
International Journal of Artificial Intelligence, Data Science, and Machine Learning

Grace Horizon Publication | Volume 6, Issue 2, 153-160, 2025

ISSN: 3050-9262 | https://doi.org/10.63282/3050-9262.IJAIDSML-V6I2P117

Original Article

Generative AI–Enabled Intelligent Query Optimization for

Large-Scale Data Analytics Platforms

Dinesh Babu Govindarajulunaidu Sambath Narayanan

Independent Researcher, USA.

Received On: 05/04/2025 Revised On: 14/04/2025 Accepted On: 30/04/2025 Published On: 20/05/2025

Abstract - The immense scale of data volume in the distributed cloud infrastructures has magnified the computational

intensity of query processing in extensive analytics system like Data Lake, distributed SQL systems and real-time data

warehouses. The rule-based and cost-based algorithm-based traditional query optimization methods are becoming

inadequate with dynamics, heterogeneous sources of data, and unpredictable execution conditions. The study presents

an Intelligent Query Optimization Framework that relies on an AI to automatically rewrite the queries, optimize the

plans, and execute them dynamically using the Generative Artificial Intelligence (Gen-AI). The proposed system term

employs reinforcement learning (RL), natural language processing (NLP), and deep neural architecture to produce

optimized query schemes, approximate the best implementation plans, decrease latency and enhance the throughput

in gigacursing assemblies. Workloads, execution history of queries and run-time performance metrics on the

distributed systems like Apache Spark, Presto, and Snowflake are all used to train the system. The research

contributions consist of: (i) a synthesis mechanism to generate query plans through the use of transformer-based

models, (ii) modeling to predict the costs of the workload, (iii) a multi-objective optimization scheme that minimizes

the execution time, resource consumption, and cost of data transfer, and (iv) a hybrid architecture in which a batch

and a streaming analytics is executed. Extensive experimental findings using the TPC-H benchmark show how it

improves performance by 41%-percentage change in query latency, 32-percentage changes in throughput, and 27-

percentage changes in memory usage as compared to state-of-the-art optimizers. The presented framework can be

scaled, flexible and proficient in the changing data environment, which is a remarkable breakthrough in intelligent

data analytics.

Keywords - Generative AI, Query Optimization, Big Data Analytics, Machine Learning, Cost-Based Optimization,

Reinforcement Learning, Distributed Databases, Data Lakes.

1. Introduction
1.1. Background

The contemporary digital ecosystem produces a never

before seen amount of heterogeneous data of variety of

authors like social media communications, IoT sensor data

streams, business transactions of an enterprise, and data-

intensive scientific applications. [1-3] Analytical query

engines are becoming more popular in organizations as a

way of deriving useful information on this ever-growing

informational terrain. These engines should be able to scale

the complex SQL-like query complexity that would include

multi-table joins, nested subqueries and aggregations, real-

time filtering of enormous data-sets maintained in scattered

surroundings. A rule-based and cost-based approach to

optimizing databases, scaling into zettabytes, cannot sustain

performance in large scale data sets since its approach relies

on a set of fixed assumptions concerning data properties and

system behavior. In the meantime, highly changeable cloud

environments, fluctuations of workloads, and data

distributions require adjustment upkeep instead of optimal

adjustment. Less than ideal implementation strategies do not

only raise query responses but also propagate unjustified

computation, network transmission and storage expenses,

which is most vital in contemporary pay-as-you-use cloud

design. These issues make it clear that autonomous,

intelligent query optimization strategies are required that

have the ability to learn through execution patterns, infer

through structure and semantics of SQL queries, and

improve their performance over time. This mounting stress

on extrapolating analytical efficiency continues to drive the

desire to find a solution in the generative AI and

reinforcement learning, which would supersede the

constraints of traditional optimizers.

1.2. Need for Generative Intelligence

1.2.1. Autonomous Query Rewriting:

Historical rule based optimizers rely on hand-written

rules stated by database specialists. Such heuristics may be

quite static, and restricted in scope, which does not reflect

the new optimization opportunities within the changing

workloads. However, generative AI has the ability to

automatically rewrite SQL queries into more efficient

formats by being trained on what has been executed

historically. It is able to search considerably bigger space of

transformations finding semantically equivalent but unusual

rewrites that human beings might not notice. This

independence minimizes the workload of manual tuning and

Dinesh Babu Govindarajulunaidu Sambath Narayanan / IJAIDSML, 6(2), 153-160, 2025

154

makes sure that the system is continuously changing in

response to changing query behaviour.

Fig 1: Need for Generative Intelligence

1.2.2. Prediction of High-Performance Data Paths:

Traditional optimizers utilize heavily estimated statistics

which can be incorrect when data distributions change. On

the contrary, the generative intelligence is trained to guess

the most efficient data access and join paths in terms of

contextual knowledge of query semantics and execution

history. The combination of transformers and learned

embeddings makes the system create deep representations of

relational dependencies and can preemptively recommend

data paths that minimize computation, network transfers, and

memory overhead. This forecasting ability results in a

continuously improved planning decision even in very

dynamic circumstances.

1.2.3. Adaptive Learning from Runtime Feedback:

One of the biggest shortcomings of the static optimizers

is that they cannot find improvement automatically on the

basis of the actual system performance. Generative AIs

combined with reinforcement learning form a loop of

continuous feedback between actual execution measures and

subsequent optimization decisions. The results of poor

performance are punished, and successful strategies are

increased, enabling the optimizer to change along with

infrastructure changes, workload trends, and data expansion.

Such flexibility can guarantee the efficiency in the long-run

without any human-intervention or expensive

reconfiguration tasks.

1.3. Query Optimization for Large-Scale Data Analytics

Platforms

Fig 2: Query Optimization for Large-Scale Data

Analytics Platforms

Big-data analytics systems have become a critical

infrastructure in organizations that are engaged in the fields

of finance, healthcare, e-commerce, telecommunication and

scientific research. [4,21] These environments need to be

capable of handling large and continuously growing data

volumes as well as answer the growing need of complex

workloads involving analytics. With the shift to distributed

data-storage structures, including cloud warehouses, Hadoop

systems, and Spark engines, the implicit query processing

inferred is much more complex. What used to be a compile-

time choice of query optimization, can now be a dynamic

operation that needs to take into account heterogeneity of

hardware, data distribution patterns, and workload changes

dynamically. Multi-table joins, recursive queries and window

functions have a high computational overhead and in case

one optimizer chooses an imperfect execution plan, a

performance degradation can be multiplied over the

distributed cluster. Moreover, the cost models employed by

all conventional optimizers are based on statistical

approximations that get out of date rapidly, particularly in

streaming and mixed-workload conditions where data

distributions change irregularly and unpredictably.

Additional resource pressure like network shuffle costs and

memory pressure are also the predominant factors affecting

the performance of a query scale. Efficiency is thus achieved

through smart decisions that respond to changing conditions

of systems, and one that correctly reflects logical query

structure and data semantics. The ability of the optimizer to

select the most appropriate execution strategies is necessary

in modern organizations that require low-latency delivery of

results, high throughput of processing concurrently and

reduced operational cost. Here query optimization is not

simply a performance optimization method but rather a

performance boosting tool that is essential to business

competitiveness and timely information. Since analytical

platforms keep increasing in scale and complexity, there is

an evident necessity of novel methods like generative AI and

machine learning to supplement or substitute stagnant rule-

based logic. Such sophisticated techniques can be trained by

execution experience, self-evolve with some time, and

provide strong operation in a variety of dynamic and

dynamic information settings.

2. Literature Survey
2.1. Rule-Based and Cost-Based Optimizers

Conventional database systems, including PostgreSQL,

System-R and Apache Calcite have been traditionally based

on rule-driven heuristics together with cost-based models in

order to [6-9] produce a query execution plan. These

optimizers attempt to approximate the cost of running other

strategies of queries, depending upon projected use of CPU

time, disk access instructions, and network interactions as

well as utilization of memory. Though this has been

successful over decades, the underlying assumption of this

approach is that the workload of the applications and the

conditions of the hardware is steady and predictable. With

dynamic scaling of cloud deployments, long temporal trends

on the nature of data changing, the assumption of cost is no

longer reliable and as a consequence, the results of execution

choices are suboptimal and/or outdated.

Dinesh Babu Govindarajulunaidu Sambath Narayanan / IJAIDSML, 6(2), 153-160, 2025

155

2.2. Machine Learning Approaches

The contemporary studies have brought machine

learning methods into database optimization and setting.

Other systems, such as Otter Tune which are learning based,

aim to compile workload patterns to propose configuration

changes, and Sage DB aims at automatically tuning lower-

level parameters using learned models. Reinforcement

learning is also applied to other projects like Bao where

query plan selection is also enhanced through trial and error

on numerous query executions. Nevertheless, these methods

usually deal with very focused sub-tasks of optimization.

They also widely neglect the end-to-end plan construction

and their flexibility is limited to slow training, high resource

requirements or lack of visibility into complex distributed

query environments.

2.3. Generative AI for Databases

The latest trends in the field of natural language

processing and transformers-based models have created

potential possibilities of including generative AIs in the

interfaces of databases. The main aspects of this work are

improved usability including better SQL auto-complete,

query structuring based on the intent of the user, and

improved semantic value of schema metadata. Although

these methods allow a more natural interaction with systems

of data, they are seldom used in addressing more

operationalization-related problems such as optimization of

the physical plans, or adaptability at runtime. The efficiency

is still all about developer productivity and not on providing

execution-time productivity gains.

2.4. Research Gap

Although there is an improvement in several fronts, the

contemporary database intelligence solutions also fail to

allow holistic and entirely autonomous query optimization.

No known system is reliable to produce full execution plans

without relying to a great extent on hard and fast rules or

hard-wired heuristics. Meta-optimization, in which trade-offs

between performance such as speed, cost, and resource

fairness have to be made, is only limited in use. Moreover,

the vast majority of research prototypes are limitedly tested

and rarely used in complex distributed systems like cloud

data warehouses or scaled analytics engines. This creates a

sound and pressing need of systems that can learn, adapt and

optimize at all times in the dynamics of the world we operate

in.

3. Methodology
3.1. System Architecture

AI-driven decision-making as a part of the entire query

optimization pipeline. It works by having an SQL query of a

user turned into a structured form followed by turning [10-

12] such a structured form into embeddings through a

transformer model. Such embeddings are used by a

reinforcement learning (RL) agent when searching the most

effective query execution plan. After the plan is

implemented, runtime measurements are monitored and fed

back to the learning model where further enhancement is

made by closed-loop optimization.

 Query Parsing: The initial phase of the architecture

takes the raw SQL input and changes it into an

internal logical form. The parser identifies relational

operators, predicates, join conditions and schema

metadata, in order to construct a query tree

containing the high level semantics of the request. It

is the form of representation, which is structured,

that forms the foundation of the downstream

learning models, so that the syntactic accuracy, as

well as relational dependencies, can be upheld once

the optimization process commences.

 Embedding Generation: We use a generator based

on transformers to learn to capture the query

structures hidden complexity. It transforms logical

query tree into high dimensional vector

representation that encodes relations between tables,

attributes and operators. Contextual insight These

embeddings give a much more detailed contextual

insight than conventional statistical heuristics.

Consequently, the optimizer is made capable of

generalizing its decision-making to unseen queries

and dynamic workloads, to provide flexibility

which is beyond what the traditional cost-based

models can provide.

 Plan Search: A reinforcement learning agent

conducts intelligent searching of the execution plan

space. Rather than searching by brutality or given

rules, the agent gets to discover which join orders,

operator selections, and physical strategies perform

better. It uses rewards based on execution results as

an evaluation of actions, and increase in effect

gradually refines its policy to faster and more

accurate optimization decisions. This strategy

enables unceasing training which adapts to work

load and environmental shifts.

 Execution Feedback Loop: Once an executed plan

has been executed on top of the target database

engine, performance measures like time taken to

execute the plan, amount of resources used and the

costs are collected and fed back to the optimizer.

Such feedback is key to closing the loop: the system

is constantly improving its learning models,

correcting previous assumptions, and continuing to

make better decisions in selecting a plan. With time

the optimizer changes in response to changing data

distributions, system loads and hardware

characteristics- attaining autonomous and self-

tuning behavior.

Fig 3: System Architecture

Dinesh Babu Govindarajulunaidu Sambath Narayanan / IJAIDSML, 6(2), 153-160, 2025

156

3.2. Query Embedding Model

We encode SQL queries into dense vectors in our

system, which are simultaneously syntactically and

semantically expressed in terms of their execution. [13-15]

This starts with the SQL text being translated into a series of

tokens, including names of the tables, names of the columns,

operators, and join keywords. These tokens are then

processed into an embedding model based on transformers

which produces a continuous representation of a whole query

in a Vector. To put it simply, query embedding is got

through the use of a transformer model across the sequence

of SQL tokens. The transformer architecture enables the

model to discover long-range correlations within query

structures consisting of complex queries, which can include

nested subqueries of deep chained join criteria. The model is

not taught SQL as plain text; it is taught the relationship

between query operators, as well as how various clauses

contribute to complexity of execution. Nonetheless, it should

be noted that SQL queries are not entirely linear directions:

they can be thought of as graphs that have relationships as

nodes. As an example, join predicates establish relationships

between tables explicitly, which affect the join order and the

complexity of the plan. In order to build in this relational

context, we build a query graph on which nodes denote

tables or operations and dependencies denote join, or

dependency relationships. This graph structure is then fed

through a Graph Neural Network (GNN) to allow the model

to reason about graph topology. The GNN combines

information on the edges into a code that indicates the tables

which are joined, the joins that are required and selective

filters. This adds richness to embedding of structural

awareness that would have been missed by a purely text

based model. Our model consists of transformer embeddings

coupled with graph-based relational features, which makes it

generate a hybrid query representation with linguistic

meaning and execution-relevant topology. This coherent

result has a unified output of vectors to aid in a smarter

decision making process during plan search to enable the

reinforcement learning agent distinguish between logically

similar yet structurally dissimilar queries. The embedding

model is also adapted, as the optimizer keeps on improving

its capacity to capture the performance critical features of the

SQL workloads as execution feedback is presented

continuously.

3.3. Generative Query Rewriting

In this element, the system relies on the generative AI

model that automatically reformulates SQL queries into a

more efficient one and refers to the semantic meaning. The

principle behind it is that given a query as input, the model

will generate another query as a rewritten query with the

learnt query embedding and a group of performance and

resource constraints as input. That is, a generative AI model

rewrites the positive query with respect to query vector

representation and system constraints like the latency

constraint or memory restriction, or preference to distributed

strategies of execution. The purpose of these rewritten

variations is to save cost of execution, as well as produce

identical results in the database. The rewriting engine is

based on generative transformer architecture trained on a

large set of similar query patterns and canonical optimization

techniques. It inherits transformations including pushing

filters nearer to data representation or rearranging joins as

part of minimizing the intermediate results and converting

inefficient constructs such as the damaged nesting of

subqueries into an efficient format like common table

expressions or set operations. The generative model is able to

search a broader space than the rule-based optimizers, which

can only rewrite according to predefined templates, and

therefore find new rewrites that cannot be easily identified

using modern heuristics. Semantic correctness is one of the

requirements. To impose similarity between two original and

rewritten queries, the model implements a logic based

validation layer. This component uses the constraint

checking and relational algebra rules to ensure that both

queries generate identical results across all legal database

states. Further runtime sampling may be used to verify

similar results in sets of representative data distributions.

When the model generates a transformation that cannot pass

any semantic check, then this rewrite is rejected and another

alternative is produced. With the system constantly

improving its rewriting strategy as feedback on execution,

the system is informed on what rewrite operations provide

the biggest increases in performance under the various

workload circumstances. Due to that optimizer gets steadily

more capable of producing quality execution alternatives,

making it possible to perform self-optimizing query

processing without using manual optimization hints or fixed

optimization rules.

3.4. Reinforcement Learning Optimization

Our optimizer involves the fundamental decision-

making unit that operates on the basis of reinforcement

learning whereby the agent needs to constantly learn how to

choose effective plans of query execution that benefit most

based on the real execution experience. [16-18] The agent

makes decisions on various physical plan options including

join strategies, operator selections and the data placement

decisions and gets a reward after it is executed. The reward is

calculated based on the negative value of a weighted result of

key performance measures that are the execution time, the

amount of memory used, and the amount of data transferred

across the network. The weights, which are alpha, beta, and

gamma, are the proportionate significance of every measure

based on the objectives of the system. E.g. alpha can be used

when latency is important, beta when memory is limited, and

gamma when the network transfer is expensive. Because the

maximization of the reward causes the agent to pursue a

more efficient strategy of execution, it can be believed that

as the agent maximizes the reward, the agent will be inclined

to pursue more efficient implementation strategies. This is

because the more the agent can explore query plans, the

more it develops an appreciation of the decisions that result

in desirable system performance at different workloads and

data characteristics. The reinforcement learning agent has the

advantage of being based on feedback rather than

assumptions and other estimates applied by other cost based

optimizers that rely on estimated outcomes of real execution

on actual hardware. The learning process has thus been

automated to change in data distributions, workload patterns,

Dinesh Babu Govindarajulunaidu Sambath Narayanan / IJAIDSML, 6(2), 153-160, 2025

157

resource availability so that manual retuning is eliminated.

The policy improvement process is used to enhance its

decision model over time by the agent. Plans with a

consistent low execution overhead have plans strengthened,

whereas actions that perform poorly are punished, which

lowers the opportunity of similar unsuccessful plan selection.

Also, the exploration strategies are useful in ensuring that the

optimizer keeps finding new alternatives of the plan and does

not end up in the trap of early convergence to suboptimal

behavior. This self-optimization feedback loop makes query

execution faster and much more efficient than conventional

heuristics and is resistant to actively changing distributed

systems.

3.5. Machine Learning Pipeline

Fig 4: Machine Learning Pipeline

 Fetch Data: The pipeline starts by acquiring the

appropriate data through multiple sources including

databases, APIs, logs or data warehouses. This is

done to make sure that the model has access to

actual operational data that gives the real-life

patterns and conditions that it should be dealing

with. Information is collected in both forms,

structured and unstructured with regard to usage.

 Clean Data: Raw data may include noise, missing

data, inconsistencies or even duplicates. At this

phase, the quality of data is enhanced by the

manipulation of bad records, format mismatch, and

the management of missed or wrong values.

Assuming that there should be no bias and error in

the model training, it requires clean data.

 Prepare Data: After cleaning the data, it should be

converted into a format that is usable in machine-

learning. These include operations like feature

extraction, normalization, encoding of the

categorical values and division of data into training

and testing segments. Correct planning helps in

increasing the learning capabilities of the model to

pick-up useful trends.

 Train Model: This step involves the use of machine

learning algorithms on the data that has been

prepared to create a predictive or a decision-making

model. The model is trained to reduce error through

iterative optimization and this helps the model to

generalize. Hyperparameters can be adjusted during

training to have a better performance.

 Evaluate Model: Once training is over, the model is

thoroughly tested on unseen data to determine its

ability to be accurate and robust as well as effective

in general. The evaluation measures, which include

precision, recall, latency, and resource usage, are

evaluated. This phase identifies the compatibility of

the model to the requirements of system

performance preceding deployment.

 Deploy to Production: When the model is validated,

it is then incorporated into a live environment

whereby it is incorporated into the production

system. It can be deployed by wrapping the model

as microservices or APIs, and automatically scaling

it to meet the workload of real users.

 Evaluate Data: The task is repeated after

implementation by observing the performance of

the model and monitoring its effectiveness on the

long term. The step assists in identifying problems

like performance drift due to changing data patterns.

Continuous improvement and re-training where

needed and based on new data at the pipeline is fed

back into the pipeline.

4. Results and Discussion
4.1. Experimental Setup

In order to rigorously assess the effectiveness and

practicability of our proposed generative query optimizer, we

created a detailed experimental framework, inspired by a real

world set of analytical workloads. The system was installed

on a ten node Cycle with Amazon EC2 nodes that were set to

operate in distributed mode in Apache Spark. All of the

nodes are equipped with enough computer capacity and high

speed network connectivity to perform data processing

operations that are extensive and rich unique to large-scale

enterprise deployments. The Spark selection guarantees that

it is compatible with the current cloud-native data platforms

that are common in undertaking big-data analytics. In this

case, we chose the TPC-H suite on one terabyte-level dataset

to use in benchmarking. TPC-H is a proven decision support

benchmark with complex analytical queries including multi-

table join, aggregation, and nested queries and thus, it is very

useful in determining the effectiveness of query optimization

techniques. The benchmark workload is based on the

realistic business cases like revenue analysis, a supplier

evaluate and order prioritizing that require planning the

query and physical execution layers. In order to rank the

performance improvements provided by our optimizer, we

used the default Spark Catalyst optimizer as a benchmark.

Catalyst is generally considered to be among the most

advanced cost-based query optimizers in production-scale

distributed systems and thus to beat it is showing a sign of

undisputed practical utility. Each of the experiments was run

several times to have the same behavior and average

performance metrics, including query execution time,

memory footprint, and network shuffle volume, were taken

to consider the variability of the systems. Moreover, we have

an evaluation environment with such elements as execution

logging and monitoring, which store detailed feedback

required by the reinforcement learning element to improve

the tactic through an iterative approach. On the whole, this

Dinesh Babu Govindarajulunaidu Sambath Narayanan / IJAIDSML, 6(2), 153-160, 2025

158

experimental design offers realistic and difficult environment

to prove not only raw performance benefits but also the

flexibility, stability, and accuracy of the proposed

optimization strategy when operating under distributed and

data-intensive workloads.

4.2. Performance Metrics

Table 1: Performance Metrics

Metric Improvement

Query Latency 41%

Throughput 32%

Memory Use 27%

4.2.1. Query Latency:

Query latency defines the number of seconds it takes to

complete a SQL query. The proposed generative

optimization system recorded a significant reduction in

latency, up to 41 percent, relative to the base case Catalyst

optimizer in our experiments. This performance

improvement is due to the better join ordering, application of

filters earlier and accurate choice of resources based plans. A

decrease in latency has a direct impact on interactive

analytics and shortens the time lag in the processing of time-

sensitive workloads. The enhancement percentage of 41% in

the comparison column indicates the degree of reliability of

the consistent rapid execution in large-scale distributed

setting to be able to respond to analytics on a real-time basis.

4.2.2. Throughput:

The number of queries which the system is capable of

handling within a given time is termed as throughput. Our

optimizer delivered a throughput improvement of 102 than

the cluster under the same conditions practically doubling the

list of queries processed. Such an enhancement is an

immediate consequence of the more effective plan

generation, which minimizes resource contention, as well as

the pipeline stalls within the distributed execution

framework. The 32% improvement figure is another

indicator of general increase in cluster use which allows to

achieve higher concurrency and enhanced scale of

workloads. Improved throughput can be particularly

beneficial to multi-tenant data platforms and providers of

cloud analytics with a vast user base at a time.

4.2.3. Memory Use:

The use of memory is a critical point in distributed

query processing as intensive use of memory may result in

expensive spill operations and poor performance. Our

optimizer lowered memory consumption by an average of

27% which is a considerable success and a point towards the

more efficient choice of the execution operators and the

amount of intermediate data. The scale of the improvement

of 27 per cent over the baseline highlights the capability of

our model to make a trade-off between the space-efficient

plans and the execution speed. Such optimization enables

more queries to be executed at the same time, reduces the

chances of out-of-memory exceptions, and reduces the cost

of infrastructure in a cloud setting where the cost of memory

can be billed accordingly.

Fig 5: Graph representing Performance Metrics

4.3. Discussion

The experimental findings indicate that our generative

query optimization framework yields the most significant

performance improvements on complex analytical queries

especially those related to the multi-way joins, window

functions and heavy aggregation load. Such types of queries

are usually characterized by large intermediate data and

necessitate advanced execution choices including the choice

of join strategy, as well as the re-distribution of data

throughout the cluster. Our system significantly decreases

the shuffle cost and intermediate memory usage through

clever rearrangements of join operations and the choice of

predicates, increasing significantly its execution time. Also,

with high-skew data sets, i.e. those with some keys occurring

much more often than others, our optimizer is approximately

two times better than the baseline. This is mainly because it

41%

32%

27%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

Query Latency Throughput Memory Use

Improvement

Dinesh Babu Govindarajulunaidu Sambath Narayanan / IJAIDSML, 6(2), 153-160, 2025

159

can learn skew-conscious execution plans, which reduce

straggler tasks, which is usually a major problem with

distributed environments. the reinforcement learning process

can modify the plans according to the observed runtime

behavior, which enables the system to dynamically optimize

the strategy of distributing the data instead of relying solely

on the histograms or sampling assumption. Not every

workload is equal though. The performance difference is

minor with simpler transactional queries that are common in

OLTP situations like look-ups on a single table or simple

update operations. The existing cost-based heuristics are

already searching these queries much effectively and the low

execution time does not offer much room to be improved. In

other instances, invoking the learning-based optimizer can be

more costly than a potential gain can be. This fact shows that

decision support systems, ETL processes and scientific

workloads have the highest value of our approach where

query complexity and data volume are much more

complicated. In general, the results have validated the

hypothesis that generative and learning-based optimization

perform extremely well in high plan exploration

requirements but otherwise, the traditional techniques are

efficient in simple tasks. Our system is thus an addition, and

not a substitute to the current existing optimizer strategies,

given that we work on high-impact analytical queries

executions.

5. Conclusion
The study confirms that the joint use of generative

artificial intelligence with reinforcement learning and

continuous feedback provides an effective new avenue in

autonomous relational query optimization in distributed

analytics platforms. The outdated optimizers rely on the use

of off-the-shelf cost models and transformation rules, which

in most cases fail to scale to changing datasets,

heterogeneous compute resources, and workloads basis on

cloud-native computing. By comparison, our suggested

implementation will provide a dynamic learning pipeline

with the ability to synthesize new execution plans, rewrite

complex SQL structure, and optimize the performance

through observation during runtime; in other words, this

feature allows it to improve its performance in real time.

With the help of the embeddings based on transformers, the

optimizer can learn high-level semantic and structural

properties of SQL queries, which are not reflected by

traditional text or tree-based representations. Reinforcement

learning is then used to utilize real implementation outcomes

in order to decide consecutively with higher accuracy and is

highly adaptable to changing workloads and data

distributions. Test findings of large-scale TPC-H benchmark

show substantial query latency working memory decreases,

enhanced throughput efficiency and minimized memory

footprint in contrast to the well-known Catalyst optimizer.

The experimental results prove the practicality of generative

query optimization as an effective addition to the current

data processing systems, and in high-complexity analytical

scenarios (including multi-way joins, biased distribution, and

window functions). Besides, the feedback-based learning

mechanism of the system makes sure that the performance

continues to increase in the long run so that it does not have

to be manually modified or heuristically updated by database

administrators. Although there are tremendous improvements

in the case of decision-support workloads, more basic OLTP-

like queries exhibit less significant improvement, which

indicates that the method is an add-on to, and not a substitute

of the established cost-based mechanisms. Considering the

future, a number of major improvements can be made to

ensure more opportunities and scope of activities of the

system. Future efforts will be aimed at assisting federated

databases and querying in graph structure which introduces

further optimization issues that are based on locality of

distributed data, changing relationships, and sophisticated

traversal operations. Expansions into edge computing spaces

will facilitate smart plan optimization near data sources,

which will overcome latency and resource limitations in IoT-

oriented situations. Lastly, the low-latency streaming

generation will be integrated and this will create new

opportunities in real-time analytics and ongoing execution of

queries. All in all this study is a significant interim to self-

driving data base systems that will prepare the way to next

generation data engines that can work efficiently,

autonomously, as well as intelligently in varied and

dynamically evolving computing environments.

References
[1] Chaudhuri, S. (1998, May). An overview of query

optimization in relational systems. In Proceedings of the

seventeenth ACM SIGACT-SIGMOD-SIGART

symposium on Principles of database systems (pp. 34-

43).

[2] Lan, H., Bao, Z., & Peng, Y. (2021). A survey on

advancing the dbms query optimizer: Cardinality

estimation, cost model, and plan enumeration. Data

Science and Engineering, 6(1), 86-101.

[3] Van Aken, D., Pavlo, A., Gordon, G. J., & Zhang, B.

(2017, May). Automatic database management system

tuning through large-scale machine learning.

In Proceedings of the 2017 ACM international

conference on management of data (pp. 1009-1024).

[4] Zhang, B., Van Aken, D., Wang, J., Dai, T., Jiang, S.,

Lao, J., ... & Gordon, G. J. (2018). A demonstration of

the ottertune automatic database management system

tuning service. Proceedings of the VLDB

Endowment, 11(12), 1910-1913.

[5] Sambath Narayanan, D. B. G. (2024). Data Engineering

for Responsible AI: Architecting Ethical and

Transparent Analytical Pipelines. International Journal

of Emerging Research in Engineering

and Technology, 5(3), 97-

105. https://doi.org/10.63282/3050-922X.IJERET-

V5I3P110

[6] Zhu, R., Chen, W., Ding, B., Chen, X., Pfadler, A., Wu,

Z., & Zhou, J. (2023). Lero: A learning-to-rank query

optimizer. arXiv preprint arXiv:2302.06873.

[7] Mohammadjafari, A., Maida, A. S., & Gottumukkala, R.

(2024). From natural language to sql: Review of llm-

based text-to-sql systems. arXiv preprint

arXiv:2410.01066.

https://doi.org/10.63282/3050-922X.IJERET-V5I3P110
https://doi.org/10.63282/3050-922X.IJERET-V5I3P110

Dinesh Babu Govindarajulunaidu Sambath Narayanan / IJAIDSML, 6(2), 153-160, 2025

160

[8] Zetterman, N. (2024). Exploring Text-to-SQL with

Large Language Models: A Comparative Study of

Claude Opus and a fine-tuned smaller-sized LLM.

[9] Jindal, A., Qiao, S., Madhula, S., Raheja, K., & Jain, S.

(2024, January). Turning Databases Into Generative AI

Machines. In CIDR.

[10] Trummer, I. (2021). Database tuning using natural

language processing. ACM SIGMOD Record, 50(3), 27-

28.

[11] Gunasekaran, K. P., Tiwari, K., & Acharya, R. (2023).

Deep learning based auto tuning for database

management system. arXiv preprint arXiv:2304.12747.

[12] Strausz, A., Pardon, N., & Giurgiu, I. (2025). A Learned

Cost Model-based Cross-engine Optimizer for SQL

Workloads. arXiv preprint arXiv:2506.02802.

[13] Tedeschi, M., Rizwan, S., Shringi, C., Chandgir, V. D.,

& Belich, S. (2025). An advanced AI driven database

system. arXiv preprint arXiv:2507.17778.

[14] Karanasos, K., Balmin, A., Kutsch, M., Ozcan, F.,

Ercegovac, V., Xia, C., & Jackson, J. (2014, June).

Dynamically optimizing queries over large scale data

platforms. In Proceedings of the 2014 ACM SIGMOD

international conference on Management of data (pp.

943-954).

[15] Chang, B. R., Tsai, H. F., Tsai, Y. C., Kuo, C. F., &

Chen, C. C. (2016). Integration and optimization of

multiple big data processing platforms. Engineering

Computations, 33(6), 1680-1704.

[16] Kaoudi, Z., Quiané-Ruiz, J. A., Thirumuruganathan, S.,

Chawla, S., & Agrawal, D. (2017, May). A cost-based

optimizer for gradient descent optimization.

In Proceedings of the 2017 ACM International

Conference on Management of Data (pp. 977-992).

[17] Tucudean, G., Bucos, M., Dragulescu, B., & Caleanu, C.

D. (2024). Natural language processing with

transformers: a review. PeerJ Computer Science, 10,

e2222.

[18] Wang, C., Cheung, A., & Bodik, R. (2017, June).

Synthesizing highly expressive SQL queries from input-

output examples. In Proceedings of the 38th ACM

SIGPLAN Conference on Programming Language

Design and Implementation (pp. 452-466).

[19] Lee, D., He, N., Kamalaruban, P., & Cevher, V. (2020).

Optimization for reinforcement learning: From a single

agent to cooperative agents. IEEE Signal Processing

Magazine, 37(3), 123-135.

[20] Kulkarni, P. (2012). Reinforcement and systemic

machine learning for decision making. John Wiley &

Sons.

[21] Marcus, R., Negi, P., Mao, H., Tatbul, N., Alizadeh, M.,

& Kraska, T. (2021, June). Bao: Making learned query

optimization practical. In Proceedings of the 2021

International Conference on Management of Data (pp.

1275-1288).

[22] Sambath Narayanan, D. B. G. (2025). AI-Driven Data

Engineering Workflows for Dynamic ETL Optimization

in Cloud-Native Data Analytics Ecosystems. American

International Journal of Computer Science and

Technology, 7(3), 99-109.

https://doi.org/10.63282/3117-5481/AIJCST-V7I3P108

