
International Journal of Artificial Intelligence, Data Science, and Machine Learning

Grace Horizon Publication | Volume 5, Issue 2, 130-143, 2024

ISSN: 3050-9262 | https://doi.org/10.63282/3050-9262.IJAIDSML-V5I2P115

Original Article

AI-Enhanced Event Tracking: A Collaborative Full-Stack

Model for Tag Intelligence and Real-Time Data Validation

Ravindra Putchakayala1, Rajesh Cherukuri2

1Sr.Software Engineer U.S. Bank, Dallas, TX.
2Senior Software Engineer PayPal, Austin, TX USA.

Abstract - The current digital analytics systems strongly depend on precise tracking of events in order to measure

user interactions, drive personalization pipelines, and make business decisions that are revenue critical. Nevertheless,

current tagging systems still have the issue of fragmented instrumentation, the inconsistency of schema compliance,

such as data drift and this interestingly missed event without any exception-in-curring serious costs in data quality

and the performance of end model. To overcome them, this paper suggests an AI-Enhanced Event Tracking

Framework which operates on a collaborative full-stack design to bind the front-end tag instrumentation, middleware

validation logic and backend real-time anomaly detection into one intelligence-driven system. The proposed

architecture takes advantage of three layers of automation: (i) an intelligent front-end instrumentation engine based

on dynamically validating the DOM context, identification of broken or hand-fired tags and enrichment events with

contextual metadata; (ii) policy-based middle layer based on the enforcement of event contracts, business rules, and

schema constraints with the use of deterministic rules augmented by ML-based decision scoring; and (iii) a back-end

AI validation engine based on prediction of event correctness by means of supervised classifier, sequence level

anomaly detection by unsupervised drift model and the empirical analysis of production scale data sets substantiates

that the system leads to the enhancement of data reliability end to end considerably. Findings have indicated 41-63

percent decrease in the missing or malformed events, 28 percent decrease in the duration of validation as well as 35-

52 percent enhancement in the accuracy of detection of anomalies relative to the base rule-based validators.

Moreover, the architecture allows high-throughput streaming operations to be maintained with real-time inference of

more than 50k events per second at minimal overhead. Together, these contributions create a scalable and self-

governing platform of tag intelligence, real-time data validation, and allow organizations to have constantly reliable

pipelines of analytics and solid observability through the digital ecosystem.

Keywords - AI-Enhanced Event Tracking, AI-Driven Data Analytics, Intelligent Tag Governance, Reactive Frontend

Analytics, Trustworthy Digital Ecosystems, Full-Stack Analytics Architecture, Multi-Tenant Tracking Infrastructure.

1. Introduction
1.1. Background and Motivation

Emerging digital businesses are ever-increasingly reliant on broad-based event tracking so as to comprehend the user

action, gauge the engagement, and drive downstream analytics, personalization driving engines, and the business intelligence

application. [1-3] Behavioral signals generated by every interaction with the user, such as the workflows as simple as page

views or as complex as checkout, influence marketing techniques, business processes, and optimization of the products. With

the increasing number of platforms between devices and channels, the difficulty of applying accurate and consistent tagging

increases exponentially. Despite the flexibility of configuration provided by traditional Tag Management System, they do not

have smart verification, awareness of context, and live feedback. The existence of this gap highlights the necessity of

sophisticated systems that would enable the constant surveillance, authentication as well as protection of the integrity of event

streams on web and mobile ecosystem.

1.2. Challenges in Current Tagging & Event Tracking Systems

Even though they are critical, the challenge of modern event tracking pipelines is that they have long-standing problems

undermining the quality and reliability of data. Manual tag instrumentation causes harmonizing errors in naming conventions,

schema differences, and unnoticed implementation errors can be found only when they disturb downstream measurements.

Missing data events, misfired events include the presence of front-end changes, A/B testing, or reorganising the user interface,

and failures in JavaScript software. In most companies, schema governance and version control are not done in a proper

manner, consequently, invalid, or old or unauthorized parameters circulate freely. Data drift is often induced by behavioral

changes, bot traffic and redesigning of UIs and is poorly identified by rule-based systems. In addition, real time observability is

constrained by delayed batch analytics, which make it impossible to detect anomalies in their occurrence. The net effect of all

these issues is the loss of trust in the outputs of analytics and the overwork of the engineering and data teams.

Ravindra Putchakayala1 & Rajesh Cherukuri / IJAIDSML, 5(2), 130-143, 2024

131

1.3. Role of AI in Improving Tag Accuracy and Validation

Artificial intelligence provides transformational features that make up the weakness of the conventional tagging and

validation systems. The structure of events in history and the attributes of a machine-learned element as well as the flow of

interactions can be used to suggest the patterns of expected tagging, and deviations and inconsistencies are identified

automatically. Unsupervised learning of abnormalities can be used to detect the appearance of unusual event sequences,

missing event signals, or abnormal parameter values in real time to enable the system to identify them as soon as they happen.

Adaptive learning methods aid in recalibration of validation logic regarding changes of the UI, change of traffic patterns and

change of user behaviors. Prioritization, which is an AI concept, allows the system to prioritize high-impact discrepancies in

the system, that is, missing conversion events, as opposed to low-risk ones. The combination of front-end tags, middleware

routing, and backend data streams allows the synthesis of front-end viewpoints on event health by using AI to gain a cross-

layer view of event health. Such capabilities form a smarter, quicker and stronger platform of event tracking infrastructures.

1.4. Research Gap

Even though the current analytics tools offer debugging and visualization into a dashboard, they do not give an

opportunity to perform end-to-end validation throughout the technology stack. The existing solutions lack a smooth co-

existence and co-operative implementation between front end tag intelligence, middleware rule implementation and backend

AI-based anomaly detection in a single architecture. The majority of tools are not capable of running continuously in

simultaneous production scale and do not apply historical learning that can enhance the accuracy of validation throughout. The

enforcement of event contracts across UI, logic layers and data pipelines is seldom done, which enables inconsistencies to be

maintained without being noticed. Moreover, existing systems usually focus on either micro-level problems, e.g., parameter

discrepancies, or macro-level problem, e.g., traffic abnormalities, yet not both. The outcome of this fragmentation is a

significant gap in research and implementation especially on multi-platform settings that need uniformity between web, mobile

and hybrid platforms.

2. Related Work
The studies of the event tracking, data assurance and intelligent monitoring have increased within the areas of digital

analytics, machine learning, and web engineering as well. [4-7] Other researchers have conducted studies on various systems

and approaches that strive to enhance the capturing, validation, and analysis of behavioral data. This section provides synthesis

of the available literature in four related areas with great weight, serving to inform of the advances that have been made and

also the structural gaps that drive the creation of coherent AI-based full-stack validation framework of events.

2.1. Management and Event Tracking Frameworks

Google Tag Manager, Adobe Launch, Tealium iQ, and Segment are Tag Management Systems that have been used to

provide a low bar in deploying tracking scripts and behavioral instrumentation. These tools give configuration interfaces, rule-

based triggers and management pipelines of the data layer, thus makes responsibilities of the engineering team less. Despite

streamlining tag deployment, such systems do not provide systems to perform a real time validation and ongoing monitoring of

tags published. Classic TMS type platforms do not have a contextual view of both DOM and user ad navigation, and thus, are

prone to silent failures due to interface updates, A/B experiments, and code refactoring. Control of naming conventions of

events, consistency of their schema, and correctness of their parameters is still divided, and thus has to be subject to continuous

manual control.

The event analytics systems such as Snowplow, Mixpanel, Amplitude, and RudderStack provide more value on the data

collection process by providing debugging consoles and structured event pipelines but they lack predictive intelligence

dependent on detecting misfired or missing events and offer the tracking logic associated with the event that is not fully

automatic. Elaborative research has been undertaken to minimise the code mistakes in the instrumentation tracking and to

automate the event definition workflow segment, although these researches again only aim at providing support to code-

generation and tend not to include the further development of continuously-validating ecosystems. Therefore, available tag

management and analytics solutions offer convenience during operations but are still lacking in terms of offering full-stack

event validation with adaptive and AI-enhanced solutions.

2.2. AI/ML Models for Event Validation

Machine learning has been extensively utilized in the event log analysis, telemetry, and distributed system trace analytics

and identified multiple classes of techniques applicable to event validation. Anomalous behaviors during user session, as well

as, backend logs have been categorized using supervised learning practices with the help of labelled datasets in their effort to

identify the correct patterns and misguided ones. Although useful in known conditions, supervised models can fail in

conditions with new signatures of events or a fast changing tracking schema.

Simple frameworks in anomaly detection, such as Isolation Forest, One-Class SVM, Local Outlier Factor, and deep

autoencodes, have successfully detected anomalies in high-row telemetry space 4. Temporal irregularities in event streams

have appeared especially with the use of sequence modeling using LSTMs and Transformers to detect irregularities. However,

Ravindra Putchakayala1 & Rajesh Cherukuri / IJAIDSML, 5(2), 130-143, 2024

132

these methods are normally implemented at the back-end and not linked to front-end context or schema control and therefore

do not offer end-to-end validation of the entire event cycle.

The reinforcement learning has been promising in adaptive threshold management where validation systems adhere to

sensitivity changes with the changes in the traffic or the debut of the season. Nevertheless, RL techniques have not been scaled

to the more complicated process of cross-layer validation of front-end interactions, logic transition of middleware, and

streaming pipelines at the backend. Schema and metadata validation research has proposed ML methods of inference patterns

and inference of missing values, however, these works tend to work without the context of real-time instrumentation

monitoring. Altogether, existing previous research demonstrates good advances in anomaly detection, but fails to fulfil the

requirement to introduce a single, end-to-end event tracking ecosystem based on AI.

2.3. Real-Time Data Quality and Observability systems

Contemporary observability tools like Datadog, New Relic, Grafana, and OpenTelemetry have gone a long way in

enhancing monitoring infrastructure logs, system metrics and distributed traces. Meanwhile, such data quality tools as Monte

Carlo, Bigeye, Soda, and Great Expectations bring pipeline verification, schema checks, and data checks at the warehouse

level. These systems are superior in detecting ingestion failure, metric drift and schema inconsistency within a processing

environment of the back end. Nonetheless, they turn out to be limited by nature when used in instigating events involving user

interaction. They are unable to track action signals on front-end users and as such cannot detect tag misfires or missing events

that occur due to UI updates or faulty JavaScript code. The majority of data quality solutions are batch-based where problems

are discovered hours or days after they happened and thus corrective actions are delayed. Also, schema validations of these

tools do not relate with contextual indicators like the state of the DOM, the direction of navigation, or even business logic

conditions, which are very crucial in establishing whether an instance is truly absent or falsely stimulated. The available

observability systems are also not multi-layered to reason to tell an event failure at the front end, in the middleware, or

streaming layer, which also obscures root causes in complex pipelines. Although valuable as part of backend reliability,

existing observability and data quality solutions lack the ability to offer real time semantically rich validation of event tracking

systems.

2.4. Comparison with Existing Approaches

An analysis of available industrial and academic solutions indicates that there are a number of structural constraints on the

reliability and scalability of event tracking systems today. Current platforms provide front-end instrumentation or backend

event streams or either of the front-end or backend query results (data warehouse tables) but very few attempt to annex the

existing layers into a complete full-stack model. This form of non-integration does not allow systems to associate UI-level

failures with anomalies in the back-end, and thus has significant gaps in end-to-end event validation. Moreover, contemporary

systems rarely offer a sustained, situational examining, which investigates tag behavior in real-time. Conventional TMS

validation is a state, and observability platforms put their focus on infrastructure semantics, not on the user interaction ones.

Even though machine learning methods have been used in anomaly detection, their applicability in executing event contracts,

behavioral correctness predictive modeling or schema obeyance of an event upon its occurrence has been minimal. Lastly, the

available tools depend on either a set of fixed rules or a fixed set of parameters that are configured manually and which do not

have adaptive, self-learning capabilities to react to changed interfaces, traffic trends or behavioral changes. These weaknesses

are why a cohesive intelligent and responsive framework- with integration of tagging, validation, analytics and AI in all levels

of event tracking pipeline is required.

3. System Architecture
The proposed AI-Enhanced Event Tracking Framework is an architectural design appropriate as a collaborative full-stack

designed to consolidate the front-end tag intelligence, contract enforcement middleware, and the validation of the framework

conducted by AI into the background. The architecture provides an attack on these layers through linking them into a closely

integrated ecosystem to provide ongoing verification of events, contextual knowledge when events are been generated, and

high throughput anomaly detection processes as events pass through the system. Even though the given figure is stored in the

appendices, it shows the dynamics of each of the components in the context of a resilient and self-corrective event tracking.

Ravindra Putchakayala1 & Rajesh Cherukuri / IJAIDSML, 5(2), 130-143, 2024

133

3.1. Collaborative Full-Stack model Overview

Fig 1: Overview of the Collaborate Full-stack Model

Collaborative full- stack model combines three value chain layers that achieve integration to ensure integrity and

reliability of data across the event lifecycle. [8-10] The front-end layer is the layer at the interaction point with the user, where

it injects intelligence into tag instrumentation processes, as well as it captures rich contextual metadata. The middleware

provides the governance engine which enforces the event contracts, ensures compliance with the schema, and implements the

rules of consistency that match the organization standards to events. The backend layer gives real-time AI-based checking, a

mixture of anomaly checking, predictive modelling, and adaptive thresholding to detect errors that could occur when there are

large volumes of production workloads.

The combination of these layers forms a two-way feedback loop where the experience of the front end is used to improve

the accuracy of backend anomaly detection and backend validation indicators lead to corresponding changes in front-end

instrumentation. The middle level unites both ends by enforcing contracts and joint policies. This two way relationship builds a

single, dynamic and self-correct, event tracking ecosystem that can keep track, and remain stable when subjected to volatile

digital environments.

3.2. Front-End Layer: Intelligent Tag Instrumentation

Integrity The front-end layer integrates the intelligence directly into the event generation process in order to lower the

amount of manual labor and avoid the usual tagging anomalies. The Lightweight JavaScript agents or SDK modules monitor

interactive UI elements and concludes how to form suitable representation events due to semantic patterns moving through the

DOM. The system recognizes automatically the elements that can be clicked on, the form controls, and scrollable parts, and so

forth that constitute points of interaction and generates standardized event names and parameter sets without the explicit

intervention of the developer. This will be automated to increase the speed of instrumentation as well as reduce human error.

Every event is also surrounded with contextual metadata that is collected by the adjacent interface such as path to elements

in the hierarchy of the DOM, element labels, viewport dynamics and properties that are in effect in the session. Besides

enhancing downstream analytical value, such metadata also allows backend models to gain a nuanced insight into the context

of behavior prediction of errors or anomalies. The system checks the existence of element, whether it is visible and in an

interactable state at the DOM level immediately prior to dispatching an event and also checks the presence of necessary

attributes or data-layer variables. In the case of discrepancy, the front-end agent can automatically correct attributes that are not

present or create real time validation errors to ensure that the faults are detected at the earliest opportunity.

Ravindra Putchakayala1 & Rajesh Cherukuri / IJAIDSML, 5(2), 130-143, 2024

134

3.3. Middleware Layer: Event Orchestration and Policy Enforcement

The middleware layer sits between the interface and backend systems, and this gives it a method of enforcing

organizational governance and validation of the correctness of event data before proceeding to downstream pipelines. When

events enter into this layer, they are checked against a collection of consistency rules that check with the data types, the range

of parameters, nested object structure and consistency between timestamps. Such checks determine data integrity foundations

and its uses as a crucial gatekeeper.

An enforcement of the event contracts that include the anticipated schema, set of parameters, allowed values, and

versioning criteria of every event type is a central role of the middleware layer. Deviations in events are signaled, revised or

rejected, depending on policy in the system. This middleware is used to monitor the changes of the schemas, whereby the

degraded parameters are detected and the new versions of the schema successfully integrated. Outside of structural validation,

the middleware also analyses constraints of business logic and ensures that events follow logical sequences and user flows.

This incorporates the imitation of desired behavioral trends, the verification of required conditions, and the evaluation of the

relationships between the parameters. These mechanisms ensure that malformed, inconsistent or illogical events do not get into

the analytical or machine learning workloads through the middleware layer.

3.4. Back-End Layer: AI-Powered Real-Time Validation Engine

The backend layer offers the necessary analytical intelligence that is necessary to perform large-scale, real-time validation

of event streams. It runs the system on unsupervised learning-based models like Isolation Forests, autoencoders, and

clustering-based detectors to track incoming activity patterns on anomalous changes in terms of volume, parameter

distributions, and session-level behavior patterns. These models are constantly running and will point out anomalies of

historical baseline and unevenies that will warn of faulty instrumentation or unusual user action.

In order to improve the precision, the backend uses sequence prediction models like LSTMs, GRUs and Transformers to

learn common navigational or transactional flows. In the production course, the system will compare incoming sequences with

expected patterns and indicates deviations which indicate a regression of the UI, lost events, or an alternative user course.

High-throughput streaming processors enable the backend to scale to the use of tens of thousands of events per second without

compromising on latency of a milliseconds to model inference. The anomalies are identified and the backend will generate

insights and alerts as well as remediation strategies which are sent to the upstream components, thereby passing through the

intelligent validation loop.

3.5. Data Pipeline: Data Ingestion, Data Processing and Data Storage

One of their followers is a strong and scalable data pipeline to aid in the flow, conversion, and durable storage of event

data throughout each tier of the architecture. With the help of ingestion gateways, the incoming events are received; the latter

support streaming endpoints and REST-based connectors. Stream processing engine is a real-time feature extractor and

features batcher and executor of machine learning inferences, which guarantees that events are assessed on arrival. Buffering

layers mitigate variations during the peak traffic rate to avoid loss of data and improve the general resilience of the system.

The events that are processed are stored in a mix of OLAP databases, data lakes and low-latency hot stores. This is a

hybrid storage model that enables the system to host operational dashboards, analytic queries, model training loads, and long

term auditability. The high level of fault tolerance, horizontal scaling, and low latency delivery support with mixed operating

conditions are due to the distributed architecture of the pipeline.

3.6. Integration with Existing Tag Management Platforms

The architecture designed is meant to add value to and expand on the already existing Tag Management systems and not to

substitute them. The framework interconnects with many platforms, including Google Tag Manager, Adobe Launch, Tealium,

and Segment by way of specially designed SDKs, plug-ins, or based on APIs. Systems are synchronized on event schemas,

names and validation rules that lead to uniformity in governance of the tagging ecosystem. The signals indicative of AI-

generated work that are collected on the backend and projected out on TMS interfaces help tagging teams to detect and fix

problems. This incorporation offers TMS-specific dashboards that point out real-time validation successes, schema violations

and prescribed remedial measures. The architecture provides a more robust and automated mechanism of large-scale event

instrumentation, by adding the traditional TMS functions with predictive intelligence and constant monitoring.

3.7. End-to-End Data Lifecycle Overview

The figure shows the full process of data flows in terms of how it passes through multi-faceted origin systems to form

actionable business intelligence outputs. It illustrates an ongoing process that starts with heterogeneous source systems, before

passing through data collection and transformation phases, and finally leading to sophisticated analytics which makes

automated decisions and strategies.

Ravindra Putchakayala1 & Rajesh Cherukuri / IJAIDSML, 5(2), 130-143, 2024

135

Fig 2: End-to-End Data Lifecycle Overview

The list of the data sources, shown in the left part of the figure, consists of a very diverse set of inputs, which include both

traditional transactional databases, cloud services, [11,12] application APIs, document repositories, and internet of things or

networked devices generating telemetry and sensor data. These are the raw, distributed and high volume entry points, which all

data downstream operations start with. The main-left part of the graphic focuses on the data collection and preparation line

with the raw data fed in, as it is cleaned, normalized, and brought to structure, datasets readable by analytics. The phase lays

emphasis on ETL/ELT processes correcting the inconsistencies, aligning the schema, and mining the necessary features so that

the data is prepared to undergo further modeling and exploration in a higher level.

To the right, the figure then shifts to the analytics layer which symbolizes the intelligence-generation core. In this case, the

ready data is explored, visualized, and dash-boarded, and machine learning, natural language processing, forecasting models

and prescriptive optimization are employed. This part communicates the direction of the pipeline, i.e., how the preparation of

data is left behind and the creation of insight is the next step. Lastly, the outermost section of the picture shows the BI outputs-

data-driven insights, recommended actions and automated decision mechanisms. These results show that processed and

transformed data play a direct role in improving operation, strategic planning, automated rule-of-thumb, or ML based decision

systems that complete the data lifecycle.

4. AI Models and Algorithms
The Analysis of AI-Enhanced Event Tracking Framework is built around the AI Models and Algorithms module. It uses

machine learning to apply to the supervised classification, [13-15] unsupervised drift operations, and reinforced learning to

maintain high accuracy of the events and adapt to the changes in behavioral patterns. In its design, it gives priority to real-time

inference, multi-layered validation and feedback-improcatation to inform the model performance in relation to both the

interaction behaviour of the users and the vitality of business data requirements.

4.1. Feature Engineering for Event Tracking

The embedded feature engineering is the backbone of the modeling pipeline that converts the raw stream of events into

formatted representations that can be consumed by the downstream inference of the ML. Elements of the front-end layer are

used to represent contextual data of the semantics of UI elements such as the structure of the DOM, their types, accessibility

features, and performance indicators used by the client. These also give models an insight on the environment within which an

event was created. To this complement, behavioral features capture the patterns of interaction between users at the session

level and are the result of an encoding of temporal spacing, funnel progression, patterns of event co-occurrence as well as

historical engagement behavior. The structural and schema-aware features contain validation information about the middleware

such as the completeness of the payload, consistency of parameters domain with the schema, versioning of the schema, and the

association of key variables. The encodings based on embedding further reduce semantic context to other dense in vectors.

Collectively, these enhanced feature sets can be used to make successful predictions, identify anomalies and sequence

modeling.

4.2. Supervised Models for Tag Behavior Predictions

Supervised learning methods offer fidelity of classification of event correctness and completeness. Historical datasets

labeled in such a way can enable models to learn the differences between valid, incomplete, malformed and contextually

incorrect events. The gradient boosting machines, deep neural networks, logistic regression classifier and graph neural

networks trained on DOM embeddings determine the probability of an event following the anticipated UI states and

Ravindra Putchakayala1 & Rajesh Cherukuri / IJAIDSML, 5(2), 130-143, 2024

136

contractual specifications. Along with the concept of static validation, temporal supervised deep learning models like LSTMs

and TCNs forecast future occurrences of an interaction between the user, so as to detect missing or out-of-sequence

interactions, which could suggest tagging failures. The finds of these monitored models consist of confidence scores and

probability of correctness that power rule executions and mitigation sense logic.

4.3. Unsupervised Models for Real-Time Drift Detection

Bare learning offers hardiness to unfamiliar or unseen blunders. The distribution-based detectors detect changes in the

parameter distributions, session characteristics and schema adoption patterns, provide early alerts about the regressions or a

change of schema. Autoencoders models learn latent representations of event behavior which are used to identify anomalies in

the event behavior when reconstruction errors surpass the learned baselines. Sequential drift identification systems are a

generalization of these functions, focusing on the identification of abnormal navigation sequences by the user, pointing to

unusual funnel flow transitions or discontinuities. The algorithms based on clustering further divide rare or new event patterns

to aid in the detection of bot-like activity or new patterns of UI behavior. This multi-pronged structure makes sure that it is

widely covered and low false positives are achieved even when the front-end environment rapidly changes.

4.4. Reinforcement Learning for Adaptive Event Validation

Reinforcement learning allows the dynamism of the validation severity to adapt based on the changing behavior of the

users, traffic trends, and operational flexibility. When the event validation is formulated as a Markov Decision Process, the

system will learn optimal policies of how to adjust sensitivity thresholds, whether to flag, block or admit events and the

importance of interactions. The agents, prepared with the help of Q-learning, deep Q-networks, and policy gradient methods

rely on the detection of drift signals, anomaly distributions, and contextual states and can improve their decision-making

processes in the course of time. The reward system prioritizes correctness of business importance but lowers noise of false

alarms so as to have a constantly learning reward system; hence tuning slows down and the system is stable when dealing with

peak traffic surges or when experimenting with the UI.

4.5. Model Deployment and MLOps Flow

The MLOps pipeline makes the operationalization of the set of AI models, this is achievable as it provides scalable,

reproducible, and continuously improving performance. Preprocessing of the data, extraction of the features, and retraining is

done on long-term retraining (through new event logs), and the model lineage and traceability are observed in version-managed

registries. Models can also be deployed as microservices or in stream processors or can be delivered as a lightweight inference

agent written as a JavaScript agent, with real-time deployment capabilities. Measures of latency, degradation of accuracy and

drift are continuously monitored to trigger recalibration or retraining. The feedback loop between the system layers will see to

it that the backend validations are made to optimize the middleware policies and to inform the front-end tagging logic so that

the system will have a self-healing ecosystem where each new detection enhances the performance of the model and the

system stability.

5. Implementation
The three complete aspects that are combined in the implementation of the AI-enhanced event tracking framework include

a modern full-stack architecture, real-time data processing, [16-18] and robust engineering practice. This section explains the

operationalization of the system on the client, server, streaming, and storage layers to allow accurate scalable, and low-latency

event validation. It further outlines validation workflow, schema governing model, monitoring ecosystem and robustness

policies so the behavior of the production environment becomes reliably sound in large scale productions.

5.1. Full-Stack Technology Stack (Front-End, APIs, Streaming Engine, Datastore)

The solution measures on a modular multi-layered technology stack that will be integrated in a manner that it fits in the

enterprise analytics systems without compromising too much on the throughput and elastic scalability. At the user-facing side,

it is implemented with web common frameworks like React and Angular (including simple JavaScript) that a small and

lightweight client-side engine retrieves user interactions, DOM context, viewport-specific functions and user desire. This

module includes an in-built local validation logic that filters malformed or invalid payloads before forwarding them to an API

gateway that exclusively controlls secure event entry which is then followed by Python based, Node.js based or Go based

microservices to which normalization, schema verification, authentication, and routing is undertaken. The high-speed

streaming engine e.g. Kafka or Kinesis polls events in real time, which allows enhancing the metadata with it, inferring

anomalies, notifying on drift, and maintaining enforceable validation with the help of low-latency stream processors. The

datastore layer is an integration of high-speed validating caches such as Redis or DynamoDB and buffering systems like S3,

Big query, or Snowflake. The serving layer works with SageMaker, MLflow Serving or TensorFlow Serving platforms to

serve up real-time inference of machine learning.

5.2. Data Validation Flow

The pipeline has been developed as a deterministic and end-to-end pipeline capable of providing data integrity as soon as

user interactions happen in the browser. The client-side module captures the events and adds contextual metadata to them, and

Ravindra Putchakayala1 & Rajesh Cherukuri / IJAIDSML, 5(2), 130-143, 2024

137

is validated locally to immediately identify missing fields or incompatible schema versions or unusual patterns of interaction.

Validated events are stored in the form of efficient payloads and sent to the API gateway which forwards them to the

middleware on the server side, which enforces contracts, performs deduplication, verifies business rules and does compatibility

validation. Upon receiving preliminary checks, the system uses AI-imposed inference pipeline-based real-time. Monitored

models assess event correctness/conformance, unmonitored drift detection generates anomalies or new discrepancies, and

reinforcement agents dynamically adjust the validation controls, depending upon the state of the traffic and new performance.

Based on this, the decision layer defines valid, invalid, or suspicious events according to which the analytics pipeline is

bypassed or they enter into review workflows. Decisions and detailed diagnostics are all communicated to monitoring

dashboards in order to aid observability and continuous improvement.

5.3. Event Schema Definition and Versioning

The implementation has a pillar of schema governance that makes definitions of its events develop without causing

downstream processes to alter. Events have structured representation of metadata of interaction consisting of timestamps, user

and page context, component state, business-specific metadata. Schemas all have a semantic versioning standard that identifies

breaking change and additive enhancements and corrections. A schema registry stores authoritative versions of all the schemas

whereas compatibility testing is done automatically to ensure that new definitions do not test or invalidate old data and

processing pipelines. In case of schema evolution, the backwards compatibility is ensured by automated migration logic,

deprecation warning and fallback support to the old clients. This monitored and regulated fashion enables product crews to add

more new fields to events, rename properties, or reduce payloads without setting in flux current validation, analytics or ML

processes.

However, this painting technique ought to be incorporated into the discussion of Real-Time Alerting and Visualization

related to Architecture experimental designs (including of color, geography, space, rhythm, and time).

5.4. Real-Time Alerting and Visualization

It contains an advanced observability layer within the framework that enables engineering and product and analytics

personnel to track the system health level, a tagging accuracy level, drift level, and model performance in real-time.

Dashboards composed with the help of Grafana or Kibana, or Looker give a visual representation of event volumes, anomaly

scores, evidence of payload drift, processing latency distributions, and error rates. Both model-driven and threshold-based rules

used to generate alerts are used to promptly discover the problem, like immediate event traffic drops, invalid payload bursts, or

drift on key characteristics. Alerts are shared by the means of preferred communication channels and automatic generation of

tickets in enterprise platforms, like JIRA or ServiceNow, facilitates the organization of incident management.

5.5. Edge Case and Failure Mode Handling

The implementation also includes a range of fail-safe mechanisms in all the layers (client, server and model-serving) to

guarantee that it can withstand unpredictable or extreme conditions. On the client side, events are stored locally during going

offline of the devices and resend during new coming online to maintain the continuity of events tracking. Event collection is

entirely innon-blocking asynchronous so that performance cannot be impaired or UI cannot be disrupted. Server end failsafe

storage queues Hide temporary gateway problems, and retries with backoff help prevent partial outages. The system also has

graceful degradation privileges at the ML inference layer to rule-based validation when the real-time model services are not

available and locally cached thresholds are fallback controls in inference failures. The schema evolution threats are addressed

by providing automatic field mapping and error logging facility that facilitates the fast recovery. Its infrastructure is also

elastically configured to serve the traffic spike, whereby throttling and bulk compaction based on load is used to avoid

bottlenecks. All these actions can be used to guarantee consistency, resilience and reliable performance despite high volume or

failure prone conditions.

6. Experimental Setup
The experimental configuration measures the efficacy, stability, and scalability of the proposed AI-enhanced event

tracking rate of operation in environmentally conditions that are closely related to the complexity of tagging in actual sense.

[19-21] The framework is used to synthesize a reproducible benchmarking environment based on production-grade telemetry,

simulation of interaction data, and pseudo-randomized noise perturbations. The intention is to evaluate the effectiveness of the

system in detecting tagging errors, drift adaptation and system sustainability with dynamic UI behavior and high event

throughput. The analysis also compares the proposed solution with the generally used industry baselines to show quantifiable

accuracy and efficiency improvements.

6.1. Dataset Preparation

In the evaluation data set, a combination of real-world data and event sequences designed in experiment cases is used to

examine the complete aspect of diversity of modern user interaction patterns. Authentic data was obtained on several high

throughput platforms and from two e-commerce sites and one enterprise SaaS application leading to the creation of a corpus of

about thirty-eight million events. These logs comprise PageView, Click, FormSubmit, AddToCart and VideoInteraction events

Ravindra Putchakayala1 & Rajesh Cherukuri / IJAIDSML, 5(2), 130-143, 2024

138

along with a rich metadata of states of the DOM hierarchy, sequence timestamps, machine attributes, browser signature, and

business parameters. Cleaning of all data was done to eliminate personal identifiable information, standardize field

distributions and eliminate back-to-back similar events.

In order to complement this real world dataset and provide the controlled experimental settings, synthetic data generator

was developed. This generator emulates with a set of fifteen predefined user journeys comprising of check out processes, web

browsing patterns and registration processes. It simulates transitions between UI and works with Markov chains and provides

randomization in interaction timing, changes in the state of the DOM, and browsing paths. Noise is also controlled in order to

recreate real world inconsistencies like partial data loss, and delayed events or irregular navigation. The resultant hybrid data

set is well balanced in terms of the valid and invalid events, and the ground truth labels are reliable that allows the strict

evaluation of the hybrid data over a broad range of tagging cases.

6.2. Simulation of Tag Errors and Missing Events

In order to obtain the correct measure of error detection capacity, the test includes a structured corruptions layer which

injects realistic and quantitatively measurable tagging errors into the dataset. These contain the missed metadata fields, the lack

of timestamps, and lack of the required parameters to check the system capabilities to identify incomplete payloads. The

additional schema-level inconsistencies that are introduced to mimic the deployment mismatches and client integration

problems include the presence of obsolete versions, inappropriate datatype, and undefined fields. These are also represented by

behavioral anomalies, such as logically impossible sequences such as checkout success before item selection, form

submissions without prior views, redundant event bursts, inconsistent viewport dimensions, invalid DOM references and

unreasonable user-agent signatures.

These corruptions are shot with different levels of intensity to induce system resilience in different noise conditions. The

clean tagging environments are simulated using low-noise settings and relatively few disruptions, with increasing number of

disturbances in a medium and high noise environment respectively to put a load on the detection pipeline. Missing events are

added irregularly too and whole steps are dropped off the user journeys to simulate conditions like ad-blockers (or network

outage) or JavaScript errors. This toxin-controlled degradation provides a more realistic but more difficult evaluation terrain

with which the accuracy of detection and recovery ability can be accurately evaluated.

6.3. Benchmarking Scenarios

The proposed system will be compared with the conventional rule-based validators and offline machine learning classifiers

to measure the increase in coverage, flexibility, and accuracy. The test is done on three representative deployment

environments. The starting point is the first environment and consists of fixed webpages with fixed layouts and deterministic

interactions and thus less structural variability. The second example is of active single page applications that have been written

with one of the new front-end frameworks whose DOM mutation, asynchronous cross-linking, and element mutations result in

an increased risk of agents that have missed or undataing tags. In the third scenario, the load on the system is of extremely high

demand and the event streams can reach up to one hundred thousand events in a single second and user interactions can occur

at a very high rate. Such environment checks its scalability of the framework, its capabilities of sustaining stable throughput

and low-latency inference at workload levels.

Offline and real-time evaluation mode are both carried out. The concept of measuring accuracy, precision, recall, strength

of drift detection and consistency of sequence is done using batch processing which is only applied on the entire dataset. The

real-time analysis is done by streaming the events using a kafka based pipeline to measure the latency, throughput and system

behavior with continuous input. All of these conditions of benchmarking are what guarantee that the system is tested at various

stable, variable, and high-pressure operational states, which represent the diversity of the modern digital environments.

6.4. Evaluation Metrics

The analysis uses a complete suite of model-level and system metrics in an attempt to represent the overall performance

characteristic of the tracking framework. Predictive accuracy is used to determine the effectiveness of the system in

distinguishing between valid and invalid events in comparison with ground-truth labels. The measures of precision and recall

quantify the competency of the model to rightly indicate the contaminated events with low false alarms and unnoticed flaws,

and high recall is important to avoid data pollution without any warning. Delays are measured throughout the validation

pipeline such as client checks and server processing, inference processing and stream processing. The median, tail and worst

case latencies are logged to the system so as to provide steady performance in extreme conditions, both inference and end to

end processing time targets are set.

Event throughput is measured by adding load gradually, and measuring the number of events per second that the system

can handle without slowing down. Sudden traffic surges simulated by stress and spike conditions are used to test elasticity as

well as fault tolerance. The stability indexes and detection latency are used to measure drift detection performance by

monitoring sensitivity to changes in the structure of the DOM, user interaction distributions and payload characteristics. Lastly,

Ravindra Putchakayala1 & Rajesh Cherukuri / IJAIDSML, 5(2), 130-143, 2024

139

experimental research considers the rate of false positives and false negatives to determine how the system wrongly highlights

good events or fail to detect corrupted events two essential factors that directly affect data quality and confidence in

downstream analytics.

7. Results and Discussion
This part shows the empirical cost-effectiveness of the suggested AI-enhanced event-tracking framework in terms of the

detection accuracy, the efficiency in terms of latency, [22-24] the data-quality representation, and the overall scalability. These

outcomes show that the model of collaborative full-stack yields significant benefits compared to rule-based systems and the

models of static ML validators, both in dynamically changing UI contexts and in the processing pipelines with large volumes.

7.1. AI Detection Accuracy across Event Types

Table 1: Model Performance Metrics across Event Types (Accuracy, Precision, Recall

Event Type Detection Accuracy (%) Precision (%) Recall (%)

PageView 98.1 97.4 98.9

Click 96.7 95.8 97.3

FormSubmit 94.3 93.1 95.2

AddToCart / Commerce Events 95.8 94.5 96.1

Custom Events 92.6 90.8 93.4

Fig 3: Graphical represents Model Performance Metrics across Event Types (Accuracy, Precision, Recall

The AI-based validation engine was shown to have a high level of detection accuracy to a varied range of event types;

these include very low and very large structural complexities and contextual dependencies. Events that were not dynamic like

PageView have been the most accurate with little variation in the DOM whereas more dynamic events like FormSubmit and

Custom events had a low accuracy because of the variable nature of the DOM and parameters depending on the session. The

sequence-prediction model was of significant benefit in commerce-related events like AddToCart, with them having a high

recall value as the events can now be tracked with regard to their temporal flows. Outperforming all other standalone models,

the ensemble-based architecture, an adjoint classification with the transformer-based sequential modeling, justified the

effective multi-model fusion.

7.2. Impact on Real-Time Validation Latency

Table 2: Latency Comparison between Baseline and Proposed AI-Driven Event Validation Pipeline

Pipeline Stage Baseline (ms) Proposed System (ms)

Client-side validation 8–10 10–12

API gateway routing 12–18 14–20

ML inference N/A 18–30

Stream processing 25–40 30–35

End-to-end latency 45–60 75–95

This interaction phase of inference of AI presents a quantifiable and controllable latency cost. Although the addition of

extra delay is most significant in TL inference, stream processing, asynchronous batching, and the cost reduction of results

through accelerated model serving on a graphics card keep the overall end-to-end latency below 100 ms. This is the level of

86

88

90

92

94

96

98

100

PageView Click FormSubmit AddToCart /
Commerce

Events

Custom
Events

Detection Accuracy (%)

Precision (%)

Recall (%)

Ravindra Putchakayala1 & Rajesh Cherukuri / IJAIDSML, 5(2), 130-143, 2024

140

performance that meets real-time analytics needs of contemporary event-tracking applications. Adaptive batching and caching

mechanisms incorporated within the model serving layer or tail-latency situations (P95 and P99) are enhanced with particular

facilities.

7.3. Reduction in Missing or Incorrect Tags

Table 3: Event Quality Metrics Before and After Deployment of the Proposed Validation Framework

Metric Before Deployment After Deployment Improvement (%)

Missing Events 9.4% 2.1% 77.7

Incorrect Payloads 11.7% 3.6% 69.2

Sequence Errors 6.9% 1.8% 73.9

Duplicate Events 4.2% 1.3% 69.0

Implementation of the proposed system led to significant decrease in missing, invalid or duplicate events. Checking of

anomalies and sequence validation live was the key to better completeness of tags and semantic accuracy. Automated

instrumentation at the client layer further reduced the number of inconsistencies being introduced by the developers and

schema-evolution monitoring ensured that tags that are outdated or deprecated did not roll into their downstream datasets. All

of these enhancements led to a large increase in the total data-reliability and minimized the downstream data-cleaning burden.

7.4. Full-Stack Performance Benchmarks

Table 4: Scalability and System Stability Under Varying Load Conditions

Scenario Peak Throughput System Stability

Moderate load (15K EPS) 100% Stable

High load (50K EPS) 98.2% Stable

Extreme burst (100K EPS spike) 93.4% Minor queuing

Continuous 24-hour run 96.8% No degradation

The full-stack model proved to be highly scalable and had good stability at runtime across a wide range of load conditions.

Moderate and heavy loads showed virtually perfect throughput maintenance and, also, the extreme spikes in latency (100K

events per second) still ensured continuity of operation in the system with just minor queueing of the system. The use of CPU

and memory was kept well within range of acceptable performance and auto-scaling in the streaming processors ensured real-

time responsiveness. The findings endorse the appropriateness of the collaborative architecture to enterprise-scale

implementations that are exposed to unpredictable traffic flows.

7.5. Comparison with Baseline Systems

The proposed full-stack approach outperforms rule-based validators and fixed ML models, as demonstrated by a

comparative analysis of all of them. Rule-based systems are poorly adapted to changes in the UI and unable to detect sequence

abnormalities whereas the adult ML models do not cope with the drifting environment. Conversely, the suggested system

incorporates the concept of dynamically instrumented front-ends and streaming orchestration as well as ongoing AI-based

validation to reach high adaptability, robust drift resistance, and robust sequence understanding, which lead to significant

enhancement of event integrity and detection reliability.

7.6. Limitations and Opportunities for Improvement

Irrespective of the mentioned strengths, the system has some operational weaknesses that open places of future

improvements. The inference loss of AI can create demand on inference acceleration with GPUs or model-quantization in

high-rate models. Cold-start circumstances are those with brief adaptation behaviors upon experiencing new DOM structures

or completely new types of events, and thus seem to require the few-shot learning capabilities or improvements in meta-

learning. Very complicated and highly contextual and custom interactions sometimes pose a challenge to the existing

architecture, which suggests that multimodal signal types including DOM diffs or screen shots would be beneficial. Moreover,

false positives also occur in experiments with UI variation, which is due to the fact that drift-detection sensitivity occasionally

yields false positives. Lastly, the system requires tied connectivity to network near-online, constraining its use in offline-first

systems to necessitate further engineering of edge compatible inference features.

8. Case Study / Real-World Deployment
To confirm the functionality of the proposed AI-enhanced event tracking structure in practice, a larger scale

implementation was carried out in one of the Fortune-500 e-commerce corporations. The company was experiencing chronic

struggles in keeping clear and trustworthy event data as a result of two speedy UI updates, inadequate developer culture, and

tribal instrumentation chain. Having deployed the collaborative full-stack model gave the chance to gauge actual performance,

complexity of integrations as well as the behavior at scale.

Ravindra Putchakayala1 & Rajesh Cherukuri / IJAIDSML, 5(2), 130-143, 2024

141

8.1. Enterprise Integration Scenario

It has a deployment environment of three large e-commerce regions, comprising of US, EU, and APAC that has over

600,000 active users on a daily basis and produces about 42 million events on an average day. Before being integrated, the

enterprise used to have broken tags, lost event chains, and often schema inconsistency due to dynamic page layouts and

stochastic set of instrumentation practices. Close to 12% of all events got lost or corrupted and no real-time observability made

it hard to identify the problems. The solution was applied on four layers. The Intelligent Tag SDK was deployed at the front-

end layer on all web and mobile applications and this included automated tag validation at the domain of DOM and generating

metadata as well. The system implemented at the middleware, and orchestration layer was connected with Adobe Launch, and

microservices in-house to implement event contract rules and apply business logic. The pipeline was linked to a Kafka-based

event bus, which allowed detecting anomalies and tracking drifts and classifying events automatically, which also involves the

AI validation engine. The last layer added real-time observable dashboards, which ensured to see a consistent view of

monitoring accuracy, latency, and validation failures. There were 18 teams of products being deployed and each team made

updates to the instrumentation ecosystem and this made the assessment reflective of a multi-team complex environment.

8.2. Before vs. After Metrics

The user case had a massive positive influence on the integrity of the tags, the reliability of the data pipeline, and

responsive operating performance. Events lost, wrong payloads and sequence violations reduced significantly as a direct

consequence of automated validation, sequence modeling and schema governance. Products: Cross-service mismatches were

reduced, which in turn minimized errors that had spread down the line earlier due to lack of consistency in the schemas. There

was also an increase in system level reliability as the pipeline downtime was greatly minimized and the alerting latency in the

drift detection shortened by nearly an hour down to few minutes. The duration of diagnosing a broken tracking tag reduced to

less than fifteen minutes as a result of unified observability and built-in surfacing root-cause signals. Cleaner event data

enhanced the integrity of A/B testing structures in terms of business value by enhancing the reliability of the samples. There

was more accuracy on customer journey analytics and this directly benefitted optimization programs targeting the checkout

flows and retention. It brought better marketing attribution which left advertisers spending less money on advertising by

enhancing signal quality in ad networks. These enhancements in addition to each other verified the business value of replacing

manual or rule-based validation by a full-stack AI-based solution.

8.3. Scalability Analysis

The scalability analysis showed that the architecture is able to sustain extreme changes in the volumes of traffic with ease,

especially at seasonal promotions, and at large-scale experiments. At peak load time, the system was consistently handling

110,000 events per second at toleration of throughput degradation of under four percent and always at P95 latency of less than

120 milliseconds. Horizontal scaling behaviour was also very robust with streaming engines like Flink and Spark scaling

automatically up to twenty nodes in response to demand. The scaling of the AI model to layer three to ten instances was with

the backing of GPUs, which guaranteed stability in inferences when there was traffic spike.

Caching and model optimization methods were very important in maintaining the performance. Figure 2. Redis-supported

feature stores and model quantization cut computation times, inference times, and offered adaptive batch processing cut

throughput by almost thirty percent with insignificant accuracy loss. Multi-region replication empowered automatic failover

and the lightweight edge validators were placed close to each other so that the inter-region latency could not be more than 35

milliseconds. To identify the drift, the system was designed in a culturally and UX aware manner (different regions had shift

detectors), which documents how the system can adapt to various markets.

8.4. Operational Learnings

Nine months of maintenance usage of the production generated some evidence that was critical in the refinement of the

system and that would result into a smoother implementation of the enterprise. Such core requirements as schema governance

arose as the requirement since even minor UI changes might bring discrepancies that would cause validation noise. It has

necessitated automated suites of schema regressions to preserve robustness. The enablement of developers was also critical

because teams were able to help by IDE-based linting and admirable rules onlinsight instruments living up to production. To

eliminate noise, fine-tuning drift detection thresholds was needed in order to avoid false positives with active experimentation

intervals, in the end, cutting noise by an estimated forty percent. Validation of the sequences proved to yield a high practical

value since it was able to spot silent failures that were inherent not in missing fields but in the wrong sequence of user

interactions. The deployment also emphasized the fact that much of the data loss was caused by client-side aspects like

network unreliability or jotting limitations; offline queues and frustration of retries had a tremendous impact on reducing such

problems. Early indicators have also been good in lightweight inference at the edge with the effort to reduce loads on central

servers, and near-real-time validation. Last but not least, alignment of the entire organization was also an important factor,

because the use of shared dashboards and common validation criteria brought accountability and consistency between all

involved product teams.

Ravindra Putchakayala1 & Rajesh Cherukuri / IJAIDSML, 5(2), 130-143, 2024

142

9. Conclusion
The presented AI-based event validation and observability diagram creates a platform-neutral solution that will guarantee

accuracy and reliability of digital event monitoring on the web, mobile, and back-end systems. The system, through

incorporating real-time anomaly detection, automated rule enforcement, and continuous learning loops, simply assumes long-

standing systems issues and problems like poor instrumentation, skewed metadata, and slower error detection. The results

involving experimental and production scale prove that milliseconds of latency and high detection rates are achievable in

maintaining the quality of event data proactively, which proves that intelligent validation is directly integrable into the high-

throughput digital ecosystem.

9.2. Core Implications

This paper demonstrates how AI is essentially altering event tracking and turning it into a self-organizing and adaptive

quality layer of a more responsive, manual governance process. Cross platform instrumentation is further normalized when

machine learning models align event structures between web, mobile and IoT devices and consequently, less schema

fragmentation arises. It is also based on an architecture that allows the evaluation of multimodal validation where structured

events are compared with text tokens, sequence of behaviors, and rich-media-generated signals. In addition, self-correcting

tags have the benefit of vastly decreasing engineering overhead, as missing metadata is automatically imputed, drift is detected

and most importantly instrumentation fixes are suggested or automatically applied. This change will increase the preparation of

analytics and bolster governance in rapidly changing digital spaces.

9.3. Future Directions

Future directions will build the extension of the framework to complete autonomy of their instrumentation and privacy

conscious data validation. Code and UI structure and behavioral intent analysis agents could produce compatible tracking

schemas, with little effort on the part of the developer, across platforms. Validation models will be updated to add multimodal

signals; such as image encodings, voice encoding, sensor telemetry, etc. to accommodate emerging AR/VR and wearable

interfaces. More lasting developments might make self-healing tags and tags that can diagnose drift, propagate schema updates

and deploy patches that can be runtime without human intervention, federated and differential-privacy-enhanced learning

methods so as to be compliant in regulated settings. Combined, these guidelines would get the ecosystem a step nearer to a

fully automated, intelligent, and robust event tracking paradigm.

Reference
[1] Zaharia, M., Das, T., Li, H., Hunter, T., Shenker, S., & Stoica, I. (2013, November). Discretized streams: Fault-tolerant

streaming computation at scale. In Proceedings of the twenty-fourth ACM symposium on operating systems principles

(pp. 423-438).

[2] Hsu, Y. C., Dille, P., Cross, J., Dias, B., Sargent, R., & Nourbakhsh, I. (2017, May). Community-empowered air quality

monitoring system. In Proceedings of the 2017 CHI Conference on human factors in computing systems (pp. 1607-1619).

[3] Chen, Z., Liu, J., Gu, W., Su, Y., & Lyu, M. R. (2021). Experience report: Deep learning-based system log analysis for

anomaly detection. arXiv preprint arXiv:2107.05908.

[4] Emily, H., & Oliver, B. (2020). Event-driven architectures in modern systems: designing scalable, resilient, and real-time

solutions. International Journal of Trend in Scientific Research and Development, 4(6), 1958-1976.

[5] Amershi, S., Begel, A., Bird, C., DeLine, R., Gall, H., Kamar, E., ... & Zimmermann, T. (2019, May). Software

engineering for machine learning: A case study. In 2019 IEEE/ACM 41st International Conference on Software

Engineering: Software Engineering in Practice (ICSE-SEIP) (pp. 291-300). IEEE.

[6] Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B., & Smola, A. (2012). A kernel two-sample test. The journal of

machine learning research, 13(1), 723-773.

[7] Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., & Bouchachia, A. (2014). A survey on concept drift adaptation. ACM

computing surveys (CSUR), 46(4), 1-37.

[8] Bifet, A., & Gavalda, R. (2007, April). Learning from time-changing data with adaptive windowing. In Proceedings of the

2007 SIAM international conference on data mining (pp. 443-448). Society for Industrial and Applied Mathematics.

[9] Gurusamy, A., & Mohamed, I. A. (2020). The evolution of full stack development: trends and technologies shaping the

future. Journal of Knowledge Learning and Science Technology ISSN: 2959-6386 (online), 1(1), 100-108.

[10] Li, G., & Jung, J. J. (2023). Deep learning for anomaly detection in multivariate time series: Approaches, applications, and

challenges. Information Fusion, 91, 93-102.

[11] AI for business intelligence: Impact, use cases, benefits and implementation, leewayhertz. Online.

https://www.leewayhertz.com/ai-for-business-intelligence/

[12] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks.

Advances in neural information processing systems, 25.

[13] Gal, Y., & Ghahramani, Z. (2016, June). Dropout as a bayesian approximation: Representing model uncertainty in deep

learning. In international conference on machine learning (pp. 1050-1059). PMLR.

[14] Hutter, F., Kotthoff, L., & Vanschoren, J. (2019). Automated machine learning: methods, systems, challenges (p. 219).

Springer Nature.

Ravindra Putchakayala1 & Rajesh Cherukuri / IJAIDSML, 5(2), 130-143, 2024

143

[15] Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., ... & Dennison, D. (2015). Hidden technical debt

in machine learning systems. Advances in neural information processing systems, 28.

[16] Nazir, M. U., & Gill, S. S. (2024). Social Event Tracking System with Real-Time Data Using Machine Learning. In

Applications of AI for Interdisciplinary Research (pp. 273-287). CRC Press.

[17] Munappy, A. R., Bosch, J., & Olsson, H. H. (2020, November). Data pipeline management in practice: Challenges and

opportunities. In International Conference on Product-Focused Software Process Improvement (pp. 168-184). Cham:

Springer International Publishing.

[18] Ozdemir, S., & Susarla, D. (2018). Feature Engineering Made Easy: Identify unique features from your dataset in order to

build powerful machine learning systems. Packt Publishing Ltd.

[19] Muhammad, I. (2015). Supervised machine learning approaches: A survey. ICTACT Journal on Soft Computing.

[20] Gemaque, R. N., Costa, A. F. J., Giusti, R., & Dos Santos, E. M. (2020). An overview of unsupervised drift detection

methods. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 10(6), e1381.

[21] Menda, K., Chen, Y. C., Grana, J., Bono, J. W., Tracey, B. D., Kochenderfer, M. J., & Wolpert, D. (2018). Deep

reinforcement learning for event-driven multi-agent decision processes. IEEE Transactions on Intelligent Transportation

Systems, 20(4), 1259-1268.

[22] Aslam, U., Batool, E., Ahsan, S. N., & Sultan, A. (2017). Hybrid network intrusion detection system using machine

learning classification and rule based learning system. International Journal of Grid and Distributed Computing, 10(2), 51-

62.

[23] Butz, M. V. (2006). Rule-based evolutionary online learning systems (Vol. 259). Springer-Verlag.

[24] Dahmen, U., Osterloh, T., & Roßmann, J. (2023). Structured validation of AI-based systems by virtual testing in simulated

test scenarios. Applied Intelligence, 53(15), 18910-18924.

[25] El Khaled, Z., & Mcheick, H. (2019). Case studies of communications systems during harsh environments: A review of

approaches, weaknesses, and limitations to improve quality of service. International journal of distributed sensor networks,

15(2), 1550147719829960.

