International Journal of Artificial Intelligence, Data Science, and Machine Learning
Grace Horizon Publication | Volume 6, Issue 4, 24-31, 2025
ISSN: 3050-9262 | https://doi.org/10.63282/3050-9262.1JAIDSML-V614P104

Original Article

Reinforcement Learning Driven Adaptive Software Testing

with Continuous Fault Anticipation and Self-Healing
Feedback Loops in SAP

Akhilesh Kumar Aleti
Operations IT Data Manager, The Dow Chemical Company, Dallas, Texas, USA.
Revised On: 23/09/2025 Published On: 19/10/2025

Received On: 19/08/2025 Accepted On: 30/09/2025

Abstract - With the changing dynamics in software development comes the need for a smart testing framework that can
adapt to changes in the environment. Our approach brings a new way of viewing reinforcement learning (RL) and
adaptive software testing, that combines them to constantly build a fault anticipation and self-healing mechanisms. The
ultimate goal is to create some autonomous testing tool which understands and learns the defect patterns from history,
and through feedback loops optimizes the evolution of the test case generation. We utilize Q-learning algorithms via
Markov Decision Processes to create adaptive testing agents that learn from the results of fault detections. The hybrid
model that is built-in to LSTM enables predictive fault prediction, and the self-healing mechanisms automatically change
testing parameters. Over a half-a-year span of testing around 15,000 test cycles across five open-source Google projects
of differing complexity, an illuminating study was performed. The results show an increase of 47.3% in fault detection
rates and decrease of 38.6% in testing time in comparison with traditional approaches. NOTE: Statistical analysis

presents strong associations between adaptation driven by RL & defect prediction. Our proposed framework gets 92.4%
precision concerning vital faults to predict before deployment. This study adds value to autonomous software quality

assurance by creating intelligent self-optimizing testing ecosystems.

Keywords - Reinforcement Learning, Adaptive Testing, Fault Anticipation, Self-Healing Systems, Continuous Feedback.

1. Introduction

It is one of the most important phases of the software
development lifecycle and is responsible for taking up to 40—
50% of the overall development resources (Gunda et al.,
2025). However, traditional testing methodologies are done
with pre-specified test suites that are not able to adapt to
changing software architectures and new fault patterns. The
complexity of modern software is doubling every two years
(Katz, 2023) and now that agile and DevOps practices have
made their way into every large organization, deployment
cycles are at an all-time rapid pace which compresses the time
a testing/tasking need to be positive [8] and pushes for more
intelligent testing frameworks capable of self-learning and
optimal testing strategy selection (Chen et al., 2023).
Automated testing tools today are more about automating the
execution of tests rather than making intelligent choices about
what, when and how to test. Reinforcement Learning (RL) is a
promising approach to build adaptive systems that learn how
to behave through interaction with their environment (Sutton &
Barto, 2018). For example, in software testing, RL agents can
leverage historical defect data and real-time feedback to learn
to prioritize test cases, identify high-risk modules, and
optimize resource allocation (Pan et al., 2022). Combining RL
with software testing overcomes two major weaknesses of

static testing techniques as it can continuously learn from
testing results and faulty discoveries.

Machine learning has shown immense promise in the
domains of software defect prediction and vulnerability
detection (Gunda, 2024a; Gunda, 2025b). But these methods
are usually pre-deployment prediction based, and they do not
adapt progressively during test times. Self-healing systems
have become a trend in autonomous computing [3], where
automatic detection, diagnosis, and recovery of failures
happen without any human intervention. The integration of RL
driven adaptive testing with self-healing creates a full
spectrum framework for autonomous SQA. On the other hand,
fault prediction boils down to a non-reactive software testing,
meaning that it supply feedback on potential defects that are
likely to occur in production environments (Gunda, 2024c).
Code smell prediction models that also support the dynamic
nature of software systems are mostly missing, as traditional
fault prediction models are static and mainly rely on historical
data. Integrating Continuous Feedback Loops with real-time
results, testing frameworks can adjust in strategy, creating
cycles of improvement that lead to higher efficiency and
effectiveness.

Akhilesh Kumar Aleti / IJAIDSML, 6(4), 24-31, 2025

The framework proposed in the paper deals with some of
the most daunting problems faced in modern software testing:
traditional testing methods are inflexible and incapable of
adapting to evolving software environments. It suffers from
inefficient resource utilization when executing test cases, lacks
in providing immediate feedback (i.e., it delays the revelation
of faults), thus increasing the defect-remediation costs, and it is
unable to predict early (or, at least, earlier) on whether new
problems will arise, etc. Enabled by RL algorithms, the
framework builds smart testing agents that learn the best
testing policies by exploration and exploitation strategies and
adapting policies based on accumulated knowledge. A
consolidated architecture for Q-learning algorithms and Long
Short-Term Memory (LSTM) networks to allow adaptive test
generation and predictive fault prediction is introduced in this
research. Self-healing element: Automatically alters testing
parameters, rebalances the priority of the test case, and
optimizes resource allocation according to feedback got from
the result of fault detection. These never ending feedback loops
guarantees that the system evolves with the software under test
which Kkeeps it relevant and effective throughout the
development lifecycle.

2. Literature Review

Machine learning and software testing have crossed paths
for a decade now, and the intersection has gained considerable
maturity over this time-period. Numerous research studies
explained traditional software testing methodologies including
systematic approaches on test case generation, test suite
optimization, and defect prediction Myers et al. (2011).
However, the aforementioned approach in modern software
development, as a form of dynamic nature, lacks some
formulation type. Applying Reinforcement Learning to
software engineering has been studied extensively. Mahmud et
al. We have seen examples, such as RL-based test case
prioritization in (2021), where the authors showed that by
using Q-learning, they could train agents to become better
than conventional test case prioritization heuristics by 23%.
While their work laid down some of the fundamental principles
for using RL to perform testing optimally, it did not consider
continuous adaptation or self-healing capabilities. Similarly,
Spieker et al. Similarly, RETECS (2017) is an RL-based test
case selection framework that is able to substantially increase
fault detection rates via dynamic prioritization strategies.
Machine learning techniques have taken the idea of software
defect prediction to a new dimension. Gunda et al. Based on
such data, Hussain et al. (2025) showed that scalable machine
learning models can help to improve software reliability in
agile environments by early predicting faults and achieving
moderate improvements on sprint planning efficiency. As
observed in (Gunda, 2024a), their classification ensemble-
based approach that utilized both boosting and voting methods
performed better than classifiers used separately, as well. In
addition, it has been shown that there are strong relations
between static characteristics of the code and defect proneness
(Gunda, 2025b), which suggests that it might be a possible

25

indicator in the context of vulnerability detection with the help
of code metrics and feature extraction.

The outcomes of comparative studies on machine learning
models for software fault prediction indicate the
ineffectiveness of one model over the other could be dataset-
and context-dependent (Gunda, 2024c; Gunda, 2024d). The
articles turned the focus to three different aspects; feature
selection, model selection and characteristics of the dataset for
accurate predictions. But prior approaches mostly tackle a
static prediction model without adaptation of software traits
over time. Self-healing systems is a concept, first introduced
with the autonomous computing research. Motivation Self-
adapting frameworks that could automatically detect and
respond to certain system anomalies were proposed by Psaier
and Dustdar (2011). Although their work pointed out the
importance of feedback loops in keeping the system healthy, it
was not related to a software testing context. Abstract: Self-
healing architectures have recently shown promise in achieving
automatic fault recovery in systems operating in production
environments. Microservices have created new challenges as
well as opportunities for adaptive testing, especially in CI/CD
environments. Elbaum et al. In a similar vein, (2014) focused
on regression test selection in continuous integration
environments, emphasizing the challenge of intelligently
prioritizing test cases as the need to consider the (time-
bounded) trade-off between testing depth and breadth
increases. They highlight the importance of adaptive
approaches that can consider code changes over time, as well
as fault history.

The success of deep learning applications in software
testing has emerged at a rapid pace. White et al. The work by
Yu et al. (2019) used recurrent neural networks to learn the
patterns of generating test cases, resulting in state-of-the-art
neural network capabilities to model the relations between
snippets of code and the correct test cases. And LSTM
networks are very useful to model sequential dependencies for
software evolution and fault occurrences patterns (Wang et al.,
2018). Specific to the test case selection problem, there are a
subset of RL techniques known as multi-armed bandit
algorithms, which have been applied in the literature. Spieker
et al. In (2017), they demonstrated that bandit strategies are
effective in balancing exploration of untested scenarios with
exploitation of high-value tests. While their work explored the
test architecture of reward function design that would facilitate
testing optimization, it did not include predictive components
of fault anticipation. Integration of machine learning has been
beneficial to fault localization and diagnosis. Wong et al. Thus,
various spectrum-based fault localization techniques are
explored by (2016), which exhibits the potential of boosting
debugging processes based on program execution profiles.
Combining RL with faulty localization is a new research
direction, in which agents learn how to navigate codebases and
quickly find likely defect sources. The main contribution of our
work is that we propose a single framework that seamlessly

Akhilesh Kumar Aleti / IJAIDSML, 6(4), 24-31, 2025

integrates RL-based adaptation, continuous fault prediction and
self-healing. Although individual components have been
explored, comprehensive systems synthesizing these and more
to fully autonomous testing ecosystems have not yet been
developed. This study aims to bridge this gap through an
integrated architecture that combines the synergy of adaptive
learning, predictive anticipation, and automated remediation.

3. Objectives
The primary objectives of this research are as follows:

e To develop an RL-based adaptive testing framework
using Q-learning for optimized fault detection and
resource efficiency.

e To integrate LSTM-based predictive models for
proactive fault anticipation and risk mitigation.

e To implement self-healing feedback mechanisms for
dynamic adjustment of testing parameters and
resource allocation.

e To validate the framework through empirical
evaluation on open-source projects, assessing
improvements in fault detection, efficiency, and
predictive accuracy.

4. Methodology

We used the experimental quantitative research method in
the integration of behavior coupling (BC)-based RL and
adaptive software testing frameworks in this study. This
methodology involved developing system architecture,
implementing algorithms, empirical evaluation, and statistical
analysis across five open-source software projects from
different domains including web applications, databases, and
utilities. Over a period of 6 months, 15,000 testing cycles were
conducted on project implementations (between 5,000-50,000
lines of code), across three phases (baseline testing, RL-driven

implementation, or comparison). This framework architecture
included three main components, that of an rl agent, a long-
short term memory (LSTM) based fault prediction module and
a feedback controller for self-healing. Test case optimization
for defect detection was learned by the RL agent using Q-
learning with an epsilon-greedy strategy (learning rate = 0.1,
discount factor = 0.9) so that the test cases are selected and
prioritized according to the efficiency to detect defect and
resource consumption. The LSTM module was trained to
predict high-risk modules based on code metrics, temporal
patterns, and historical defects over three layers with 128
hidden units each. With periodic performance monitoring, the
self-healing controller adjusted parameters and resource
allocation in sub 100 ms intervals to keep the system efficient.
Execution time, defect detections, coverage metrics and
resource utilization were captured through automated data
collection. Paired t-tests, correlation, and regression modeling,
as appropriate, were conducted at the 0.05 level to evaluate
improvement in fault detection, predictive accuracy, and
efficiency. Proposed RL-driven adaptive testing framework
robustness and generalizability were ensured via cross-
validation and transfer learning.

5. Results

We conducted extensive experiments to acquire
performance data along multiple dimensions for the proposed
RL-driven adaptive testing framework. Fault Detection
Effectiveness, Testing Efficiency Improvements, Predictive
Accuracy and Self-Healing Mechanism Performance
Statistical Analysis This section provides the results of an
extensive statistical analysis of all aspects for fault detection
effectiveness, testing efficiency improvements, predictive
accuracy, and self-healing mechanism performance.

Table 1: Comparative Performance Metrics Across Projects

Project Traditional RL-Driven FDR Improvement Testing Time Resource Efficiency
FDR (%) (%) (%) Reduction (%) Gain (%)
Project A 64.2 94.8 47.7 42.3 36.8
Project B 68.5 96.3 40.6 38.2 41.2
Project C 61.8 91.7 48.4 35.7 34.5
Project D 66.3 93.2 40.6 39.8 38.9
Project E 62.9 92.1 46.4 37.4 35.7
Average 64.7 93.6 44.7 38.7 374

As shown in Table 1, all five experimental projects have
shown great enhancement in FDR. The RL-driven adaptive
framework secured an overall fault detection rate of 93.6%,
outperforming the standard testing approaches with an average
of 64.7% by 44.7%. Projects A (+47.7%) showed the most
notable improvement, followed by Projects B and D (+40.6%)
with the lowest but still considerable gains. The overall
reduction in testing time was 38.7% across all the projects, and

the maximum reduction of 42.3% (project a) The average gain
in resource efficiency, defined as the fractional use of
computational resources for each fault detected, from the
baselines controlled with D4C was 37.4% a strong positive
sign that DAC optimizes the allocation of testing resources. The
robustness of the RL-driven approach across different projects
was confirmed by statistical analyses using paired t-tests,
showing all improvements significant at p < 0.001 level.

Table 2: Fault Anticipation Accuracy Metrics

26

Akhilesh Kumar Aleti / IJAIDSML, 6(4), 24-31, 2025

Metric Precision (%) | Recall (%) | F1-Score (%) | False Positive Rate (%) | Anticipation Lead Time (hours)
Critical Faults 92.4 88.7 90.5 4.8 48.3
Major Faults 87.6 85.3 86.4 7.2 36.7
Minor Faults 81.3 79.8 80.5 11.4 24.6
Overall 87.1 84.6 85.8 7.8 36.5

The performance of the LSTM-based fault anticipation
module over different fault severity categories is shown in
Table 2. The system thus achieved an excellent precision of
92.4% on Kkiller bugs and proved that deadly defects can be
predicted with high precision before manifestation. Recall rates
were high as well (88.7%) for critical faults corresponding to
actual coverage of a critical defect. The F1-scores (harmonic
means of precision and recall) were 80.5% for minor faults,
87.5% for major faults, 90.5% for critical faults, and an overall

score of 85.8%. The false positive rates were keeping very
low, especially for critical faults, at 4.8%, so it is preventing
wasting efforts in testing on previously predicted defects that
are not true. Critical faults had the highest anticipation lead
time with an average of 48.3 hours between prediction and
actual occurrence, allowing sufficient time for proactive testing
remediation. These metrics as a whole provide a strong
indicator of how well the predictive component is performing
in allowing testers to shift right.

Table 3: Self-Healing Mechanism Performance

Adaptation Trigger | Occurrence Average Response | Success Rate Performance Intervention
Frequency Time (ms) (%) Recovery (%) Accuracy (%)
Coverage Decline 342 87.3 94.7 89.3 91.8
False Positive Spike 256 76.4 96.2 92.1 94.3
Resource Bottleneck 198 94.8 91.4 86.7 88.9
Detection Rate Drop 287 82.1 95.3 90.8 92.6
Overall 1083 85.2 94.4 89.7 91.9

The performance of self-healing feedback controller is
summarized in Table 3 and categorized into different types of
adaptation triggers that received a self-healing feedback
controller during the execution time. In total, 1,083 adaptation
events were identified, the most common cause of adaptations
was coverage decline with 342 occurrences, i.e. when test
coverage metrics get worse and require some intervention. The
average response time for all trigger types was 85.2
milliseconds, suggesting capability for very close to
instantaneous adaptation. The average success rate (i.e.

whether the self-healing intervention could fix the condition
that triggered it) was 94.4%: with the highest being at 96.2%
with false positive spikes. Using recovery metrics, it was
estimated that 89.7% of testing capability was restored to pre-
degradation levels with interventions. The intervention
accuracy, the average score (91.9%) of whether the applied
adjustments are appropriate for the triggering condition, shows
that the controller is able to make an intelligent decision. This
confirms that the self-healing mechanism is able to
continuously adapt to perform testing optimally, as designed.

Table 4: RL Agent Learning Progression

Testing Cycle | Average Q-Value | Exploration | Optimal Policy Achievement (%) | Cumulative Average
Range Convergence Rate (%) Reward Episode Length
1-3000 0.342 45.8 62.3 2847.6 156.3

3001-6000 0.568 324 78.6 4926.8 142.7
6001-9000 0.721 21.7 87.4 6834.2 128.4
9001-12000 0.843 15.3 92.8 8247.9 118.6
12001-15000 0.891 12.6 95.7 9163.5 112.3

The table 4 is an example of the performance of the RL
agent over 15,000 test cycles, split into five sections of 3,000
cycles each. The Q-value convergence metric indicating
stability of learned state-action values (bottom right) improved
from 0.342 to 0.891 between the first and last phase indicating
significant learning and policy convergence. The exploration
rate defined by the epsilon-greedy strategy was systematically
decreased from 45.8% to 12.6%, indicating the transition of the
agent behavior from exploration-dominant to exploitation of
learned optimal strategies. We saw a stark improvement in

27

optimal policy achievement (the percentage of decisions taken
that are aligned with theoretically optimal actions) from an
average of 62.3% to 95.7% which is a good indication that we
are learning. In all phases, cumulative rewards increased,
confirming the agent's increasing ability to simultaneously
detect faults and optimize resources. Number of testing actions
per cycle averaged over all testing iterations: Start: 156.3;
End: 112.3 — reduction of 28% shows that with the learning
cycle in progress, the test cases chosen became more efficient.
These trends confirm that at the end of the experiment, the RL

Akhilesh Kumar Aleti / IJAIDSML, 6(4), 24-31, 2025

agent was capable of adapting and improving consistently over

iterations.

Table 5: Feature Importance in Fault Anticipation

Feature Category Importance Score | Contribution to Prediction (%) | Correlation with Actual Faults | Ranking
Cyclomatic Complexity 0.284 28.4 0.762 1
Code Change Frequency 0.247 24.7 0.698 2
Lines of Code Modified 0.189 18.9 0.643 3
Historical Defect Density 0.156 15.6 0.587 4

Module Coupling 0.124 12.4 0.521 5

Feature importance analysis for the LSTM-based fault
anticipation module, as shown in Table 5, indicates which
code metrics had the largest influence on predictive accuracy.
Of all these, cyclomatic complexity proved to be the most
influential feature with an importance measure of 0.284 —
contributing 28.4% of the overall predictive capability. With
the correlation of 0.762 with the occurrence of faults, we assert
that this metric plays a role in indicating defect-prone code
areas. The second-most influential measure with a contribution
of 24.7% was code change frequency, mirroring the empirical

foundation between code volatility and the introduction of
defects [8]. The lines of code modified were directly
responsible for 18.9% with historical defect density and
module coupling responsible for 15.6% and 12.4%
respectively. The high correlation coefficients >0.5 for each
feature confirm that all features are meaningful features for the
ground truth fault occurrence. These results guide in feature
selection for fault prediction approaches and serve as an
observation for defect prone software components.

Table 6: Cross-Project Transfer Learning Performance

Source Target Initial Transfer Post-Adaptation Adaptation Cycles Knowledge
Project Project FDR (%) FDR (%) Required Retention (%)
Project A Project B 78.4 93.8 847 83.6
Project A Project C 74.2 91.3 1023 79.4
Project B Project D 76.8 92.7 892 81.7
Project C Project E 72.9 89.6 1154 76.3
Average - 75.6 91.9 979 80.3

Table 6 explores the framework's ability to transfer
learning, measuring the success of RL agents trained on one
project when moving to different projects. In support of
transfer fault detection, agents was able to maintain a
reasonable level of knowledge — with an average initial transfer
fault detection rate of 75.6% across contexts and no project-
specific retraining. Following adaptation periods averaging
979 cycles, corresponding transferred agents attained an
average FDR of 91.9%, close to the performance of agents
trained directly on target projects. The number of training
cycles needed for adaptation depended on the determined
similarity of the projects considered with transfers between
more similar projects requiring less training sessions.
Knowledge retention scores, which track the percentage of
learned policies that can be applied to other projects, yielded
an average of 80.3%, reflecting a high level of generalization
of those learned testing strategies across projects. Project
A|B—847 cycles (fastest adaption time); Project C|[E—1,154
cycles (most difficult transfer) These findings confirm the
framework's versatility and indicate that transfer learning
methods could enable faster deployment.

6. Discussion

28

The results reveal the high synergistic added-value
brought by the combined heuristic (i.e., adaptive working),
thereby suggesting that the reinforcement learning with
adaptive software testing components together achieves
significant gains on several performance aspects. The scaling-
up and empirical validation of state-of-the-art testing
techniques scores 44.7% on average of relative improvement
over the baseline testing body of evidence in its ability to
discover faults, which is transformative by addressing the
essential testing problem of maximally efficient defect
discovery (Gunda et al. 2025). It happens because the RL agent
is able to learn good strategies for prioritizing test cases, so that
resources are concentrated on software modules with the
highest risk, instead of following a pre-established order of test
cases. For critical defects, the fault anticipation component
delivered especially stellar numbers (precision 92.4%),
allowing QA teams to proactively test before high-severity
faults appear. With this ability to anticipate, the focus of testing
is no longer on reactive defect discovery and is instead on
proactive risk mitigation, in line with the modern principles of
shift-left testing. Critical faults have a long (48.3 hours on
average) anticipation lead time, which gives development
teams much more time to deal with potential issues before they
affect production systems — potentially resulting in a

Akhilesh Kumar Aleti / IJAIDSML, 6(4), 24-31, 2025

remediation effort that is an order of magnitude lower in cost
than post-deployment fixes. The fact that 94.4% of the
performance degradations were addressed by the self-healing
feedback mechanism evidences the potential of test
optimization in an autonomous way. With static testing
strategies, if there is a performance degradation or if the testing
strategy becomes sub optimal, manual intervention is required,
slowing down the process and needing an expert eye on
(Elbaum et al., 2014). Its automated adaptation ability with
under 100 milliseconds latency guarantees that the strategy will
be optimal at any point in time and no human is required to
step in to optimize, making it a highly suitable framework for
CI/CD environments with quick feedback loops.

The progression of RL agent's learning is unique to the
adaptive testing system and gives us many insights on how
these systems tend to convergence. While the systematic
improvements in Q-value convergence and optimal policy
achievement across 15 000 cycles broadly demonstrate that
sufficient exploration of the testing state-action space is
essential for effective learning, they also underscore the fact
that not all initial testing conditions are created equal. The test
results were poorer in the very early phases when the agent
was exploring bad strategies, however the exponential reward
accumulation in the later phases indicates that the learning
investment was worthwhile in the long term. Organizations
that choose to adopt such frameworks can expect some initial
learning phases before receiving the full suite of benefits. The
feature importance analysis demonstrates that many traditional
software metrics still play an important role in predictive
modeling. Following decades of software engineering research
confirming this coupling with defects proneness (McCabe,
1976), cyclomatic complexity is the most heavily influential of
all cognitive complexity measures when it comes to fault
prediction (p. 10). Yet, this finding highlights the substantial
role of temporal data, such as code change frequency, and the
need for dynamic cross-sectional metrics that can capture
software evolution characteristics. The LSTM network utilizes
static code metrics with temporal features, which
implementations together comprise a complete fault
anticipation model that is superior to using either category
independently. This makes the transfer learning results
especially relevant to deploying a framework in the real world.
An average of 80.3% of knowledge is retained between
projects. This implies many learned testing strategies
generalize between software, so new projects don’t need
training on crucial parts. While not a requirement,
organizations may find that RL can enable them to train master
agents on representative projects to be transferred onto new
developments, allowing adaptive testing capabilities to be
deployed quicker. Still, somehow the differences in
requirements of the adaptation cycle proof that fine-tuning on a
project basis is not redundant, especially in software with
prescribed architectural features.

29

A comparison of these results with prior literature
highlights a number of areas of improvement. While Spieker et
al. (2017) proposed RL applications to test case selection and
although they used purposively selection, they did not include
consideration of predictive anticipation or self-heal feature.
This integrated framework combines several of the adaptive
capabilities described previously, opening the possibility for a
larger autonomous testing ecosystem. Likewise, machine
learning models showed high levels of baseline performance in
previous defect prediction studies (Gunda, 2024a; Gunda,
2024c), but to the best of our knowledge, utilizing predictions
in continuous feedback cycles for adapting testing in real-time
poses as a new contribution. The average reduction of testing
time is 38.7%, so the efficiency problem is critical for software
development, because testing is often the bottleneck of
deployment pipeline (Chen et al., 2023). This efficiency gain is
enabled by an intelligent selection of high-value tests and
(thus) deprioritization of redundant or low-value executions.
Such framework is economically attractive from the
perspective of adoption, which is primarily driven by testing
infrastructure, people efficiency improvements of at least 37.

This study has some limitations which should be taken
into account. The experimental projects are not the single
focus; although they are diverse, they only cover open-source
software domains. Industrial software developed on proprietary
codebases and using unique practices may have different
manifestations affecting framework performance. The second
argument is that six months is long enough to observe
significant learning and performance, but it may not be long
enough to capture dynamics, or stability in performance, over
the multi-year scenarios that are common in operational
deployments. Third, the fault classification was based on
existing bug tracking systems, which might be an incomplete
or inconsistent representation of actual defects. Quite frankly,
the rates of false positives were acceptably low, meaning we
need to improve again on the accuracy of anticipating faults.
An overall false positive rate of 7.8% means that resources are
sometimes spent testing for predicted faults that do not actually
occur, which is waste. Future improvements might add
uncertainty quantification mechanisms that respond with
intervals for predictions, allowing the user to make better
prioritization decisions based on their confidence on the
prediction. Because tests perform differently across the
projects, it appears that some characteristics of the software
being tested impact the effectiveness of adaptive testing. The
improvement of 47.7% (R-value of 0.477 significant at 0.001
level) over Project C's 48.4% improvement suggests that
potential for adaptation may not be a function of how mature
an initial test suite is especially given the wide range of
baseline fault detection rates. Future work could determine
which software characteristics provide the strongest
relationship with the benefits from an adaptive test, thereby
helping organizations select projects that are most suited to
RL-based approaches.

Akhilesh Kumar Aleti / IJAIDSML, 6(4), 24-31, 2025

7. Conclusion

The work demonstrates that reinforcement learning is
capable of acquiring adaptive testing policies and provides
strong evidence that adaptive software testing can lead to
autonomous, self-optimizing testing frameworks. Our
proposed architecture which integrates Q-learning agents,
LSTM-based fault prediction and self-healing feedback
mechanisms shows significant advancements from generic
testing approaches in terms of fault detection rates, testing
efficiencies and resource utilization. This validation through
five projects strengthens the generality and practical
applicability of the framework for a wide variety of software
development contexts. By identifying high-severity issues
boring at 92.4% prediction accuracy ahead of time, the fault
prediction part supports proactive testing techniques that catch
mission-critical defects before they are deployed to
production, thus fundamentally improving the software QA
processes. Due to the autonomous adaptation capabilities of
the components of the self-healing mechanism where manual
testing optimization is not needed, this framework can be
beneficial in continuous integration and deployment
environments [37]. Directions for future research involve
generalizing the framework by adapting other machine
learning paradigms, using long-term experience in real-world
industrial systems to validate performance, and developing
transfer learning optimization techniques with the goal of faster
deployment of the framework in different projects. The testing
effectiveness and efficiency improvements shown in this work
set the idea of RL-driven adaptive testing as a novel paradigm
for what self-adaptive software (SAS) could do for
autonomous software quality assurance.

References

[1] Chen, T. Y., Kuo, F. C., Merkel, R. G., & Tse, T. H.
(2023). Adaptive random testing: The art of test case
diversity. Journal of Systems and Software, 83(1), 60-66.
https://doi.org/10.1016/j.jss.2009.02.022

S. K. Gunda, "Software Defect Prediction Using
Advanced Ensemble Techniques: A Focus on Boosting
and Voting Method," 2024 International Conference on
Electronic Systems and Intelligent Computing (ICESIC),
Chennai, India, 2024, pp. 157-161,
https://doi.org/10.1109/ICESIC61777.2024.10846550
Elbaum, S., Rothermel, G., & Penix, J. (2014). Techniques
for improving regression testing in continuous integration
development environments. In Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations
of Software Engineering (pp. 235-245). ACM.
https://doi.org/10.1145/2635868.2635910

S. R. Gudi, "Ensuring Secure and Compliant Fax
Communication: Anomaly Detection and Encryption
Strategies for Data in Transit,” 2025 4th International
Conference on Innovative Mechanisms for Industry
Applications (ICIMIA), Tirupur, India, 2025, pp. 786-791,
https://doi.org/10.1109/ICIMIAG7127.2025.11200537.

(2]

(3]

(4]

30

[5] Mahmud, S., Igbal, M. Z., & Ullah, Z. (2021).

Reinforcement learning based adaptive test case

prioritization for continuous integration. IEEE Access, 9,

117208-117223.

https://doi.org/10.1109/ACCESS.2021.3106715

Gunda, S.K. (2026). A Hybrid Deep Learning Model for

Software Fault Prediction Using CNN, LSTM, and Dense

Layers. In: Bakaev, M., et al. Internet and Modern Society.

IMS 2025. Communications in Computer and Information

Science, vol 2672. Springer, Cham.

https://doi.org/10.1007/978-3-032-05144-8_21

McCabe, T. J. (1976). A complexity measure. IEEE

Transactions on Software Engineering, SE-2(4), 308-320.

https://doi.org/10.1109/TSE.1976.233837

Srikanth Reddy Gudi. (2025). A Comparative Analysis of

Pivotal Cloud Foundry and OpenShift Cloud Platforms.

The American Journal of Applied Sciences, 7(07), 20-29.

https://doi.org/10.37547/tajas/Volume07Issue07-03

I. Manga, "Unified Data Engineering for Smart Mobility:

Real-Time Integration of Traffic, Public Transport, and

Environmental Data,"” 2025 5th International Conference

on Soft Computing for Security Applications (ICSCSA),

Salem, India, 2025, pp. 1348-1353, doi:

10.1109/ICSCSA66339.2025.11170800.

[10] S. K. Gunda, "Automatic Software Vulnerabilty Detection
Using Code Metrics and Feature Extraction,” 2025 2nd
International Conference On Multidisciplinary Research
and Innovations in Engineering (MRIE), Gurugram, India,
2025, pp. 115-120,
https://doi.org/10.1109/MRIE66930.2025.11156601.

[11] Myers, G. J., Sandler, C., & Badgett, T. (2011). The art of
software testing (3rd ed.). John Wiley & Sons.

[12] Pan, R., Bagherzadeh, M., Ghaleb, T. A., & Briand, L.
(2022). Test case selection and prioritization using
machine learning: A systematic literature review.
Empirical Software Engineering, 27(2), 29.
https://doi.org/10.1007/s10664-021-10066-6

[13] S. K. Gunda, "Enhancing Software Fault Prediction with
Machine Learning: A Comparative Study on the PC1
Dataset," 2024 Global Conference on Communications
and Information Technologies (GCCIT), BANGALORE,
India, 2024, pp. 1-4,
https://doi.org/10.1109/GCCIT63234.2024.10862351

[14] Psaier, H., & Dustdar, S. (2011). A survey on self-healing
systems: Approaches and systems. Computing, 91(1), 43-
73. https://doi.org/10.1007/s00607-010-0107-y

[15] . Manga, "AutoML for All: Democratizing Machine
Learning Model Building with Minimal Code
Interfaces,” 2025 3rd International Conference on
Sustainable Computing and Data Communication Systems
(ICSCDS), Erode, India, 2025, pp. 347-352, doi:
10.1109/1CSCDS65426.2025.11167529.

[16] Gunda, S. K., Yalamati, S., Gudi, S. R., Manga, I., &
Aleti, A. K. (2025). Scalable and adaptive machine
learning models for early software fault prediction in agile
development: Enhancing software reliability and sprint

(6]

[7]

(8]

(9]

https://doi.org/10.1016/j.jss.2009.02.022
https://doi.org/10.1109/ICESIC61777.2024.10846550
https://doi.org/10.1145/2635868.2635910
https://doi.org/10.1109/ICIMIA67127.2025.11200537
https://doi.org/10.1109/ACCESS.2021.3106715
https://doi.org/10.1007/978-3-032-05144-8_21
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.37547/tajas/Volume07Issue07-03
https://doi.org/10.1109/MRIE66930.2025.11156601
https://doi.org/10.1007/s10664-021-10066-6
https://doi.org/10.1109/GCCIT63234.2024.10862351
https://doi.org/10.1007/s00607-010-0107-y

Akhilesh Kumar Aleti / IJAIDSML, 6(4), 24-31, 2025

planning efficiency.
Mathematics,
https://doi.org/10.12732/ijam.v38i2s.74

[17] Spieker, H., Gotlieb, A., Marijan, D., & Mossige, M.
(2017). Reinforcement learning for automatic test case
prioritization and selection in continuous integration. In
Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis (pp. 12-22).
ACM. https://doi.org/10.1145/3092703.3092709

[18] Sutton, R. S., & Barto, A. G. (2018). Reinforcement
learning: An introduction (2nd ed.). MIT Press.

[19]1 S. K. Gunda, "Comparative Analysis of Machine Learning
Models for Software Defect Prediction,” 2024
International Conference on Power, Energy, Control and
Transmission Systems (ICPECTS), Chennai, India, 2024,
pp. 1-6,
https://doi.org/10.1109/ICPECTS62210.2024.10780167.

[20] Wang, S., Liu, T., & Tan, L. (2018). Automatically
learning semantic features for defect prediction. In
Proceedings of the 38th International Conference on
Software Engineering (pp. 297-308). ACM.
https://doi.org/10.1145/2884781.2884804

[21] S. R. Gudi, "Monitoring and Deployment Optimization in
Cloud-Native Systems: A Comparative Study Using
Openshift and Helm," 2025 4th International Conference
on Innovative Mechanisms for Industry Applications
(ICIMIA), Tirupur, India, 2025, pp. 792-797,
https://doi.org/10.1109/ICIMIA67127.2025.11200594.

International Journal of Applied
38(2s).

31

[22] White, M., Tufano, M., Vendome, C., & Poshyvanyk, D.
(2019). Deep learning code fragments for code clone

detection. In Proceedings of the 31st IEEE/ACM
International Conference on Automated Software
Engineering (pp. 87-98). ACM.

https://doi.org/10.1145/2970276.2970326

[23] S. K. Gunda, "Analyzing Machine Learning Techniques
for Software Defect Prediction: A Comprehensive
Performance Comparison,” 2024 Asian Conference on
Intelligent Technologies (ACOIT), KOLAR, India, 2024,
pp. 1-5,

https://doi.org/10.1109/ACOIT62457.2024.10939610

[24] Wong, W. E., Gao, R, Li, Y., Abreu, R., & Wotawa, F.
(2016). A survey on software fault localization. IEEE
Transactions on Software Engineering, 42(8), 707-740.
https://doi.org/10.1109/TSE.2016.2521368

[25] S. R. Gudi, "Deconstructing Monoliths: A Fault-Aware
Transition to Microservices with Gateway Optimization
using Spring Cloud,” 2025 6th International Conference
on Electronics and Sustainable Communication Systems
(ICESC), Coimbatore, India, 2025, pp. 815-820,
https://doi.org/10.1109/ICESC65114.2025.11212326

[26] I. Manga, "Federated Learning at Scale: A Privacy-
Preserving Framework for Decentralized Al
Training,” 2025 5th International Conference on Soft
Computing for Security Applications (ICSCSA), Salem,
India, 2025, pp. 110-115, doi:
10.1109/1CSCSA66339.2025.11170780.

https://doi.org/10.12732/ijam.v38i2s.74
https://doi.org/10.1145/3092703.3092709
https://doi.org/10.1109/ICPECTS62210.2024.10780167
https://doi.org/10.1145/2884781.2884804
https://doi.org/10.1109/ICIMIA67127.2025.11200594
https://doi.org/10.1145/2970276.2970326
https://doi.org/10.1109/ACOIT62457.2024.10939610
https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1109/ICESC65114.2025.11212326

