All the benchmark datasets were thoroughly selected to contain both actual and 

synthetic accounts, ensuring they properly represent the level of fraud prevalence and allowing for adequate testing of the 

detection approaches. They are commonly characterized by a mixture of high and low interconnection densities, different 

account age distributions and various transactor behaviours, to reflect real-world pursuits. Such high-quality and 

multidimensional data can be used to extensively test the GNN model and determine whether it can generalise across patterns 

of synthetic identity fraud. Generally, the data set is useful in designing and testing graph-based methods of detection that can 

successfully detect stealthy, compassional fraud designs. 

 

4.2. Experimental Results 
The experimental assessment involves comparing the work of traditional machine learning models, including Logistic 

Regression and Random Forest, with the proposed Graph Convolutional Network (GCN) under conditions of artificial identity 

detection. The findings show that the combination of graph-based structural information and node features outperforms all 

baselines in terms of all measures considered. 

 

Table 1:  Experimental Results 

Model Accuracy Precision Recall F1-score ROC-AUC 

Logistic Regression 0.85 0.76 0.68 0.72 0.81 

Random Forest 0.88 0.79 0.71 0.75 0.84 

GCN 0.94 0.88 0.85 0.86 0.91 

 

 
Fig 6: Graph representing Experimental Results 

 

 Logistic Regression: The Logistic Regression module had an accuracy of 85 percent, precision, recall, F1-score, and 

the ROC-AUC of 76, 68, 72, and 81, respectively. Logistic Regression is a linear classifier that works well on 

structured fields but struggles to find more complex relationships between accounts, devices, and IP addresses. Its low 
recall rate indicates that a significant number of synthetic identities were not captured, demonstrating its shortcomings 
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with respect to predictive efficiency in identifying interdependent trends more characteristic of grouped criminal 

activities. 

 Random Forest: Random Forest outperformed Logistic Regression with an accuracy of 0.88, precision of 0.79, recall 

of 0.71, F1-score of 0.75 and ROC-AUC of 0.84. Random Forest combines the advantages of non-linear models and 

feature combination. Although it detects more fraudulent accounts compared to Logistic Regression, it does so on an 

entity-by-entity basis. It thus lacks the power to establish fraud that occurs as a result of the interdependence of 
entities. 

 Graph Convolutional Network (GCN): The proposed GCN model outperformed the customary methods, achieving 

accuracies of 0.94, 0.88, 0.85, 0.86, and 0.91, as well as corresponding precision, recall, F1-score, and ROC-AUC 

values of 0.88, 0.85, 0.86, and 0.91, respectively. The GCN has been able to capture structural dependencies and long-

range correlations within the graph through the aggregation of information by neighbouring nodes and the integration 

of attribute information on nodes and edges. This enables it to detect two factors: synthetic identities that show subtle 

yet synchronised patterns across multiple accounts, devices, and social links. The results show clearly that graph-

based learning performs well compared to the conventional methods when dealing with a complex fraud detection 

system. 

 

4.3. Discussion 
As seen in the experiment results, the GCN-based model drastically outperforms classical machine learning frameworks in 

the identification of synthetic identities, particularly in terms of parameter recall and F1-score. High recall is very critical in 

fraud detection, as it is based on the model's capability to discover a high proportion of genuine fraudulent accounts, rather 

than its overall accuracy, which is often more important in security-sensitive applications. The high performance of the GCN 

compared to more basic models (Logistic Regression and Random Forest) suggests its ability to retrieve even minor and 

sophisticated atypical and suspicious patterns that most models fail to capture. Displaying a contrast to ordinary methodologies 

that primarily rely on individual accounts' characteristics, the GCN utilises graph topology, which enables the integration of 

neighbourhood conditions across the associated nodes in the graph. This is of special interest to the synthetic identity fraud 

prediction, where, in order to appear legitimate, fraudulent accounts often share devices, IP addresses or social connections. By 

pooling data from adjacent nodes and edges, the GCN is in a position to detect groups of suspicious accounts with correlated 

activities, e.g., repeated logins on the same machine or between transactions involving accounts that do not seem related but 

are actually under the same controller. 
 

Additionally, the model's capability to aggregate features at a node along the pattern facilitates the detection of anomalies 

that may otherwise go unnoticed, even when considering single accounts. This end-to-end learning method enables the 

network to automatically retrieve the most significant features and relationships to detect fraud and make the feature 

engineering less dependent. The improvement in F1-score also proves that the model not only provides high precision but also 

a high level of recall, meaning that it can successfully detect the accounts that commit fraud but also doesn’t leave too many 

false positives, which is paramount in practical deployment to ensure that users of good faith will not be report to authorities 

due to a mistake of the model. Taken together, the results indicate the strength of graph-based learning in considering complex 

and multi-entity interactions, and hence GCNs are a viable solution for implementing synthetic identity detection in dynamic 

and interconnected datasets. 

 

4.4. Limitations 
Although the setup using the GCN framework performs very well in identifying synthetic identities, some drawbacks 

should be noted. Among the main difficulties is the heavy computational cost of training and making inferences on large 

graphs. The memory and processing would be more and more heavy as the number of nodes and edges grows, especially in the 

neighbourhood aggregation of the graph convolution layers. This can constrain the scalability of the model and its inability to 

apply it in real-time or work with very large datasets, where there are millions of users, transactions, and interconnections. 

Such problems can be remedied by using sampling, graph bisection, or hierarchical modelling, which may introduce 

approximation errors or require additional engineering work. Another weakness is the reliance on input data quality and 

completeness. Graph-based models will focus on node and edge features, aiming to capture interesting patterns. Missing, 

noisy, or inconsistent data can negatively affect the network's capability to learn accurate representations, possibly resulting in 

skipped detections or false positives. The model may not be as effective, as there may be incomplete social connection data 

and incorrect transaction records that can blur connections between synthetic accounts. Obtaining high-quality data collection 
and preprocessing is, thus, a critical requirement; however, in most real-life settings, the acquisition of comprehensive and 

accurate data may be difficult due to privacy-related limitations, system errors, or fragmented data sources.  

 

The other weak point is the limited interpretation of deep GNN layers. Since the network combines the data provided at 

lower levels, it is not easy to justify particular predictions. This black box can be a barrier to faith and adoption in regulatory or 

high-stakes applications where transparency is crucial. In contrast to more basic forms of modelling, such as decision trees or 

logistic regression, where the relative importance of features is easily interpreted, deep GNNs require specially designed tools, 

like attention layers, or post-hoc explanatory methods to understand how decisions are made. As a result, GCNs may yield 
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better predictive performance; however, addressing computation, data quality, and interpretability issues is a priority for 

practical and responsible application in synthetic identity detection. 

 

5. Conclusion 
Synthetic identity fraud has proved to be one of the most advanced and growing issues in the financial and digital 

environment. Unlike the more conventional frauds, which typically involve the direct abuse of stolen identities (either through 

their spendable credentials or overt transactions), synthetic identities have been created using a combination of real and fake 

data, making them doubly challenging to detect with conventional fraud-detection techniques. In this work, we responded to 

the increasing demand for sophisticated detection techniques by proposing a Graph Neural Network (GNN)- based framework 

to capture identities, transactions, and their interactions over the graph. Presenting the user, accounts, devices, and IP addresses 

as nodes and updating the relationships between them, such as transactions, logins, and social connections, as edges, the 

proposed framework was able to better capture the individual profiling requirements and the connections among them, 

allowing a more comprehensive approach to fraud detection. The practical test revealed that the GNN model performed 
considerably well compared to traditional machine learning models, such as Logistic Regression and Random Forest. Although 

traditional methods are fairly effective when fed structured tabular data, they do not perform well with the complicated and 

obscure associations that comprise synthetic identity schemes. However, the GNN found, through neighbourhood aggregation 

and feature propagation, the delicate patterns of behavior, e.g., the ability to align activities across nodes or more accounts 

sharing devices.  

 

The above trends in terms of mostly significant performance gains in recall and F1-score were particularly relevant in the 

context of fraud detection, where recall indicates the capacity to detect fraudulent parties that are balanced against false 

positives, as depicted in F1-score. The results highlight the utility of graph-based learning to practical fraud problems, which 

are relational in nature. Although it shows positive results, the study also cites numerous limitations, such as computational 

complexity on very large-scale graphs, absolute dependence on high-quality and complete datasets, and the challenge of 
interpreting topics in deep GNN architecture. These weaknesses indicate significant refinements that need to be made to make 

them more scalable, robust, and trustworthy for practical deployment in the sector. Future work will aim at applying this 

framework to broader tasks by embracing heterogeneous graph neural networks (HetGNNs), which will have improved 

capabilities to deal with variability in types of nodes and edges; temporal graphs, which will incorporate time-evolutionary 

behavior to capture dynamic fraud patterns, and online real-time detection capabilities, which are necessary to implement into 

financial systems and online platforms where real-time detection is vital. This paper demonstrates that graph-based deep 

learning is an effective and flexible approach to the evolving and challenging issue of synthetic identity detection. GNNs also 

offer a way forward toward developing more intelligent, relational, and structurally based fraud detection systems, as they 

suggest an extension beyond individual feature analysis and into relational, structural modeling, which poses a promising path 

to creating models that can adapt to emerging challenges. 
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