International Journal of Artificial Intelligence, Data Science, and Machine Learning
Grace Horizon Publication | Volume 6, Issue 2, 153-160, 2025
ISSN: 3050-9262 | https://doi.org/10.63282/3050-9262.1JAIDSML-V612P117

Original Article

Generative Al-Enabled Intelligent Query Optimization for

Large-Scale Data Analytics Platforms

Dinesh Babu Govindarajulunaidu Sambath Narayanan
Independent Researcher, USA.
Received On: 05/04/2025 Revised On: 14/04/2025 Accepted On: 30/04/2025 Published On: 20/05/2025
Abstract - The immense scale of data volume in the distributed cloud infrastructures has magnified the computational
intensity of query processing in extensive analytics system like Data Lake, distributed SQL systems and real-time data
warehouses. The rule-based and cost-based algorithm-based traditional query optimization methods are becoming
inadequate with dynamics, heterogeneous sources of data, and unpredictable execution conditions. The study presents
an Intelligent Query Optimization Framework that relies on an Al to automatically rewrite the queries, optimize the
plans, and execute them dynamically using the Generative Artificial Intelligence (Gen-Al). The proposed system term
employs reinforcement learning (RL), natural language processing (NLP), and deep neural architecture to produce
optimized query schemes, approximate the best implementation plans, decrease latency and enhance the throughput
in gigacursing assemblies. Workloads, execution history of queries and run-time performance metrics on the
distributed systems like Apache Spark, Presto, and Snowflake are all used to train the system. The research
contributions consist of: (i) a synthesis mechanism to generate query plans through the use of transformer-based
models, (ii) modeling to predict the costs of the workload, (iii) a multi-objective optimization scheme that minimizes
the execution time, resource consumption, and cost of data transfer, and (iv) a hybrid architecture in which a batch
and a streaming analytics is executed. Extensive experimental findings using the TPC-H benchmark show how it
improves performance by 41%-percentage change in query latency, 32-percentage changes in throughput, and 27-
percentage changes in memory usage as compared to state-of-the-art optimizers. The presented framework can be
scaled, flexible and proficient in the changing data environment, which is a remarkable breakthrough in intelligent
data analytics.

Keywords - Generative Al, Query Optimization, Big Data Analytics, Machine Learning, Cost-Based Optimization,
Reinforcement Learning, Distributed Databases, Data Lakes.

1. Introduction
1.1. Background

The contemporary digital ecosystem produces a never
before seen amount of heterogeneous data of variety of
authors like social media communications, 10T sensor data
streams, business transactions of an enterprise, and data-
intensive scientific applications. [1-3] Analytical query
engines are becoming more popular in organizations as a
way of deriving useful information on this ever-growing
informational terrain. These engines should be able to scale
the complex SQL-like query complexity that would include
multi-table joins, nested subqueries and aggregations, real-
time filtering of enormous data-sets maintained in scattered
surroundings. A rule-based and cost-based approach to
optimizing databases, scaling into zettabytes, cannot sustain
performance in large scale data sets since its approach relies
on a set of fixed assumptions concerning data properties and
system behavior. In the meantime, highly changeable cloud
environments, fluctuations of workloads, and data
distributions require adjustment upkeep instead of optimal
adjustment. Less than ideal implementation strategies do not
only raise query responses but also propagate unjustified
computation, network transmission and storage expenses,
which is most vital in contemporary pay-as-you-use cloud

design. These issues make it clear that autonomous,
intelligent query optimization strategies are required that
have the ability to learn through execution patterns, infer
through structure and semantics of SQL queries, and
improve their performance over time. This mounting stress
on extrapolating analytical efficiency continues to drive the
desire to find a solution in the generative Al and
reinforcement learning, which would supersede the
constraints of traditional optimizers.

1.2. Need for Generative Intelligence
1.2.1. Autonomous Query Rewriting:

Historical rule based optimizers rely on hand-written
rules stated by database specialists. Such heuristics may be
quite static, and restricted in scope, which does not reflect
the new optimization opportunities within the changing
workloads. However, generative Al has the ability to
automatically rewrite SQL queries into more efficient
formats by being trained on what has been executed
historically. It is able to search considerably bigger space of
transformations finding semantically equivalent but unusual
rewrites that human beings might not notice. This
independence minimizes the workload of manual tuning and

Dinesh Babu Govindarajulunaidu Sambath Narayanan / IJAIDSML, 6(2), 153-160, 2025

makes sure that the system is continuously changing in
response to changing query behaviour.

NEED FOR GENERATIVE INTELLIGENCE

Adaptive Learning from Runtime
Fee:

dback
A

Autonomous Query Rewriting

A

~7
v

Prediction of High-Performance
a Paths

Fig 1: Need for Generative Intelligence

1.2.2. Prediction of High-Performance Data Paths:

Traditional optimizers utilize heavily estimated statistics
which can be incorrect when data distributions change. On
the contrary, the generative intelligence is trained to guess
the most efficient data access and join paths in terms of
contextual knowledge of query semantics and execution
history. The combination of transformers and learned
embeddings makes the system create deep representations of
relational dependencies and can preemptively recommend
data paths that minimize computation, network transfers, and
memory overhead. This forecasting ability results in a
continuously improved planning decision even in very
dynamic circumstances.

1.2.3. Adaptive Learning from Runtime Feedback:

One of the biggest shortcomings of the static optimizers
is that they cannot find improvement automatically on the
basis of the actual system performance. Generative Als
combined with reinforcement learning form a loop of
continuous feedback between actual execution measures and
subsequent optimization decisions. The results of poor
performance are punished, and successful strategies are
increased, enabling the optimizer to change along with
infrastructure changes, workload trends, and data expansion.
Such flexibility can guarantee the efficiency in the long-run
without any human-intervention or expensive
reconfiguration tasks.

1.3. Query Optimization for Large-Scale Data Analytics

.”/lll&
N ¥
i_s

QUERY
OPTIMIZATION

S

'E.*‘ i

T
- . . ,
Fig 2: Query Optimization for Large-Scale Data
Analytics Platforms

154

Big-data analytics systems have become a critical
infrastructure in organizations that are engaged in the fields
of finance, healthcare, e-commerce, telecommunication and
scientific research. [4,21] These environments need to be
capable of handling large and continuously growing data
volumes as well as answer the growing need of complex
workloads involving analytics. With the shift to distributed
data-storage structures, including cloud warehouses, Hadoop
systems, and Spark engines, the implicit query processing
inferred is much more complex. What used to be a compile-
time choice of query optimization, can now be a dynamic
operation that needs to take into account heterogeneity of
hardware, data distribution patterns, and workload changes
dynamically. Multi-table joins, recursive queries and window
functions have a high computational overhead and in case
one optimizer chooses an imperfect execution plan, a
performance degradation can be multiplied over the
distributed cluster. Moreover, the cost models employed by
all conventional optimizers are based on statistical
approximations that get out of date rapidly, particularly in
streaming and mixed-workload conditions where data
distributions change irregularly and unpredictably.
Additional resource pressure like network shuffle costs and
memory pressure are also the predominant factors affecting
the performance of a query scale. Efficiency is thus achieved
through smart decisions that respond to changing conditions
of systems, and one that correctly reflects logical query
structure and data semantics. The ability of the optimizer to
select the most appropriate execution strategies is necessary
in modern organizations that require low-latency delivery of
results, high throughput of processing concurrently and
reduced operational cost. Here query optimization is not
simply a performance optimization method but rather a
performance boosting tool that is essential to business
competitiveness and timely information. Since analytical
platforms keep increasing in scale and complexity, there is
an evident necessity of novel methods like generative Al and
machine learning to supplement or substitute stagnant rule-
based logic. Such sophisticated techniques can be trained by
execution experience, self-evolve with some time, and
provide strong operation in a variety of dynamic and
dynamic information settings.

2. Literature Survey
2.1. Rule-Based and Cost-Based Optimizers

Conventional database systems, including PostgreSQL,
System-R and Apache Calcite have been traditionally based
on rule-driven heuristics together with cost-based models in
order to [6-9] produce a query execution plan. These
optimizers attempt to approximate the cost of running other
strategies of queries, depending upon projected use of CPU
time, disk access instructions, and network interactions as
well as utilization of memory. Though this has been
successful over decades, the underlying assumption of this
approach is that the workload of the applications and the
conditions of the hardware is steady and predictable. With
dynamic scaling of cloud deployments, long temporal trends
on the nature of data changing, the assumption of cost is no
longer reliable and as a consequence, the results of execution
choices are suboptimal and/or outdated.

Dinesh Babu Govindarajulunaidu Sambath Narayanan / IJAIDSML, 6(2), 153-160, 2025

2.2. Machine Learning Approaches

The contemporary studies have brought machine
learning methods into database optimization and setting.
Other systems, such as Otter Tune which are learning based,
aim to compile workload patterns to propose configuration
changes, and Sage DB aims at automatically tuning lower-
level parameters using learned models. Reinforcement
learning is also applied to other projects like Bao where
query plan selection is also enhanced through trial and error
on numerous query executions. Nevertheless, these methods
usually deal with very focused sub-tasks of optimization.
They also widely neglect the end-to-end plan construction
and their flexibility is limited to slow training, high resource
requirements or lack of visibility into complex distributed
query environments.

2.3. Generative Al for Databases

The latest trends in the field of natural language
processing and transformers-based models have created
potential possibilities of including generative Als in the
interfaces of databases. The main aspects of this work are
improved usability including better SQL auto-complete,
query structuring based on the intent of the user, and
improved semantic value of schema metadata. Although
these methods allow a more natural interaction with systems
of data, they are seldom wused in addressing more
operationalization-related problems such as optimization of
the physical plans, or adaptability at runtime. The efficiency
is still all about developer productivity and not on providing
execution-time productivity gains.

2.4. Research Gap

Although there is an improvement in several fronts, the
contemporary database intelligence solutions also fail to
allow holistic and entirely autonomous query optimization.
No known system is reliable to produce full execution plans
without relying to a great extent on hard and fast rules or
hard-wired heuristics. Meta-optimization, in which trade-offs
between performance such as speed, cost, and resource
fairness have to be made, is only limited in use. Moreover,
the vast majority of research prototypes are limitedly tested
and rarely used in complex distributed systems like cloud
data warehouses or scaled analytics engines. This creates a
sound and pressing need of systems that can learn, adapt and
optimize at all times in the dynamics of the world we operate
in.

3. Methodology
3.1. System Architecture

Al-driven decision-making as a part of the entire query
optimization pipeline. It works by having an SQL query of a
user turned into a structured form followed by turning [10-
12] such a structured form into embeddings through a
transformer model. Such embeddings are used by a
reinforcement learning (RL) agent when searching the most
effective query execution plan. After the plan is
implemented, runtime measurements are monitored and fed
back to the learning model where further enhancement is
made by closed-loop optimization.

e Query Parsing: The initial phase of the architecture
takes the raw SQL input and changes it into an
internal logical form. The parser identifies relational
operators, predicates, join conditions and schema
metadata, in order to construct a query tree
containing the high level semantics of the request. It
is the form of representation, which is structured,
that forms the foundation of the downstream
learning models, so that the syntactic accuracy, as
well as relational dependencies, can be upheld once
the optimization process commences.

e Embedding Generation: We use a generator based
on transformers to learn to capture the query
structures hidden complexity. It transforms logical
query tree into high dimensional vector
representation that encodes relations between tables,
attributes and operators. Contextual insight These
embeddings give a much more detailed contextual
insight than conventional statistical heuristics.
Consequently, the optimizer is made capable of
generalizing its decision-making to unseen queries
and dynamic workloads, to provide flexibility
which is beyond what the traditional cost-based
models can provide.

e Plan Search: A reinforcement learning agent
conducts intelligent searching of the execution plan
space. Rather than searching by brutality or given
rules, the agent gets to discover which join orders,
operator selections, and physical strategies perform
better. It uses rewards based on execution results as
an evaluation of actions, and increase in effect
gradually refines its policy to faster and more
accurate optimization decisions. This strategy
enables unceasing training which adapts to work
load and environmental shifts.

e Execution Feedback Loop: Once an executed plan
has been executed on top of the target database
engine, performance measures like time taken to
execute the plan, amount of resources used and the
costs are collected and fed back to the optimizer.
Such feedback is key to closing the loop: the system
is constantly improving its learning models,
correcting previous assumptions, and continuing to
make better decisions in selecting a plan. With time
the optimizer changes in response to changing data
distributions, system loads and hardware
characteristics- attaining autonomous and self-
tuning behavior.

System Architecture

Query Parsing @

Generation

Plan Search @

[: ® Embedding

Execution
Feedback Loop

Fig 3: System Architecture

155

Dinesh Babu Govindarajulunaidu Sambath Narayanan / IJAIDSML, 6(2), 153-160, 2025

3.2. Query Embedding Model

We encode SQL queries into dense vectors in our
system, which are simultaneously syntactically and
semantically expressed in terms of their execution. [13-15]
This starts with the SQL text being translated into a series of
tokens, including names of the tables, names of the columns,
operators, and join keywords. These tokens are then
processed into an embedding model based on transformers
which produces a continuous representation of a whole query
in a Vector. To put it simply, query embedding is got
through the use of a transformer model across the sequence
of SQL tokens. The transformer architecture enables the
model to discover long-range correlations within query
structures consisting of complex queries, which can include
nested subqueries of deep chained join criteria. The model is
not taught SQL as plain text; it is taught the relationship
between query operators, as well as how various clauses
contribute to complexity of execution. Nonetheless, it should
be noted that SQL queries are not entirely linear directions:
they can be thought of as graphs that have relationships as
nodes. As an example, join predicates establish relationships
between tables explicitly, which affect the join order and the
complexity of the plan. In order to build in this relational
context, we build a query graph on which nodes denote
tables or operations and dependencies denote join, or
dependency relationships. This graph structure is then fed
through a Graph Neural Network (GNN) to allow the model
to reason about graph topology. The GNN combines
information on the edges into a code that indicates the tables
which are joined, the joins that are required and selective
filters. This adds richness to embedding of structural
awareness that would have been missed by a purely text
based model. Our model consists of transformer embeddings
coupled with graph-based relational features, which makes it
generate a hybrid query representation with linguistic
meaning and execution-relevant topology. This coherent
result has a unified output of vectors to aid in a smarter
decision making process during plan search to enable the
reinforcement learning agent distinguish between logically
similar yet structurally dissimilar queries. The embedding
model is also adapted, as the optimizer keeps on improving
its capacity to capture the performance critical features of the
SQL workloads as execution feedback is presented
continuously.

3.3. Generative Query Rewriting

In this element, the system relies on the generative Al
model that automatically reformulates SQL queries into a
more efficient one and refers to the semantic meaning. The
principle behind it is that given a query as input, the model
will generate another query as a rewritten query with the
learnt query embedding and a group of performance and
resource constraints as input. That is, a generative Al model
rewrites the positive query with respect to query vector
representation and system constraints like the latency
constraint or memory restriction, or preference to distributed
strategies of execution. The purpose of these rewritten
variations is to save cost of execution, as well as produce
identical results in the database. The rewriting engine is
based on generative transformer architecture trained on a

156

large set of similar query patterns and canonical optimization
techniques. It inherits transformations including pushing
filters nearer to data representation or rearranging joins as
part of minimizing the intermediate results and converting
inefficient constructs such as the damaged nesting of
subqueries into an efficient format like common table
expressions or set operations. The generative model is able to
search a broader space than the rule-based optimizers, which
can only rewrite according to predefined templates, and
therefore find new rewrites that cannot be easily identified
using modern heuristics. Semantic correctness is one of the
requirements. To impose similarity between two original and
rewritten queries, the model implements a logic based
validation layer. This component uses the constraint
checking and relational algebra rules to ensure that both
queries generate identical results across all legal database
states. Further runtime sampling may be used to verify
similar results in sets of representative data distributions.
When the model generates a transformation that cannot pass
any semantic check, then this rewrite is rejected and another
alternative is produced. With the system constantly
improving its rewriting strategy as feedback on execution,
the system is informed on what rewrite operations provide
the biggest increases in performance under the various
workload circumstances. Due to that optimizer gets steadily
more capable of producing quality execution alternatives,
making it possible to perform self-optimizing query
processing without using manual optimization hints or fixed
optimization rules.

3.4. Reinforcement Learning Optimization

Our optimizer involves the fundamental decision-
making unit that operates on the basis of reinforcement
learning whereby the agent needs to constantly learn how to
choose effective plans of query execution that benefit most
based on the real execution experience. [16-18] The agent
makes decisions on various physical plan options including
join strategies, operator selections and the data placement
decisions and gets a reward after it is executed. The reward is
calculated based on the negative value of a weighted result of
key performance measures that are the execution time, the
amount of memory used, and the amount of data transferred
across the network. The weights, which are alpha, beta, and
gamma, are the proportionate significance of every measure
based on the objectives of the system. E.g. alpha can be used
when latency is important, beta when memory is limited, and
gamma when the network transfer is expensive. Because the
maximization of the reward causes the agent to pursue a
more efficient strategy of execution, it can be believed that
as the agent maximizes the reward, the agent will be inclined
to pursue more efficient implementation strategies. This is
because the more the agent can explore query plans, the
more it develops an appreciation of the decisions that result
in desirable system performance at different workloads and
data characteristics. The reinforcement learning agent has the
advantage of being based on feedback rather than
assumptions and other estimates applied by other cost based
optimizers that rely on estimated outcomes of real execution
on actual hardware. The learning process has thus been
automated to change in data distributions, workload patterns,

Dinesh Babu Govindarajulunaidu Sambath Narayanan / IJAIDSML, 6(2), 153-160, 2025

resource availability so that manual retuning is eliminated.
The policy improvement process is used to enhance its
decision model over time by the agent. Plans with a
consistent low execution overhead have plans strengthened,
whereas actions that perform poorly are punished, which
lowers the opportunity of similar unsuccessful plan selection.
Also, the exploration strategies are useful in ensuring that the
optimizer keeps finding new alternatives of the plan and does
not end up in the trap of early convergence to suboptimal
behavior. This self-optimization feedback loop makes query
execution faster and much more efficient than conventional
heuristics and is resistant to actively changing distributed
systems.

3.5. Machine Learning Pipeline

Generate
Example Data

Train
the Model

Fig 4: Machine Learning Pipeline

Fetch Data: The pipeline starts by acquiring the
appropriate data through multiple sources including
databases, APIs, logs or data warehouses. This is
done to make sure that the model has access to
actual operational data that gives the real-life
patterns and conditions that it should be dealing
with. Information is collected in both forms,
structured and unstructured with regard to usage.
Clean Data: Raw data may include noise, missing
data, inconsistencies or even duplicates. At this
phase, the quality of data is enhanced by the
manipulation of bad records, format mismatch, and
the management of missed or wrong values.
Assuming that there should be no bias and error in
the model training, it requires clean data.

Prepare Data: After cleaning the data, it should be
converted into a format that is usable in machine-
learning. These include operations like feature
extraction, normalization, encoding of the
categorical values and division of data into training
and testing segments. Correct planning helps in
increasing the learning capabilities of the model to
pick-up useful trends.

Train Model: This step involves the use of machine
learning algorithms on the data that has been
prepared to create a predictive or a decision-making
model. The model is trained to reduce error through
iterative optimization and this helps the model to
generalize. Hyperparameters can be adjusted during
training to have a better performance.

157

Evaluate Model: Once training is over, the model is
thoroughly tested on unseen data to determine its
ability to be accurate and robust as well as effective
in general. The evaluation measures, which include
precision, recall, latency, and resource usage, are
evaluated. This phase identifies the compatibility of
the model to the requirements of system
performance preceding deployment.

Deploy to Production: When the model is validated,
it is then incorporated into a live environment
whereby it is incorporated into the production
system. It can be deployed by wrapping the model
as microservices or APIs, and automatically scaling
it to meet the workload of real users.

Evaluate Data: The task is repeated after
implementation by observing the performance of
the model and monitoring its effectiveness on the
long term. The step assists in identifying problems
like performance drift due to changing data patterns.
Continuous improvement and re-training where
needed and based on new data at the pipeline is fed
back into the pipeline.

4. Results and Discussion
4.1. Experimental Setup

In order to rigorously assess the effectiveness and
practicability of our proposed generative query optimizer, we
created a detailed experimental framework, inspired by a real
world set of analytical workloads. The system was installed
on a ten node Cycle with Amazon EC2 nodes that were set to
operate in distributed mode in Apache Spark. All of the
nodes are equipped with enough computer capacity and high
speed network connectivity to perform data processing
operations that are extensive and rich unique to large-scale
enterprise deployments. The Spark selection guarantees that
it is compatible with the current cloud-native data platforms
that are common in undertaking big-data analytics. In this
case, we chose the TPC-H suite on one terabyte-level dataset
to use in benchmarking. TPC-H is a proven decision support
benchmark with complex analytical queries including multi-
table join, aggregation, and nested queries and thus, it is very
useful in determining the effectiveness of query optimization
techniques. The benchmark workload is based on the
realistic business cases like revenue analysis, a supplier
evaluate and order prioritizing that require planning the
query and physical execution layers. In order to rank the
performance improvements provided by our optimizer, we
used the default Spark Catalyst optimizer as a benchmark.
Catalyst is generally considered to be among the most
advanced cost-based query optimizers in production-scale
distributed systems and thus to beat it is showing a sign of
undisputed practical utility. Each of the experiments was run
several times to have the same behavior and average
performance metrics, including query execution time,
memory footprint, and network shuffle volume, were taken
to consider the variability of the systems. Moreover, we have
an evaluation environment with such elements as execution
logging and monitoring, which store detailed feedback
required by the reinforcement learning element to improve
the tactic through an iterative approach. On the whole, this

Dinesh Babu Govindarajulunaidu Sambath Narayanan / IJAIDSML, 6(2), 153-160, 2025

experimental design offers realistic and difficult environment
to prove not only raw performance benefits but also the
flexibility, stability, and accuracy of the proposed
optimization strategy when operating under distributed and
data-intensive workloads.

4.2. Performance Metrics
Table 1: Performance Metrics

Metric Improvement
Query Latency 41%
Throughput 32%
Memory Use 27%

4.2.1. Query Latency:

Query latency defines the number of seconds it takes to
complete a SQL query. The proposed generative
optimization system recorded a significant reduction in
latency, up to 41 percent, relative to the base case Catalyst
optimizer in our experiments. This performance
improvement is due to the better join ordering, application of
filters earlier and accurate choice of resources based plans. A
decrease in latency has a direct impact on interactive
analytics and shortens the time lag in the processing of time-
sensitive workloads. The enhancement percentage of 41% in
the comparison column indicates the degree of reliability of
the consistent rapid execution in large-scale distributed
setting to be able to respond to analytics on a real-time basis.

4.2.2. Throughput:

The number of queries which the system is capable of
handling within a given time is termed as throughput. Our
optimizer delivered a throughput improvement of 102 than
the cluster under the same conditions practically doubling the
list of queries processed. Such an enhancement is an
immediate consequence of the more effective plan
generation, which minimizes resource contention, as well as
the pipeline stalls within the distributed execution
framework. The 32% improvement figure is another
indicator of general increase in cluster use which allows to
achieve higher concurrency and enhanced scale of
workloads. Improved throughput can be particularly
beneficial to multi-tenant data platforms and providers of
cloud analytics with a vast user base at a time.

4.2.3. Memory Use:

The use of memory is a critical point in distributed
query processing as intensive use of memory may result in
expensive spill operations and poor performance. Our
optimizer lowered memory consumption by an average of
27% which is a considerable success and a point towards the
more efficient choice of the execution operators and the
amount of intermediate data. The scale of the improvement
of 27 per cent over the baseline highlights the capability of
our model to make a trade-off between the space-efficient
plans and the execution speed. Such optimization enables
more queries to be executed at the same time, reduces the
chances of out-of-memory exceptions, and reduces the cost
of infrastructure in a cloud setting where the cost of memory
can be billed accordingly.

45% 41%
40%
35%
30%
25%
20%
15%
10%

5%

32%
27%

0%
Query Latency

Throughput

Improvement

Memory Use

Fig 5: Graph representing Performance Metrics

4.3. Discussion

The experimental findings indicate that our generative
query optimization framework yields the most significant
performance improvements on complex analytical queries
especially those related to the multi-way joins, window
functions and heavy aggregation load. Such types of queries
are usually characterized by large intermediate data and
necessitate advanced execution choices including the choice

158

of join strategy, as well as the re-distribution of data
throughout the cluster. Our system significantly decreases
the shuffle cost and intermediate memory usage through
clever rearrangements of join operations and the choice of
predicates, increasing significantly its execution time. Also,
with high-skew data sets, i.e. those with some keys occurring
much more often than others, our optimizer is approximately
two times better than the baseline. This is mainly because it

Dinesh Babu Govindarajulunaidu Sambath Narayanan / IJAIDSML, 6(2), 153-160, 2025

can learn skew-conscious execution plans, which reduce
straggler tasks, which is usually a major problem with
distributed environments. the reinforcement learning process
can modify the plans according to the observed runtime
behavior, which enables the system to dynamically optimize
the strategy of distributing the data instead of relying solely
on the histograms or sampling assumption. Not every
workload is equal though. The performance difference is
minor with simpler transactional queries that are common in
OLTP situations like look-ups on a single table or simple
update operations. The existing cost-based heuristics are
already searching these queries much effectively and the low
execution time does not offer much room to be improved. In
other instances, invoking the learning-based optimizer can be
more costly than a potential gain can be. This fact shows that
decision support systems, ETL processes and scientific
workloads have the highest value of our approach where
query complexity and data volume are much more
complicated. In general, the results have validated the
hypothesis that generative and learning-based optimization
perform extremely well in high plan exploration
requirements but otherwise, the traditional techniques are
efficient in simple tasks. Our system is thus an addition, and
not a substitute to the current existing optimizer strategies,
given that we work on high-impact analytical queries
executions.

5. Conclusion

The study confirms that the joint use of generative
artificial intelligence with reinforcement learning and
continuous feedback provides an effective new avenue in
autonomous relational query optimization in distributed
analytics platforms. The outdated optimizers rely on the use
of off-the-shelf cost models and transformation rules, which
in most cases fail to scale to changing datasets,
heterogeneous compute resources, and workloads basis on
cloud-native computing. By comparison, our suggested
implementation will provide a dynamic learning pipeline
with the ability to synthesize new execution plans, rewrite
complex SQL structure, and optimize the performance
through observation during runtime; in other words, this
feature allows it to improve its performance in real time.
With the help of the embeddings based on transformers, the
optimizer can learn high-level semantic and structural
properties of SQL queries, which are not reflected by
traditional text or tree-based representations. Reinforcement
learning is then used to utilize real implementation outcomes
in order to decide consecutively with higher accuracy and is
highly adaptable to changing workloads and data
distributions. Test findings of large-scale TPC-H benchmark
show substantial query latency working memory decreases,
enhanced throughput efficiency and minimized memory
footprint in contrast to the well-known Catalyst optimizer.
The experimental results prove the practicality of generative
query optimization as an effective addition to the current
data processing systems, and in high-complexity analytical
scenarios (including multi-way joins, biased distribution, and
window functions). Besides, the feedback-based learning
mechanism of the system makes sure that the performance
continues to increase in the long run so that it does not have

159

to be manually modified or heuristically updated by database
administrators. Although there are tremendous improvements
in the case of decision-support workloads, more basic OLTP-
like queries exhibit less significant improvement, which
indicates that the method is an add-on to, and not a substitute
of the established cost-based mechanisms. Considering the
future, a number of major improvements can be made to
ensure more opportunities and scope of activities of the
system. Future efforts will be aimed at assisting federated
databases and querying in graph structure which introduces
further optimization issues that are based on locality of
distributed data, changing relationships, and sophisticated
traversal operations. Expansions into edge computing spaces
will facilitate smart plan optimization near data sources,
which will overcome latency and resource limitations in 10T-
oriented situations. Lastly, the low-latency streaming
generation will be integrated and this will create new
opportunities in real-time analytics and ongoing execution of
queries. All in all this study is a significant interim to self-
driving data base systems that will prepare the way to next
generation data engines that can work efficiently,
autonomously, as well as intelligently in varied and
dynamically evolving computing environments.

References

[1] Chaudhuri, S. (1998, May). An overview of query
optimization in relational systems. In Proceedings of the
seventeenth ACM SIGACT-SIGMOD-SIGART
symposium on Principles of database systems (pp. 34-
43).

Lan, H., Bao, Z.,, & Peng, Y. (2021). A survey on
advancing the dbms query optimizer: Cardinality
estimation, cost model, and plan enumeration. Data
Science and Engineering, 6(1), 86-101.

Van Aken, D., Pavlo, A., Gordon, G. J., & Zhang, B.
(2017, May). Automatic database management system
tuning through large-scale machine learning.
In Proceedings of the 2017 ACM international
conference on management of data (pp. 1009-1024).
Zhang, B., Van Aken, D., Wang, J., Dai, T., Jiang, S.,
Lao, J., ... & Gordon, G. J. (2018). A demonstration of
the ottertune automatic database management system
tuning service. Proceedings of the VLDB
Endowment, 11(12), 1910-1913.

Sambath Narayanan, D. B. G. (2024). Data Engineering
for Responsible Al: Architecting Ethical and
Transparent Analytical Pipelines. International Journal
of Emerging Research in Engineering
and Technology, 5(3), 97-
105. https://doi.org/10.63282/3050-922X.1JERET-
V5I3P110

Zhu, R., Chen, W., Ding, B., Chen, X., Pfadler, A., Wu,
Z., & Zhou, J. (2023). Lero: A learning-to-rank query
optimizer. arXiv preprint arXiv:2302.06873.
Mohammadjafari, A., Maida, A. S., & Gottumukkala, R.
(2024). From natural language to sgl: Review of llm-
based text-to-sql systems. arXiv preprint
arXiv:2410.01066.

(2]

(3]

(4]

(5]

(6]

(7]

https://doi.org/10.63282/3050-922X.IJERET-V5I3P110
https://doi.org/10.63282/3050-922X.IJERET-V5I3P110

Dinesh Babu Govindarajulunaidu Sambath Narayanan / IJAIDSML, 6(2), 153-160, 2025

[8] Zetterman, N. (2024). Exploring Text-to-SQL with
Large Language Models: A Comparative Study of
Claude Opus and a fine-tuned smaller-sized LLM.

[91 Jindal, A., Qiao, S., Madhula, S., Raheja, K., & Jain, S.
(2024, January). Turning Databases Into Generative Al
Machines. In CIDR.

[10] Trummer, 1. (2021). Database tuning using natural
language processing. ACM SIGMOD Record, 50(3), 27-
28.

[11] Gunasekaran, K. P., Tiwari, K., & Acharya, R. (2023).
Deep learning based auto tuning for database
management system. arXiv preprint arXiv:2304.12747.

[12] Strausz, A., Pardon, N., & Giurgiu, I. (2025). A Learned
Cost Model-based Cross-engine Optimizer for SQL
Workloads. arXiv preprint arXiv:2506.02802.

[13] Tedeschi, M., Rizwan, S., Shringi, C., Chandgir, V. D.,
& Belich, S. (2025). An advanced Al driven database
system. arXiv preprint arXiv:2507.17778.

[14] Karanasos, K., Balmin, A., Kutsch, M., Ozcan, F.,
Ercegovac, V., Xia, C., & Jackson, J. (2014, June).
Dynamically optimizing queries over large scale data
platforms. In Proceedings of the 2014 ACM SIGMOD
international conference on Management of data (pp.
943-954).

[15] Chang, B. R., Tsai, H. F., Tsai, Y. C., Kuo, C. F., &
Chen, C. C. (2016). Integration and optimization of
multiple big data processing platforms. Engineering
Computations, 33(6), 1680-1704.

[16] Kaoudi, Z., Quiané-Ruiz, J. A., Thirumuruganathan, S.,
Chawla, S., & Agrawal, D. (2017, May). A cost-based

160

optimizer ~ for gradient descent optimization.
In Proceedings of the 2017 ACM International
Conference on Management of Data (pp. 977-992).

[17] Tucudean, G., Bucos, M., Dragulescu, B., & Caleanu, C.
D. (2024). Natural language processing with
transformers: a review. PeerJ Computer Science, 10,
£2222.

[18] Wang, C., Cheung, A., & Bodik, R. (2017, June).
Synthesizing highly expressive SQL queries from input-
output examples. In Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language
Design and Implementation (pp. 452-466).

[19] Lee, D., He, N., Kamalaruban, P., & Cevher, V. (2020).
Optimization for reinforcement learning: From a single
agent to cooperative agents. IEEE Signal Processing
Magazine, 37(3), 123-135.

[20] Kulkarni, P. (2012). Reinforcement and systemic
machine learning for decision making. John Wiley &
Sons.

[21] Marcus, R., Negi, P., Mao, H., Tatbul, N., Alizadeh, M.,
& Kraska, T. (2021, June). Bao: Making learned query
optimization practical. In Proceedings of the 2021
International Conference on Management of Data (pp.
1275-1288).

[22] Sambath Narayanan, D. B. G. (2025). Al-Driven Data
Engineering Workflows for Dynamic ETL Optimization
in Cloud-Native Data Analytics Ecosystems. American
International Journal of Computer Science and
Technology, 7(3), 99-109.
https://doi.org/10.63282/3117-5481/AIJCST-V713P108

