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Abstract - In modern industrial settings, barcode and QR code recognition play a critical role in automation, 

inventory tracking, and production line management. High-throughput environments demand fast, accurate and 

robust recognition systems that can function reliably under varying lighting conditions, orientations, and printing 

inconsistencies. This paper explores the use of Convolutional Neural Networks (CNNs) and You Only Look Once 

(YOLO) object detection models for high-throughput industrial barcode recognition. The study highlights benchmark 

results under diverse environmental parameters such as printing speeds, motion blur, and illumination intensity. We 

propose a hybrid deep learning architecture that combines the localization efficiency of YOLO with the classification 

strength of CNNs to optimize both detection speed and recognition accuracy. The dataset consists of synthetically 

augmented and real-world barcode and QR code images collected from various production environments. Our model 

is trained using TensorFlow and PyTorch, optimized with advanced loss functions such as focal loss and IoU loss, 

and benchmarked against traditional OCR and classical computer vision techniques. The results demonstrate a 

notable improvement in recognition accuracy, throughput rate, and robustness to environmental variability. Our 

methodology includes data preprocessing techniques such as histogram equalization and affine transformations, 

combined with training strategies like transfer learning and data augmentation. We achieve a top-1 accuracy of 

98.4% and a mean Average Precision (mAP) of 96.2% on our test dataset, even under challenging real-time 

industrial constraints. This paper also discusses the integration challenges of deep learning systems in legacy 

manufacturing ecosystems and presents a modular deployment strategy using edge computing devices and IoT 

gateways. The implications of our research extend to automated logistics, real-time quality inspection, and industrial 

IoT (IIoT) systems. Future work will focus on improving interpretability, reducing computational load, and extending 

the system to multilingual and distorted code environments. 

 

Keywords - Deep Learning, YOLO, Convolutional Neural Networks (CNN), Barcode Recognition, High Throughput, 
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1. Introduction 
The introduction of Industry 4.0 has led to the increased use of intelligent devices in manufacturing and logistics, 

particularly for automation, monitoring, and control within the context of quality assurance. Some of the most essential 

elements of these smart systems include machine vision, which facilitates the automatic identification and decoding of visual 

information. [1-4] In this sphere, QR code and barcode identification are the most relevant contributions to the simplification 

of supply chain processes, stock control, and checking. These codes, which machines can read, are useful for instant detection 

and tracking of goods within production lines, warehouses, and throughout distribution channels. Nevertheless, due to the 

increasing complexity of industrial environments and the ongoing increase in production speeds, conventional barcode 

scanners, which typically take the form of laser scanning or low-resolution imaging-based solutions, struggle to scale to meet 

these requirements effectively. Legacy systems are prone to producing poor results when conditions include motion blur, low 

light, partial occlusion, or damaged labels. Conversely, deep learning technologies, especially convolutional neural networks 

(CNNs) and object detection models like YOLO (You Only Look Once), provide more sophisticated functions in pattern 

recognition and real-time image processing. They can learn robust visual features, adapt to noisy environments, and provide 

fast inference, making them ideal for use in contemporary industrial contexts. Deep learning, therefore, could transform the 

way bar code recognition is done by creating more precise, facile, and scalable systems that can adapt to the needs posed by 

completely mechanised and networked manufacturing procedures. The creation of these types of systems can be considered 

within the broader scope of Industry 4.0, where intelligent automation and data-informed decision-making are key factors in 

enhancing process efficiency and innovation. 

 

1.1. Deep Learning for Industrial Barcode Recognition 

The use of deep learning in barcode recognition has become a formidable response to the limitations of traditional 

procedures. In contrast to rule-based systems, deep learning models have the ability to find intricate patterns in datasets and 

extrapolate them to vast, dissimilar surroundings in the real world. In this section, the main elements and benefits of deep 

learning in industrial barcode recognition will be outlined. 
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Fig 1: Deep Learning for Industrial Barcode Recognition 

 

 Robust Feature Extraction with CNNs: Most applications of deep learning, involving images, use Convolutional 

Neural Networks (CNNs). CNNs are very good at extracting spatial features in barcode recognition, i.e., addressing 

edge patterns, orientation, and alignment, even when the input image is noisy or distorted. This feature enables them 

to read barcode formats, such as EAN-13, QR, and DataMatrix, among others, even when they are partially blocked 

or blurred. Another way that CNNs stand out is in the flexibility they allow in classifying barcodes with different code 

types. Thus, they are applicable in industrial settings where product labelling protocols vary. 

 Real-Time Detection Using YOLO Architecture: YOLO (You Only Look Once) is a real-time object recognition 

system that uses a single forward pass to process a complete picture; this is what makes it very quick and efficient. 

YOLO, used in barcode recognition, is employed to recognise the precise position of a barcode in an image or frame. 

Newer variants, such as YOLOv5, are both faster and more accurate, and can be applied to fast conveyor belts or 

robotic limbs. The grid-type detection system in YOLO offers high-confidence localisation to its users, even in 

advanced scenes. 

 Advantages over Traditional Methods: Conventional barcode readers and image processing applications, including 

edge detection or template matching, have underperformed in harsh environments such as low or dim lighting, poorly 

contrasting or non-standard barcodes, and non-standard orientations. In comparison, deep learning systems can be 

trained using a wide range of data and augmented data, making them capable of being resilient in dynamic conditions. 

These can also be reconfigured to fit different forms of barcodes or other barcodes with minimal training, providing 

flexibility to meet changing industrial demands. 

 Integration and Scalability in Industry 4.0: Barcode recognition systems based on deep learning can easily 

integrate with smart factories, IoT platforms, and automated inspection pipelines. They can operate within real-time 

parameters and achieve high accuracy rates; this is one of the reasons why they have become a foundational 

technology in Industry 4.0 settings. Moreover, the current state of these systems (advances in model compression and 

edge computing in general) is becoming more suitable for being deployed on embedded hardware and mobile devices. 

 

1.2. Problem Statement 

Although great advances have already been achieved with deep learning and computer vision, the current barcode 

recognition systems still face severe drawbacks to their popularity and operational effectiveness in industries. Such problems 

include scalability, complexity of integration, and sensitivity to environmental conditions. 

 

 
Fig 2: Problem Statement 

 

 Scalability: Most current barcode recognition solutions have a problem scaling well in high-resolution or high-speed 

production applications. With manufacturing systems implementing increasingly high-resolution cameras and faster 

conveyor mechanisms, more real-time data processing is required. Middle-ground models have a propensity to fall 

behind these requirements, leading to a failure to make a detection or exhibit latent processing. Furthermore, fixed 

barcode formats or smaller dataset-trained systems are often inflexible in adapting to changing product lines, new 

Scalability Integration Complexity Environmental 
Robustness 
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types of barcodes, or altered forms of packaging, all of which are prevalent situations in high-volume industrial 

settings. 

 Integration Complexity: Although the deep learning models are effective, they may not be compatible with the 

legacy or traditional industrial systems. The implementation of the models can substantially involve installing new 

hardware, modifying software and reworking the available infrastructure. The integration of deep learning algorithms 

with industrial environments often requires programmable logic controllers (PLCs) and embedded systems, which 

lack significant computational ability, making them technically unfeasible and economically inefficient to integrate. 

Applications to smaller facilities are subject to a high arrival threshold in the absence of light-weight and agile 

models. 

 Environmental Robustness: Ensuring accuracy in different environmental conditions is one of the most significant 

challenges of industrial barcode recognition, as it has been observed numerous times that, despite some control over 

environmental factors, accuracy in a variable environment remains rather challenging. There may also be poor 

lighting, in-camera movement blur due to extreme motion, and glare involving matte or reflective materials, which 

can significantly degrade image quality. Such situations expose conventional image processing methods to especially 

strong attacks, and even trained deep learning models can be susceptible unless carefully trained with as many 

distortions and augmentations as possible. In an unrestricted real-world setting where a barcode can be partially 

obscured, skewed, or degraded, achieving consistent recognition performance is a complex and variable challenge. 

 

2. Literature Survey 
2.1. Traditional Barcode Recognition Techniques 

The classical image processing techniques primarily used in the recognition of traditional barcodes include gradient 

analysis, edge detection, and thresholding. Algorithms such as Sobel or Canny filters are used to identify the most prominent 

edges in an image, which can generally be the barcode lines. [5-7] Additionally, approaches like the Hough Transform are 

implemented for detecting linear features, making them applicable in the detection process for a 1D barcode. The methods are, 

however, very susceptible to environmental changes, such as lighting conditions, image distortion, and the angles of 

perspective. Their detection in blur, shadows, or even uneven lighting conditions is significantly poor, and they cannot be 

trusted as much in the real world. Evaluations on tables indicate that OCR-based methods achieve a comparably high speed, 

but their accuracy is approximately 70 per cent, and they are not very robust. Template matching is slower and less robust to 

noise, but it is superior in certain cases. Edge detection has a slightly better accuracy of 75; however, it poses a challenge of 

robustness, particularly in a cluttered environment or one with a lot of activity. 

 

2.2. Deep Learning in Object Recognition 

With the introduction of deep learning, the identification of objects such as barcodes has undergone significant changes in 

terms of detection and recognition. Convolutional Neural Networks (CNNs) are especially good at extracting hierarchical 

features, allowing them to robustly classify the types of numerous barcodes, including EAN-13, QR, and DataMatrix. YOLO 

(You Only Look Once) is one of the most popular object detection frameworks, distinguished by its real-time capabilities and 

high accuracy. An example is YOLOv5, which achieves a detection speed of around 45 frames per second on top-tier GPUs, 

such as the NVIDIA RTX 3080. This is why it can be deployed in highly dynamic areas, such as retailing and logistics. 

Alternative models, such as Faster R-CNN, SSD (Single Shot Detector), and RetinaNet, offer better accuracy and feature 

extraction, but are more computationally demanding and may not be suitable when an edge device is required or in real-time 

applications. Deep learning models have the potential to learn complex relationships, and this feature makes them very 

accommodating to diverse imaging conditions, which makes them very helpful for strong detection of barcodes in real-world 

applications. 

 

2.3. Existing Work in Barcode Detection 

Recent research has succeeded in using deep learning to improve the detection of barcodes in harsh environments. A 

modified SSD (Single Shot Multibox Detector) was coupled with a custom decoder, which yielded an excellent result with a 

mean Average Precision (mAP) of 89%. Their strategy proved successful across multiple barcodes and backgrounds. Zhang et 

al. (2021) concentrated on the retail field and analyzes the possibility of detecting QR codes on product packaging using 

YOLOv4. Their system has demonstrated high accuracy and has worked effectively even in a cluttered shelf environment. In 

the meantime, we resolved the issue of barcode recognition in blurred or low-resolution photos by creating an edge-enhanced 

CNN. They combined deep features (learned representations) with traditional edge features to improve detection abilities in 

visually degraded environments. These research papers emphasise the increased promise of integrating traditional image 

features with deep learning to enhance robustness and precision in barcode recognition tasks. 

 

3. Methodology 
3.1. System Architecture 

The Barcode recognition system is developed as a modular package with four major blocks: image capturing, 

preprocessing, detection using YOLOv5, and classification using a convolutional neural network (CNN). All modules serve a 

certain purpose to make the recognition of barcodes precise, [8-11] quick and robust in the presence of any kind of variation. 
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Fig 3: System Architecture 

 

 Image Acquisition: The system is initiated by the image acquisition part, which utilises a high-speed industrial-grade 

camera to identify objects or packages in real-time. The cameras can operate effectively under harsh lighting and 

motion environments, resulting in clear and precise barcode images. High frame rate hardware is required to meet the 

real-time requirements of industrial automation, such as in conveyor belt systems or point-of-sale terminals. 

 Preprocessing: The observed images are in most cases bad crippled by excessive noise, palp, or inconsistent light 

that may hamper the detection. In response to this, the preprocessing module employs methods, such as histogram 

equalisation, to enhance contrast and perform blur correction. Filters to sharpen the image. The operations enhance 

the quality and consistency of input data, and subsequently improve the reliability of subsequent detection and 

classification operations. 

 YOLOv5 Detection: During the detection segment, the YOLOv5 (You Only Look Once version 5) deep learning 

architecture is utilized in order to identify the barcode area in the Image document. YOLOv5 offers a good trade-off 

between accuracy and speed, making it suitable for real-time applications. It undertakes one pass of the network in the 

forward direction and produces the locations of barcode areas in the form of bounding boxes with high probability 

scores. 

 CNN Classification: Localization of the barcode is then followed by passing a region of interest to a classification 

module via CNN. In this module, the type of barcode (e.g., EAN-13, QR code, or DataMatrix) is identified, and the 

content is decoded. The CNN is also trained to identify minor distinctions between types of barcodes and manage 

distinctions in orientation, scale, and quality. The last step ensures the proper extraction of data for use in downstream 

processing or inventory systems. 

 

3.2. Data Preprocessing 

 
Fig 4: Data Preprocessing 

 

Data preprocessing is the key to enhancing the performance and resilience of the barcode recogniser. This is the step 

where the raw image is prepared by making it consistent, holding less noisy data, and also providing greater chances of 

generalisation in the context of differing scenarios in the real world that are presented to the model. The preprocessing pipeline 

consists of noise reduction, data augmentation and normalization. 

 Noise Reduction: Image contrast enhancement is achieved by applying noise reduction techniques, such as Gaussian 

blur and bilateral filter, to make the image clearer and eliminate unwanted fluctuations. A Gaussian blur will smooth 

high-frequency noise by averaging pixels in a local neighbourhood, but it will also lose edge information. We need 
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the edge information to maintain the line integrity of the barcodes. They make these filters useful for decreasing the 

effects of noise present in sensors, compression artefacts, or an insufficient lighting environment. 

 Augmentation: The dataset is artificially augmented to maximise the model's robustness and avoid overfitting. Other 

simulated operations include the rotation of barcodes at various stages, and the brightness variant enables the model to 

accommodate different lighting conditions. Cropping also introduces incomplete views of the barcodes, enabling the 

model to learn how to detect in conditions where a part of the code may be obstructed. Such augmentations increase 

the system's robustness to real-world variation. 

 Normalisation: Normalisation ensures that the input data is on the same scale, allowing neural networks to 

converge much quicker. In such a system, the pixel intensity values are normalised to the limits of 0 and 1 by dividing 

by 255. The operation equalises the dynamic range of images, reduces variance in the number of computations, and 

makes the model more numerically stable during both training and inference. Normalisation ensures that the input 

data is on the same scale, allowing neural networks to converge much quicker. In such a system, the pixel intensity 

values are normalised to the limits of 0 and 1 by dividing by 255. The operation equalises the dynamic range of 

images, reduces variance in the number of computations, and makes the model more numerically stable during both 

training and inference. 

 

3.3. YOLOv5 Detection Model 

The YOLOv5 model is a time- and accuracy-oriented model that excels in estimating and object detection tasks, 

particularly in real-time applications such as barcode detection. [12-16] It has a modular architecture, which makes it efficient 

in processing data, and its design decisions produce an excellent tradeoff between speed and accuracy. The key components of 

the model are the input size, the backbone network, and a compound loss function. 

 

 
Fig 5: YOLOv5 Detection Model 

 

 Input Size: YOLOv5 takes fixed-resolution input images with a 416x416 pixel shape, which is a typical tradeoff 

between concurrency and graininess. This recommendation eliminates the need to match barcode patterns with 

precision while minimising computations. By commanding the input images to this size, the inputs are processed 

consistently in both network training and inference on a variety of datasets. 

 Backbone: YOLOv5 is supported by the CSPDarknet backbone that is based on the Darknet network with Cross 

Stage Partial (CSP) connections. CSPDarknet enhances the gradient operation and eliminates repetition by dividing 

the feature map into two halves and reuniting them subsequently. Such a design improves the efficiency of feature 

extraction to the extent that it can support small, dense features, such as barcodes, even in cluttered scenes or low-

resolution input. 

 Loss Function: In YOLOv5, a compound loss function is adopted to drive the model during training. It utilises 

Generalised Intersection over Union (GIoU) loss to enhance the localisation of bounding boxes, objectness loss to 

assess the presence or absence of an object in an object prediction region, and classification loss to accurately classify 

the object class. This combination of all these losses assists the model to train with precise, confident, and accurate 

detection in a diverse set of situations. 

 

3.4. CNN Classifier 

The CNN classifier in the suggested framework would detect the type and decode the contents of barcodes, utilising the 

localisation capabilities of the YOLOv5 detector. The model is programmed to strike a balance between computational 

efficiency and precision in recognising patterns, allowing the system to perform well in real-time applications. 

 Architecture: The network design is four convolutional layers and two fully connected (dense) layers. The 

convolutional layers extract data on the hierarchical spatial features in the barcode image, representing patterns that 

are important in terms of structure, format, and distribution of lines. Non-linearities are imposed between layers in a 
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process known as pooling to compress the dimensionality and keep important features. It is this information that is 

aggregated in the final two dense layers to carry out abstraction-level reasoning and classification. 

 Activation: After all convolutional and dense layers (except the output layer), this network employs the ReLU 

(Rectified Linear Unit) activation function, which introduces non-linearity and facilitates faster training. For the 

output layer, it uses the synthetic activation function, Softmax, to generate a probability distribution of the probable 

barcode types. This enables the model to perform high-confidence input classification for EAN-13, QR code, 

DataMatrix, and other formats. 

 

 
Fig 6: CNN Classifier 

 

 Loss Function: Categorical cross-entropy loss, commonly used in multi-class classification problems, is employed 

during model training. This loss is used as a measure of the discrepancy between the probability distribution of the 

estimated probability and the actual label. Still, it imposes larger penalties in the event of a wrong estimation. It 

controls the network to refine the classification results by reducing the difference between the predicted and actual 

classes during training. 

 

4. Case Study / Evaluation 
4.1. Experimental Setup 

The experiment set up to assess the proposed barcode recognition system was intended to reflect realistic industrial 

conditions; therefore, the performance metric is likely to provide a proper estimate of the feasibility of deployment. The system 

boasts a powerful hardware foundation, featuring a top-of-the-line NVIDIA RTX 3080 GPU, which provides the power of 

deep learning models with over 10,000 CUDA cores and 10 GB of VRAM, enabling parallel processing within the system. 

This GPU supports real-time observation of object detection and classification activities, encompassing both training and 

inference processes for YOLOv5 and CNN-based models. Regarding the software side, the system was developed and tested 

using two of the most popular deep learning frameworks: PyTorch and TensorFlow 2.6. The reason for using PyTorch in the 

implementation of the YOLOv5 detection module was its flexibility and the possibility to customise the model.In contrast, 

TensorFlow was used to create the CNN classifier and mobilise the model, as it has a good ecosystem for rapid deployment 

and mobile deployment.  

 

The two frameworks were executed on a Conda-controlled Python environment, which provided stability to the packages 

and consistency in experimental results. The system was installed and tested on a simulated factory-line system, which featured 

dynamic/variable lighting conditions (dim to overexposed illumination), closely replicating factory and industrial lighting 

conditions. Packages were transported using conveyor belts at variable speeds, and barcode labels of different types and 

orientations were applied to simulate a diverse range of operations. During testing, the illumination was deliberately adjusted 

to determine the system's robustness in response to environmental variations and its ability to withstand shadow and glare 

interference. High-speed industrial cameras were used to capture images at a rate greater than 60 frames per second, ensuring 

that the full image resolution was captured. It also included random occlusions and motion blur as part of the experimental 

design to verify the robustness of the preprocessing and detection pipeline. This has been a comprehensive setup, and the 

modules, including image acquisition and classification, were all engaged during operating conditions that reflect the actual 

deployment environment. 

 

4.2. Dataset 

The training and evaluation dataset for proposing the barcode recognition system comprises a total of 25,000 images, 

which include images of various real-life circumstances sampled during several working shifts. The pictures were taken at a 

functioning factory conveyor, wherein packages and goods going through conveyor belts under different light, speed, and 

position conditions had barcodes attached to them. Coupled with the differences in time of acquisition and environmental 

conditions, this variety ensures that the data used will be highly representative of industrial applications, including challenging 
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situations with shadows, uneven lighting conditions, partial occlusions, and motion blur. There are three major types of 

barcodes included in the dataset: EAN-13, generally used in packaging products at shops; QR codes, widely used in marketing 

activities and product monitoring; DataMatrix codes that are dominant in the industrial sectors, as they have great information 

density and can be read in a small surface area. To enhance the effectiveness of the detection and classification models, the 

dataset was further augmented with synthetic noise and distortions, thereby increasing robustness and generalisation 

capabilities. Examples of augmentation methods included Gaussian and salt-and-pepper noise to approximate sensor errors, 

random brightness and contrast changes to simulate uneven lighting, and geometric transformations such as rotation, cropping, 

and scaling.  

 

A systematic use of these augmentations artificially enhanced the variability of the datasets, with the aim of training the 

models to recognise barcodes in challenging visual conditions. Notably, the original and extended databases were well-marked 

with bounding boxes and class labels to facilitate supervised learning. LabelImg was used to annotate the detection part, and 

scripts were used to label the classification. The dataset was divided into training (70 per cent), validation (15 per cent), and 

test (15 per cent) sets to ensure a proper distribution of the types of barcodes represented and lighting conditions across all 

phases. Such a wide source of heterogeneous data proved to be a crucial source material through which a system can be 

developed that is also dependable in complex and varying environments. 

 

4.3. Evaluation Metrics 

To evaluate the effectiveness of the barcode recognition system, specific evaluation metrics were employed. These 

numbers determine the accuracy, reliability, and real-time performance of the model. The first finding shows that the system 

can be applied to industrial-type conditions where precision and speed are equally important. 

 

Table 1: Evaluation Metrics 

Metric Value 

Mean Average Precision (mAP) 91.2% 

Precision 93.5% 

Recall 89.7% 

Inference Time 22 % 

 

 
Fig 7: Graph representing Evaluation Metrics 

 

 Mean Average Precision (mAP) -91.2: The mAP of 91.2% indicates a very high level of accuracy in determining 

and identifying various types of barcodes in the Convolutional Neural Network (CNN) dataset, acquired with 

precision. The precision is an average across all classes and the level of average area under the IoU. An acceptable 

mAP will demonstrate that the system generates accurate results (i.e., detection of barcode regions and minimal false 

positives or missed detections). 

 Precision – 93.5%: With a precision score of 93.5, the system demonstrates a high degree of capability in making 

true positive predictions. This indicates that the model successfully recognises a barcode with an accuracy of more 

than 93 per cent. Accuracy in industrial use is essential, as false positives of not reading non-barcode textures — 

which, in the worst case, may cause a process failure or prevent matching invoices with inventory items — are 

crucial. 
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 Recall – 89.7%: The recall rate of 89.7% indicates that the system can identify most of the barcodes found in the 

input images. Good recall rates mean that only a small proportion of barcodes are read incorrectly, even in 

challenging situations, such as partial occlusion, distortion, or poor lighting. This is to ensure accuracy in operation 

and prevent unchecked products in the line. 

 Inference Time – 22%: On average, the system can process 22 milliseconds per image, allowing it to operate in real-

time at approximately 45 frames per second (FPS). This speed is best suited for a high-throughput setup, such as an 

assembly line or a point-of-sale system, where this speed of detection or otherwise bottlenecks and delays are 

important. 

 

5. Results and Discussion 
5.1. Quantitative Results 

Comprising three model variations namely, YOLOv5, CNN Only, and the combined YOLOv5 + CNN technique —the 

proposed barcode recognition system was accordingly tested. Three important performance indicators (accuracy, mean average 

precision (mAP) and inference time) were used to evaluate each of the configurations. The trade-offs between speed and 

accuracy in these results were important and indicated the effectiveness of the hybrid architecture. 

 

Table 2: Quantitative Results 

Model Accuracy mAP Inference Time 

YOLOv5 94.5% 93.2% 19 % 

CNN Only 90.4% 89.7% 10 % 

YOLO + CNN 98.4% 96.2% 21 % 

 

 
Fig 8: Graph representing Quantitative Results 

 

 YOLOv5 – Accuracy: 94.5%, mAP: 93.2%, Inference Time: 19%. The YOLOv5 system alone achieves excellent 

results, with an accuracy of 94.5% and an mAP of 93.2, enabling it to identify areas of barcodes with high precision 

and repeatability. It also provides high speed, corresponding to the fact that processing time is within 19 milliseconds 

per frame, thus making it suitable for real-time applications. Nonetheless, it is only as effective as detecting barcodes 

but cannot be as precise as the CNN module when it comes to classification details. 

 CNN - Accuracy: 90.4 per cent, mAP: 89.7 per cent, Inference Time: 10 per cent. The CNN-only strategy, which 

classifies without YOLO-based region localisation, demonstrates low accuracy and mAP of 90.4% and 89.7%, 

respectively. Even though it has a quicker inference period of 10 milliseconds, it does not successfully identify the 

relative location of barcode regions because it already uses cropped or extracted barcode pictures. This is more 

applicable in controlled environments where barcodes have fixed positions. 

 YOLO + CNN - Accuracy: 98.4%, mAP: 96.2%, Inference Time: 21 %. The overall performance of the combined 

YOLO + CNN architecture is outstanding, achieving 98.4% accuracy and 96.2% mAP. Such an arrangement utilises 

YOLOv5 for accurate region detection and the CNN for precise barcode classification. The time it takes to make an 

inference rises slightly, up to 21 milliseconds, but this also allows it to be real-time processing capable, and gives it 

better detection and decoding accuracy, making it excellent in dynamic, high-speed industrial scenes. 
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5.2. Qualitative Results 

The qualitative performance of the proposed barcode recognition system demonstrates its high practical utility and 

reliability in the most challenging visual environments. It was found that one of the most striking notes was that the system can 

correctly read barcodes in partially occluded cases. In various test conditions where coverage by packages, by hand, or other 

labels blocked the barcode area, the system, specifically the YOLO + CNN solution, retrieved only the visible parts of the 

barcode and successfully read the type and contents on the barcode. This has, in part, been enabled by the potent region 

proposal network in YOLOv5, which can localise objects using incomplete visual information, as well as the inference that 

predicts the type and structure given incomplete data by the CNN classifier. This type of performance is necessary in industrial 

settings where barcode labels are often damaged or misaligned. The system was also very accurate even in different lighting 

conditions, such as backlit, dark, and overexposed pictures.  

 

When being tested on a moving assembly line, the lighting was deliberately adjusted to mimic real-world changes in 

ambient brightness and direction. Preprocessing module: The preprocessing part of the system, which comprised histograms 

and blur removal, was effective in standardising the quality of the input. The model was also able to handle various levels of 

light (when combined with sturdy training on augmented data, including brightness and contrast changes). In some instances, 

when most of the barcode image was white out due to glare, the system managed to capture the code and read it with 

remarkable accuracy. The ability to work constantly in such challenging circumstances is a testament to the power of both 

architecture and the training system. It does not require an ideal condition of input, and this is why it is very appropriate for use 

in real-world situations, such as warehouses, logistics areas, and shop settings. On the whole, the qualitative results supplement 

the quantitative measures by demonstrating the resilience and generalizability of the model in terms of its applicability to a 

broad range of real-world situations. 

 

5.3. Limitations 

Although the proposed barcode recognition system is highly accurate and functions well in various industrial settings, it is 

associated with some limitations that may hinder its implementation in specific environments. Among the major limitations is 

that it is GPU-dependent. The real-life use of the model, especially in its integrated form with YOLOv5 and the CNN model, 

greatly depends on the parallel CPU utilisation when computing with high-performance GPUs (e.g., NVIDIA RTX 3080). 

Such dependency imposes limitations on the use of the system at the edge, as it must operate within constrained power and 

hardware units. Small embedded devices (e.g., embedded systems or compact edge modules, such as Jetson Nano or Raspberry 

Pi) may lack sufficient computing resources to maintain the desired frame rates and detection precision. Consequently, it may 

be necessary to achieve a very close approximation of model performance using the complete model stack, albeit at the 

expense of accuracy and robustness, particularly with low-weight models.  

 

One additional limitation that will be addressed in this testing is that there will be a slight delay in detecting and 

recognising when the conveyor is operating at a very high speed, especially above 2 meters per second. With this condition, 

there is sometimes latency in loading the image into the system, resulting in a mismatch between the barcode position and the 

detection window in the model. Even though the average inference time is low (approximately 21 milliseconds), the fast 

movement of objects and short exposure time of the camera contribute to the emergence of motion blur or even skipped 

frames. This difficulty is compounded by the fact that in many cases, barcodes are small or have imperfections, making them 

harder to detect. This problem can be somewhat mitigated by using motion blur correction and operating with frames captured 

at a higher frame rate. Still, recognition delay or failure in ultra-high-speed tasks remains a potential risk. 

 

6. Conclusion and Future Work 
The study proposes a fast industrial barcode reading framework that utilises deep learning. Based on its high accuracy 

rates, fast speed, and flexibility, the system is considered evolutionary when compared with its state-of-the-art models. 

Through the advantages of two popular model frameworks, YOLOv5, which is used for real-time object detection, and a 

custom CNN that detects barcode types, the proposed system can maintain a high level of detection precision and low 

processing requirements, leveraging the strengths of both frameworks. As can be seen in the experiment's results, both 

quantitative and qualitative, it is possible to conclude that the system is capable of recognising different kinds of barcodes, 

including EAN-13, QR codes, and DataMatrix symbols, even under adverse conditions such as partial occlusion, dynamic 

illumination, and motion blur. The framework of the modular pipeline, which links preprocessing, detection, and classification 

into one efficiency-optimised pipeline, is targeted at compatibility with industrial automation systems. 

 

This property further enables its successful implementation on factory floors, in warehouses, and logistics centres. 

Namely, the inference time (21 ms per image) and high accuracy (98.4%) enable the commercial application of the system in 

real-time settings with high throughput. It was, however, demonstrated that there are limits in terms of dependence on GPUs, 

and that performance degrades significantly at extremely high conveyor belt speeds. This suggests that there is still potential to 

expand upon its results. Concerning further development, several directions can be explored to increase the scalability and 

flexibility of the system's deployment. The use of lightweight models (e.g., YOLO-Nano or MobileNet-based architectures) 

that are more suitable for running on edge devices with low computational power is one area. Doing this would allow the 
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system to be used in a portable or embedded situation, where it would have a wider range of applications in field operations, 

handheld scanners, and other small robot types.  

 

Additionally, examining few-shot learning and self-supervised learning may substantially enhance the system's flexibility 

in detecting new types of barcodes, or even rare ones, without the need for retraining with huge annotated data. This would be 

especially handy in industries where the product line or labelling system changes regularly. Regular industrial robotic vision 

can also be integrated to perform real-time scanning of barcode information, in addition to which the items can be handled, 

properly checked, or automatically separated. This integration would establish a direct connection between optical perception 

and physical movement, further developing automation in industrial and supply chains. All in all, the system provides a 

powerful foundation for implementing intelligent barcode recognition, leaving sufficient scope for further innovations and 

practical applications. 
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