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Abstract - The accelerating rise in sea levels poses a significant challenge for coastal communities, necessitating 

accurate forecasting methods. This study evaluates the efficacy of various time series models in predicting long-term 

sea level changes, including ARIMA, ETS, NNETAR, THETAM, TBATS, STLM, and their hybrid combinations. Using 

monthly mean sea level data from Cambridge, Maryland, spanning January 1971 to February 2025, a comparative 

analysis was conducted. The NNAR(27,1,14)[12] model emerged as the most accurate, performing exceptionally well 

across all metrics, especially with very low RMSE and MAE values among all tested models. These findings 

underscore the potential of neural network-based approaches in sea level forecasting and highlight the importance of 

integrated modeling techniques as decision-support tools for local mean sea level predictions. Understanding 

historical sea level trends is crucial for improving future projections, and this study contributes to that knowledge 

base. Continued research efforts leveraging these data-driven insights can significantly enhance our ability to refine 

predictions and develop effective strategies to mitigate the impacts of sea level rise. 
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 1. Introduction 
Predominantly by human activities such as fossil fuel 

combustion and deforestation, alongside natural phenomena 

like volcanic eruptions. According to the National Oceanic 

and Atmospheric Administration [1], global annual 

temperatures have risen at an average rate of 0.07°C per 

decade since 1880, with the rate doubling to 0.18°C per 

decade since 1981. One of the most critical consequences of 

ecological change is the rise of global sea levels, primarily 

caused by melting glaciers and ice sheets and the thermal 

expansion of warming oceans. However, the magnitude and 

pace of sea level rise vary regionally, influenced by factors 

such as land subsidence and ocean current shifts, including 

the deceleration of the Gulf Stream. The impacts are 

profound, including increased coastal flooding and erosion, 

loss of agricultural productivity, damage to infrastructure, 

and disruption of coastal ecosystems. 

 

Empirical data highlights the scale of the problem. 

NOAA reports that the global sea level has risen by 

approximately 21–24 cm since 1880. The Intergovernmental 

Panel on Climate Change (IPCC) [2] projected a rise of 52–

98 cm by 2100 under high-emission scenarios. Similarly, the 

U.S. Global Change Research Program (USGCRP) [3] noted 

a 16–21 cm rise since 1900, with nearly half occurring since 

1993. Future projections suggest sea levels may increase by 

9–18 cm by 2030 and 30–130 cm by 2100, relative to 2000. 

Long-term analyses, such as those by Church and White [4], 

estimate sea level rise at rates of 3.2 ± 0.4 mm/year from 

satellite data and 2.8 ± 0.8 mm/year from in situ 

measurements, with an accelerating trend since the late 19th 

century. The observed variability underscores the importance 

of continuous monitoring and accurate forecasting. 

 

A growing body of literature confirms that sea level rise 

is accelerating [5]-[8]. As a result, understanding historical 

trends is essential for anticipating future changes. Recent 

advances in in situ and satellite observations have 

significantly improved the modeling of sea level dynamics 

[9], [10]. Despite this progress, there remains a notable gap 

in studies focused on localized forecasting techniques. Time 

series forecasting, particularly using neural networks, has 

emerged as a promising approach to modeling sea level 

trends. Neural networks excel in identifying complex 

patterns in temporal data and have shown growing success in 

sea level rise applications [11]-[13]. This study aims to 

demonstrate the effectiveness of time series models in 

forecasting sea level rise by analyzing long-term monthly 

mean sea level data from Ocean City, Maryland. By 

advancing predictive modeling techniques, this research 

seeks to contribute to more accurate, localized 

forecastsessential tools for coastal resilience planning and 

policy formulation in the face of rising seas. 

 

2. Literature Review  
Understanding and projecting sea level rise (SLR) has 

been a central focus of climate science, with numerous 

studies seeking to quantify its magnitude, identify its drivers, 

and evaluate its long-term implications. Early investigations, 

such as those by Church et al. [5], laid the foundation for 

recognizing the accelerating nature of SLR, citing global 

temperature rise and cryospheric melt as primary factors. 
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Subsequent research by Cazenave and Llovel [6] and Church 

and White [4] reinforced this acceleration and highlighted 

the increasing role of satellite altimetry in capturing global 

sea level trends with higher precision. Several studies have 

established robust historical records of sea level changes. 

Church and White [4] estimated that the global mean sea 

level rose at an average rate of 1.7 ± 0.2 mm/year from 1900 

to 2009, with a notable increase to 3.2 ± 0.4 mm/year in the 

satellite era. Regional disparities have also been explored, 

attributing localized deviations to factors such as ocean 

circulation patterns, gravitational effects from melting ice 

sheets, and land subsidence [14], [15]. 

 

The modeling of future SLR has evolved from simplistic 

linear extrapolations to complex simulation frameworks 

integrating climatic, hydrologic, and geophysical variables. 

The Intergovernmental Panel on Climate Change (IPCC) [2] 

employs multi-model ensemble approaches, incorporating 

both greenhouse gas emission scenarios and socioeconomic 

variables to project a likely sea level rise of up to 98 cm by 

2100 under high-emission pathways. Similarly, the U.S. 

Global Change Research Program (USGCRP) [3] 

emphasizes the importance of incorporating probabilistic risk 

assessments to better understand the range of plausible future 

outcomes, particularly for coastal planning. Despite progress 

in physical and statistical modeling of SLR, challenges 

remain in translating these models to localized, actionable 

forecasts. Traditional methods, including autoregressive 

integrated moving average (ARIMA) models, have been 

widely used in time series analysis for sea level prediction 

[16], [17].  

 

However, such models often assume linearity and 

stationarity, which limit their applicability in dynamically 

changing climatic contexts. To overcome these limitations, 

machine learning (ML) techniques, particularly neural 

networks, have gained traction in environmental time series 

forecasting. Artificial neural networks (ANNs), with their 

capacity for nonlinear mapping and adaptability, have been 

successfully applied to sea level data forecasting in recent 

years. For instance, Bruneau et al. [11] used a multi-layer 

perceptron model to predict sea level variability with high 

accuracy, while Bruno and Afonso [12] demonstrated the 

effectiveness of recurrent neural networks (RNNs), including 

long short-term memory (LSTM) architectures, in capturing 

temporal dependencies in sea level datasets. Other studies 

have explored hybrid and ensemble methods to enhance 

forecasting accuracy. Alenezi et al. [13] integrated LSTM 

models with wavelet decomposition to improve predictions 

by denoising the input signal, showing that combining deep 

learning with signal processing techniques can offer superior 

performance. These approaches represent a shift from purely 

deterministic models toward data-driven, adaptive 

frameworks that can assimilate heterogeneous datasets and 

accommodate evolving patterns. 

 

Moreover, the incorporation of satellite-derived datasets 

and in situ measurements has significantly enriched the 

training and validation of ML models. Foster and Brown [9] 

and Visser et al. [15] emphasized the utility of integrating 

diverse sources of sea level data, including tide gauges, 

altimetry, and gravimetric observations, to support high-

resolution forecasting efforts. Despite these advancements, 

the application of neural networks to localized sea level 

prediction remains underdeveloped in the literature, 

especially in mid-Atlantic coastal zones such as Ocean City, 

Maryland. This study addresses this gap by employing neural 

network-based time series models to analyze long-term sea 

level trends and project future changes at the local scale. In 

doing so, it contributes to the growing body of research 

aimed at enhancing predictive accuracy and informing 

coastal resilience strategies in the face of ongoing climate 

change. 

 

3. Materials and Methods 
3.1. Study Site  

Cambridge is a city located at 38°33′59″N 76°4′37″W 

in Dorchester County, Maryland, United States (Figure 1). It 

is the county seat of Dorchester County and the county's 

largest municipality. The population of Cambridge was 

13,096 at the 2020 census, which is the fourth most populous 

city in Maryland's Eastern Shore region, 

after Salisbury, Elkton and Easton [18]. Cambridge is on the 

southern bank of the Choptank River. According to 

the United States Census Bureau, the city has a total area of 

12.64 square miles (32.74 km
2
), of which, 10.34 square miles 

(26.78 km
2
) is land and 2.30 square miles (5.96 km

2
) is 

water. The climate in this area is characterized by hot, humid 

summers and generally mild to cool winters [19].  

 

3.2. Data Source 

The long-term records of monthly mean sea level from 

January 1971 to February 2025 at Cambridge, Maryland, 

used for this study is available to the public from NOAA 

Tides and Currents (https://tidesandcurrents.noaa.gov/). 

Average monthly mean sea level was 0.032 mm/year with 

the standard deviation of 0.0911 mm/year (Minimum: -1940 

mm/year, Maximum: 0.3690 mm/year, and Median: 0.0240 

mm/year) at Cambridge, Maryland, from January 1971 to 

February 2025 (Figure 2). According to NOAA Tides and 

Currents, the term mean sea level can refer to a tidal datum, 

which is locally derived based on observations at a tide 

station and is typically computed over a 19-year period, 

known as the National Tidal Datum Epoch (NTDE). Tidal 

datum is the basis of marine boundaries, can be used as a 

vertical reference plane in producing nautical charts, and can 

provide important baseline information for observing 

changes in sea level over time. Mean sea level as a tidal 

datum is computed as a mean of hourly water level heights 

observed over 19-years [20]. Monthly means generated in 

the datum calculation process, which is used to generate the 

relative local sea level trends observed at a tide station.  

 

https://geohack.toolforge.org/geohack.php?pagename=Cambridge,_Maryland&params=38_33_59_N_76_4_37_W_type:city
https://en.wikipedia.org/wiki/Dorchester_County,_Maryland
https://en.wikipedia.org/wiki/Maryland
https://en.wikipedia.org/wiki/County_seat
https://en.wikipedia.org/wiki/2020_United_States_census
https://en.wikipedia.org/wiki/Eastern_Shore_of_Maryland
https://en.wikipedia.org/wiki/Salisbury,_Maryland
https://en.wikipedia.org/wiki/Elkton,_Maryland
https://en.wikipedia.org/wiki/Easton,_Maryland
https://en.wikipedia.org/wiki/Choptank_River
https://en.wikipedia.org/wiki/United_States_Census_Bureau
https://tidesandcurrents.noaa.gov/
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Fig 1: Cambridge, Maryland, USA  

(Source: Map of Beaches in Maryland, adapted from: https://www.livebeaches.com /map-of-beaches-in-maryland/) 

 

 
Fig 2: Time Series Plot of Monthly Mean Sea Level at Cambridge, Maryland, January 1971 ~ February 2025 (Source: 

R Output) 

 

3.2. ForecastHybrid 

The “forecastHybrid” (convenient functions for 

ensemble time series forecasts) package in R (https://cran.r-

project.org/web/packages/forecastHybrid/index.html) 

provides functions to build composite models using multiple 

individual component models from the “forecast” package. 

Forecasts generated from auto.arima(), ets(), nnetar(), tbats(), 

thetam(), and stlm() can be combined with equal weights, or 

cross-validated weights [21]. ARIMA (AutoRegressive 

Integrated Moving Average) is a model that combines 

autoregressive (AR), differencing (I), and moving average 

(MA) components. It is particularly suitable for univariate 

time series forecasting, especially when the data exhibits 

trends and seasonality. One of its strengths is its 

effectiveness for non-stationary data after differencing, 

making it widely used and well-understood in the field. 

However, ARIMA requires manual tuning of its parameters 

(p, d, q), which can make it complex to implement. 

 

ETS (Error, Trend, Seasonal) is a model that 

incorporates error, trend, and seasonal components, offering 

options for additive or multiplicative models. It is 

particularly suitable for time series data with clear seasonal 

patterns. One of its strengths is its flexibility, as it can handle 

various types of seasonality and trends, and it features 

automatic model selection. However, ETS can be 

computationally intensive and may not perform well with 

very irregular data. NNETAR (Neural Network Time Series) 

utilizes feed-forward neural networks with lagged inputs for 

forecasting. It is particularly suitable for capturing nonlinear 

https://cran.r-project.org/web/packages/forecastHybrid/index.html
https://cran.r-project.org/web/packages/forecastHybrid/index.html
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relationships in univariate time series data. One of its 

strengths is its ability to model complex patterns and 

interactions, making it adaptable to various data types. 

However, NNETAR requires significant computational 

resources, and the results can vary due to randomness in the 

training process. 

 

TBATS (Trigonometric, Box-Cox, ARMA, Trend, 

Seasonal) is a model that incorporates trigonometric 

seasonality, Box-Cox transformation, ARMA errors, trend, 

and seasonal components. It is ideal for time series data with 

complex seasonal patterns and long seasonal cycles. One of 

its strengths is its ability to handle multiple seasonal periods 

and complex seasonality, making it robust to outliers. 

However, TBATS is computationally demanding and slower 

to fit compared to simpler models. TEHTAM (Technology 

Acceptance Model) focuses on perceived usefulness and ease 

of use to predict technology acceptance. Unlike time series 

models, TEHTAM is used to understand user acceptance of 

technology.  

 

Its strengths lie in providing valuable insights into user 

behavior and technology adoption. However, it is not 

applicable for forecasting time series data. STLM (Seasonal-

Trend decomposition using Loess) is a model that 

decomposes time series data into seasonal, trend, and 

remainder components using Loess smoothing. It is 

particularly suitable for time series with strong seasonal and 

trend components. One of its strengths is its flexibility and 

robustness to outliers, and it can be combined with other 

forecasting methods. However, STLM requires careful 

selection of smoothing parameters and can be sensitive to 

noise. 

 

3.3. Neural Network Autoregression (NNAR) models 

Feed-forward neural networks with a single hidden layer 

and lagged inputs, also known as Neural Network 

Autoregression (NNAR) models, are commonly used for 

forecasting univariate time series [22]. These models treat 

lagged values of the time series as inputs, like autoregressive 

(AR) models, but use a non-linear function (the hidden layer) 

to predict the next value [23]. NNAR models can be adapted 

to seasonal time series by including lagged values from 

previous seasons as inputs.  

 

NNAR is a type of autoregressive model where neural 

networks are used to learn the non-linear relationships 

between past and future values in a time series. The equation 

of NNAR can be expressed as follows:  

 

𝑦𝑡 =  𝛼0 +  ∑ 𝛼𝑗  𝑓(∑ 𝛽𝑖𝑗  𝑦𝑡−𝑖 + 𝛽0𝑗)
𝑝
𝑖=1

ℎ
𝑗=1 + 𝜀𝑡  

 

The notation 𝛽 𝑖 𝑗  (𝑖  = 0, 1, 2, …, 𝑛 ; 𝑗  = 1, 2, …, ℎ) and 

𝛼 𝑗  (𝑗  = 0, 1, 2, …, ℎ) are weight in the model. The notation 

p is the number of neurons in the input layer and ℎ is the 

number of neurons in the hidden layer.  

 

This autoregressive neural network uses a single hidden 

layer, and then the results of weighted linear combinations 

are modified into artificial neural network output using non-

linear functions. The linear combination function can be 

written as follows: 

 

𝑧𝑗 = 𝛽0𝑗 + ∑ 𝛽𝑖𝑗
𝑝
𝑖=1  𝑦𝑡−𝑖    

 

The notation 𝑧 𝑗  is the sum function of the bias unit to 𝑗  on 

the hidden layer, 𝛽 0𝑗  is the weight of the bias unit to 𝑗 , 𝛽 𝑖 𝑗  

is the weight of 𝑖  the layer of the bias to 𝑗 , 𝑦 𝑡 −𝑖  is the input 

to 𝑖 , network activation function is a non-linear function in 

the form of a binary sigmoid function and is written as 

follows:  

 

𝑓(𝑧) =  
1

1+ 𝑒−𝑧  

 

The equation above is a function of z, this sigmoid 

function is a part of the activation function in the single layer 

network model [24]-[26] (Daniyal et al., 2022; Almarashi et 

al., 2024; Hightower et al., 2024). 

 

Output is denoted by NNAR(p,k), where p denotes the 

number of lagged values that are used as inputs. K denotes 

the number of hidden nodes that are present. For example, a 

NNAR(13,7) model is a neural network with the last thirteen 

observations (yt−1, yt−2, …, yt−13) used as inputs for 

forecasting the output yt, and with seven neurons in the 

hidden layer. A NNAR(p,0) model is equivalent to an 

ARIMA(p,0,0) model, but without the restrictions on the 

parameters to ensure stationarity. If the dataset is seasonal 

then also the notation is pretty similar, 

i.e., NNAR(p,P,k) where P denotes the number of seasonal 

lags. P is chosen based on the information criterion, like 

AIC. For example, an NNAR(3,1,2)[12] model has 

inputs yt−1, yt−2, yt−3 and yt−12, and two neurons in the hidden 

layer. More generally, an NNAR(p,P,k)[m] model has 

inputs (yt−1, yt−2, …, yt−p, yt−m, yt−2m, …, yt−Pm) and k neurons 

in the hidden layer. A NNAR(p,P,0)[m] model is equivalent 

to an ARIMA(p,0,0)(P,0,0)[m] model but without the 

restrictions on the parameters that ensure stationarity [27]. 

 

3.4. Model Evaluation Metrics 

Five model evaluation metrics were employed to 

assess model accuracy and determine the best-fit time series 

model. The Mean Error (ME) was used to measure bias, 

indicating whether the model systematically over- or under-

predicts the actual values. The Root Mean Squared Error 

(RMSE) penalized large errors, making it particularly 

sensitive to significant deviations between predicted and 

actual values. Additionally, the Mean Absolute Error (MAE) 

provided insight into the average magnitude of forecast 

errors, offering a straightforward measure of accuracy. The 

Mean Percentage Error (MPE) was applied to evaluate bias 

in percentage terms, helping to understand whether the 

model tends to overestimate or underestimate in relative 

terms. Lastly, the Mean Absolute Percentage Error (MAPE) 

was used to assess overall forecast accuracy, ensuring a 

robust evaluation of the model’s predictive performance. 

These model evaluation metrics provide insights into model 

accuracy, bias, and forecasting reliability. The lower the 



Yeong Nain Chi / IJAIDSML, 6(3), 90-98, 2025 

 
94 

values, the better the model’s predictive accuracy [21], [24]-

[26]. 

 

4. Results  
Decomposing a seasonal time series means separating 

the time series into a trend component, a seasonal component 

and an irregular component respectively [28]. The function 

“decompose()” in R can be applied to separate the seasonal 

component, trend component and irregular components of a 

seasonal time series. The plots in Figure 3 showed the 

original time series (top), the estimated trend component 

(second from top), the estimated seasonal component (third 

from top), and the estimated irregular component (bottom). 

The estimated trend component showed a steady increase 

over time, and the estimated seasonal component displayed 

seasonality, with a pattern recurrence occurring once every 

12 months (yearly).  

 

One of the main objectives for a decomposition is to 

estimate seasonal effects that can be used to create and 

present seasonally adjusted values. Thus, seasonal 

adjustment is the removal of seasonal effects that are not 

explainable by the dynamics of trends or cycles from a time 

series to reveal certain non-seasonal features. This can be 

done by subtracting the estimated seasonal component from 

the original time series. After the seasonal variation was 

removed, the seasonally adjusted time series only contained 

the trend component and an irregular component (Figure 4). 

 

 

Fig 3: Decomposition of Monthly Mean Sea Level at Cambridge, Maryland, January 1971 ~ February 2025 (Source: R 

Output) 

 

 
Fig 4: Time Series Plot of Seasonal Adjusted Monthly Mean Sea Level at Cambridge, Maryland, January 1971 ~ 

February 2025  

(Source: R Output) 
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To ensure reproducibility of results, 

the set.seed() function was used before building time series 

forecasting models 

with auto.arima(), ets(), nnetar(), tbats(), thetam(), 

and stlm(). These models were then combined with equal 

weights to maintain a balanced influence (Table 1). The 

accuracy of time series forecasting was measured using five 

evaluation metrics: ME (Mean Error), RMSE (Root Mean 

Squared Error), MAE (Mean Absolute Error), MPE (Mean 

Percentage Error), and MAPE (Mean Absolute Percentage 

Error), as shown in Table 2. Based on the comparison of 

various forecasting models, it is evident that the 

NNAR(27,1,14)[12] model stands out as the most accurate 

and reliable with the lowest RMSE (0.0077) and MAE 

(0.0053), indicating high accuracy (Figure 5). This model 

consistently achieved the lowest error metrics across all 

categories, including ME, RMSE, MAE, MPE, and MAPE. 

Its performance is particularly noteworthy in terms of 

RMSE and MAE, where it significantly outperformed other 

models, indicating its high precision in forecasting. 

 

Hybrid models [29] combining NNAR with other 

methods, such as Hybrid (NNAR × STLM), also show strong 

performance with low RMSE (0.0264) and MAE (0.0202). 

On the other hand, the THETAM model exhibits the highest 

MPE (82.3481) and MAPE (114.2058), suggesting higher 

errors in percentage terms. Hybrid models generally perform 

better than individual models, with combinations like Hybrid 

(ARIMA × NNAR) and Hybrid (ETS × NNAR) showing 

improved accuracy and lower error rates. Overall, the NNAR 

model and its hybrids demonstrate superior forecasting 

capabilities, while the THETAM model appears less reliable 

in terms of percentage errors. In conclusion, the NNAR 

model and its hybrid variations offer the best overall 

performance for forecasting, with significantly lower error 

metrics compared to other models. These findings highlight 

the importance of selecting models that balance accuracy 

and reliability, especially in fields where precise forecasting 

is crucial. The comparison underscores the potential of 

hybrid models to improve forecasting accuracy by 

combining the strengths of different approaches. 

Table 1: Model Comparison with Equal Weights Using Whole Data 

Model ME RMSE MAE MPE MAPE 

ALL 0.0048 0.0426 0.0323 29.8305 117.7962 

ARIMA(3,1,1) with Drift -0.0004 0.0497 0.0376 28.7359 140.2303 

ETS(A,N,N) 0.0009 0.0506 0.0390 28.2271 152.6493 

NNAR(27,1,14)[12] -0.0002 0.0077 0.0053 4.4976 21.6931 

THETAM 0.0251 0.0787 0.0620 82.3481 114.2058 

TBATS 0.0037 0.0499 0.0379 27.9573 147.9023 

STLM 0.0008 0.0462 0.0356 7.0253 150.1634 

Hybrid (ARIMA × ETS) 0.0003 0.0498 0.0380 28.4815 145.5239 

Hybrid (ARIMA × NNAR) -0.0005 0.0279 0.0211 17.7126 76.0891 

Hybrid (ARIMA × TBATS) 0.0016 0.0497 0.0376 28.3466 143.7038 

Hybrid (ARIMA × THETAM) 0.0124 0.0587 0.0455 55.5420 117.9888 

Hybrid (ARIMA × STLM) 0.0002 0.0469 0.0357 17.8806 142.8553 

Hybrid (ETS × NNAR) 0.0002 0.0286 0.0219 15.0240 83.1097 

Hybrid (ETS × TBATS) 0.0023 0.0501 0.0382 28.0922 149.7379 

Hybrid (ETS × THETAM) 0.0130 0.0578 0.0447 55.2876 121.2567 

Hybrid (ETS × STLM) 0.0009 0.0477 0.0366 17.6262 149.6273 

Hybrid (NNAR × TBATS) 0.0015 0.0281 0.0212 14.1207 78.5595 

Hybrid (NNAR × THETAM) 0.0129 0.0419 0.0329 38.9262 66.7577 

Hybrid (NNAR × STLM) 0.0001 0.0264 0.0202 3.6403 83.0867 

Hybrid (TBATS × THETAM) 0.0144 0.0587 0.0453 55.1527 121.1954 

Hybrid (TBATS × STLM) 0.0022 0.0472 0.0359 17.4913 146.7048 

Hybrid (THETAM × STLM) 0.0132 0.0553 0.0427 44.6867 120.2923 
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Fig 5: Time Series Forecasting Model of NAR (27,1,14)[12] (Source: R Output) 

 

5. Discussion and Conclusion  
The importance of sea level forecasting cannot be 

overstated. It plays a vital role in protecting lives, preserving 

ecosystems, and ensuring sustainable development in coastal 

regions. By leveraging advanced time series models and 

integrating data from various sources, scientists and 

policymakers can better anticipate and respond to the 

challenges posed by rising sea levels. Accurate forecasts 

enable early warning systems and disaster preparedness, 

allowing communities to respond effectively to impending 

floods. Additionally, forecasting aids in designing resilient 

structures and retrofitting existing infrastructure to withstand 

future sea level changes. It plays a vital role in 

environmental conservation by protecting critical habitats 

such as wetlands, mangroves, and coral reefs, and supporting 

restoration projects.  

 

Policymakers rely on sea level forecasts to make 

informed decisions about land use, zoning, and coastal 

development, ensuring sustainable development. 

Furthermore, sea level forecasting drives scientific research 

and innovation, leading to improved predictive models and 

technological advancements. Overall, sea level forecasting is 

essential for protecting lives, preserving ecosystems, and 

ensuring sustainable development in coastal regions. In this 

study, NNAR(27,1,14)[12] Model demonstrated the best 

overall performance with the lowest error metrics across all 

categories, making it the most accurate and reliable 

forecasting model. Hybrid models that combine NNAR 

with other methods, such as STLM and TBATS, also 

showed strong performance. These models leverage the 

strengths of multiple approaches to achieve lower error 

rates and enhance forecasting accuracy. ETS (A,N,N) and 

THETAM Models exhibited higher error metrics, indicating 

less reliability in their forecasts compared to NNAR and 

hybrid models. 

 

The superior performance of NNAR and hybrid models 

suggests that neural network-based and hybrid approaches 

can provide highly accurate forecasts, which can benefit 

various domains such as finance, supply chain 

management, and strategic planning. Overall, the NNAR 

model and its hybrid variations offer the best forecasting 

accuracy, highlighting the potential of advanced machine 

learning techniques and hybrid approaches in improving 

forecasting reliability. The future of data-driven sea level 

forecasting is promising, with several innovative 

approaches and advancements on the horizon. One key area 

of focus is the integration of advanced machine learning 

techniques, such as Long Short-Term Memory (LSTM) 

model, which have shown superior performance in 

forecasting sea level rise. Researchers are working on 

refining these models further to enhance their accuracy and 

computational efficiency. Another promising approach is 

the use of synthetic data to augment real-world datasets, 

which helps in training models more effectively, especially 

when historical data is limited.  

 

Addressing uncertainty in sea level forecasts is crucial, 

and future research focuses on developing methods to 

quantify and reduce uncertainty using probabilistic models 

and ensemble forecasting techniques. Real-time monitoring 
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and forecasting advancements will enable more timely and 

accurate sea level forecasts by integrating real-time data 

from sensors and satellite observations with predictive 

models. Finally, developing decision support systems that 

utilize advanced forecasting models can aid policymakers 

in making informed decisions, providing actionable insights 

and recommendations based on the latest sea level 

predictions. These advancements will play a crucial role in 

helping coastal communities and policymakers prepare for 

and respond to the challenges posed by rising sea levels.  
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