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Abstract - The immense scale of data volume in the distributed cloud infrastructures has magnified the computational 

intensity of query processing in extensive analytics system like Data Lake, distributed SQL systems and real-time data 

warehouses. The rule-based and cost-based algorithm-based traditional query optimization methods are becoming 

inadequate with dynamics, heterogeneous sources of data, and unpredictable execution conditions. The study presents 

an Intelligent Query Optimization Framework that relies on an AI to automatically rewrite the queries, optimize the 

plans, and execute them dynamically using the Generative Artificial Intelligence (Gen-AI). The proposed system term 

employs reinforcement learning (RL), natural language processing (NLP), and deep neural architecture to produce 

optimized query schemes, approximate the best implementation plans, decrease latency and enhance the throughput 

in gigacursing assemblies. Workloads, execution history of queries and run-time performance metrics on the 

distributed systems like Apache Spark, Presto, and Snowflake are all used to train the system. The research 

contributions consist of: (i) a synthesis mechanism to generate query plans through the use of transformer-based 

models, (ii) modeling to predict the costs of the workload, (iii) a multi-objective optimization scheme that minimizes 

the execution time, resource consumption, and cost of data transfer, and (iv) a hybrid architecture in which a batch 

and a streaming analytics is executed. Extensive experimental findings using the TPC-H benchmark show how it 

improves performance by 41%-percentage change in query latency, 32-percentage changes in throughput, and 27-

percentage changes in memory usage as compared to state-of-the-art optimizers. The presented framework can be 

scaled, flexible and proficient in the changing data environment, which is a remarkable breakthrough in intelligent 

data analytics. 

 

Keywords - Generative AI, Query Optimization, Big Data Analytics, Machine Learning, Cost-Based Optimization, 

Reinforcement Learning, Distributed Databases, Data Lakes. 

 

1. Introduction 
1.1. Background  

The contemporary digital ecosystem produces a never 

before seen amount of heterogeneous data of variety of 

authors like social media communications, IoT sensor data 

streams, business transactions of an enterprise, and data-

intensive scientific applications. [1-3] Analytical query 

engines are becoming more popular in organizations as a 

way of deriving useful information on this ever-growing 

informational terrain. These engines should be able to scale 

the complex SQL-like query complexity that would include 

multi-table joins, nested subqueries and aggregations, real-

time filtering of enormous data-sets maintained in scattered 

surroundings. A rule-based and cost-based approach to 

optimizing databases, scaling into zettabytes, cannot sustain 

performance in large scale data sets since its approach relies 

on a set of fixed assumptions concerning data properties and 

system behavior. In the meantime, highly changeable cloud 

environments, fluctuations of workloads, and data 

distributions require adjustment upkeep instead of optimal 

adjustment. Less than ideal implementation strategies do not 

only raise query responses but also propagate unjustified 

computation, network transmission and storage expenses, 

which is most vital in contemporary pay-as-you-use cloud 

design. These issues make it clear that autonomous, 

intelligent query optimization strategies are required that 

have the ability to learn through execution patterns, infer 

through structure and semantics of SQL queries, and 

improve their performance over time. This mounting stress 

on extrapolating analytical efficiency continues to drive the 

desire to find a solution in the generative AI and 

reinforcement learning, which would supersede the 

constraints of traditional optimizers. 

 

1.2. Need for Generative Intelligence 

1.2.1. Autonomous Query Rewriting:  

Historical rule based optimizers rely on hand-written 

rules stated by database specialists. Such heuristics may be 

quite static, and restricted in scope, which does not reflect 

the new optimization opportunities within the changing 

workloads. However, generative AI has the ability to 

automatically rewrite SQL queries into more efficient 

formats by being trained on what has been executed 

historically. It is able to search considerably bigger space of 

transformations finding semantically equivalent but unusual 

rewrites that human beings might not notice. This 

independence minimizes the workload of manual tuning and 
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makes sure that the system is continuously changing in 

response to changing query behaviour. 

 

 
Fig 1: Need for Generative Intelligence 

 

1.2.2. Prediction of High-Performance Data Paths:  

Traditional optimizers utilize heavily estimated statistics 

which can be incorrect when data distributions change. On 

the contrary, the generative intelligence is trained to guess 

the most efficient data access and join paths in terms of 

contextual knowledge of query semantics and execution 

history. The combination of transformers and learned 

embeddings makes the system create deep representations of 

relational dependencies and can preemptively recommend 

data paths that minimize computation, network transfers, and 

memory overhead. This forecasting ability results in a 

continuously improved planning decision even in very 

dynamic circumstances. 

 

1.2.3. Adaptive Learning from Runtime Feedback:  

One of the biggest shortcomings of the static optimizers 

is that they cannot find improvement automatically on the 

basis of the actual system performance. Generative AIs 

combined with reinforcement learning form a loop of 

continuous feedback between actual execution measures and 

subsequent optimization decisions. The results of poor 

performance are punished, and successful strategies are 

increased, enabling the optimizer to change along with 

infrastructure changes, workload trends, and data expansion. 

Such flexibility can guarantee the efficiency in the long-run 

without any human-intervention or expensive 

reconfiguration tasks. 

 

1.3. Query Optimization for Large-Scale Data Analytics 

Platforms 

 
Fig 2: Query Optimization for Large-Scale Data 

Analytics Platforms 

 

Big-data analytics systems have become a critical 

infrastructure in organizations that are engaged in the fields 

of finance, healthcare, e-commerce, telecommunication and 

scientific research. [4,21] These environments need to be 

capable of handling large and continuously growing data 

volumes as well as answer the growing need of complex 

workloads involving analytics. With the shift to distributed 

data-storage structures, including cloud warehouses, Hadoop 

systems, and Spark engines, the implicit query processing 

inferred is much more complex. What used to be a compile-

time choice of query optimization, can now be a dynamic 

operation that needs to take into account heterogeneity of 

hardware, data distribution patterns, and workload changes 

dynamically. Multi-table joins, recursive queries and window 

functions have a high computational overhead and in case 

one optimizer chooses an imperfect execution plan, a 

performance degradation can be multiplied over the 

distributed cluster. Moreover, the cost models employed by 

all conventional optimizers are based on statistical 

approximations that get out of date rapidly, particularly in 

streaming and mixed-workload conditions where data 

distributions change irregularly and unpredictably. 

Additional resource pressure like network shuffle costs and 

memory pressure are also the predominant factors affecting 

the performance of a query scale. Efficiency is thus achieved 

through smart decisions that respond to changing conditions 

of systems, and one that correctly reflects logical query 

structure and data semantics. The ability of the optimizer to 

select the most appropriate execution strategies is necessary 

in modern organizations that require low-latency delivery of 

results, high throughput of processing concurrently and 

reduced operational cost. Here query optimization is not 

simply a performance optimization method but rather a 

performance boosting tool that is essential to business 

competitiveness and timely information. Since analytical 

platforms keep increasing in scale and complexity, there is 

an evident necessity of novel methods like generative AI and 

machine learning to supplement or substitute stagnant rule-

based logic. Such sophisticated techniques can be trained by 

execution experience, self-evolve with some time, and 

provide strong operation in a variety of dynamic and 

dynamic information settings. 

 

2. Literature Survey 
2.1. Rule-Based and Cost-Based Optimizers 

Conventional database systems, including PostgreSQL, 

System-R and Apache Calcite have been traditionally based 

on rule-driven heuristics together with cost-based models in 

order to [6-9] produce a query execution plan. These 

optimizers attempt to approximate the cost of running other 

strategies of queries, depending upon projected use of CPU 

time, disk access instructions, and network interactions as 

well as utilization of memory. Though this has been 

successful over decades, the underlying assumption of this 

approach is that the workload of the applications and the 

conditions of the hardware is steady and predictable. With 

dynamic scaling of cloud deployments, long temporal trends 

on the nature of data changing, the assumption of cost is no 

longer reliable and as a consequence, the results of execution 

choices are suboptimal and/or outdated. 
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2.2. Machine Learning Approaches 

The contemporary studies have brought machine 

learning methods into database optimization and setting. 

Other systems, such as Otter Tune which are learning based, 

aim to compile workload patterns to propose configuration 

changes, and Sage DB aims at automatically tuning lower-

level parameters using learned models. Reinforcement 

learning is also applied to other projects like Bao where 

query plan selection is also enhanced through trial and error 

on numerous query executions. Nevertheless, these methods 

usually deal with very focused sub-tasks of optimization. 

They also widely neglect the end-to-end plan construction 

and their flexibility is limited to slow training, high resource 

requirements or lack of visibility into complex distributed 

query environments. 

 

2.3. Generative AI for Databases 

The latest trends in the field of natural language 

processing and transformers-based models have created 

potential possibilities of including generative AIs in the 

interfaces of databases. The main aspects of this work are 

improved usability including better SQL auto-complete, 

query structuring based on the intent of the user, and 

improved semantic value of schema metadata. Although 

these methods allow a more natural interaction with systems 

of data, they are seldom used in addressing more 

operationalization-related problems such as optimization of 

the physical plans, or adaptability at runtime. The efficiency 

is still all about developer productivity and not on providing 

execution-time productivity gains. 

 

2.4. Research Gap 

Although there is an improvement in several fronts, the 

contemporary database intelligence solutions also fail to 

allow holistic and entirely autonomous query optimization. 

No known system is reliable to produce full execution plans 

without relying to a great extent on hard and fast rules or 

hard-wired heuristics. Meta-optimization, in which trade-offs 

between performance such as speed, cost, and resource 

fairness have to be made, is only limited in use. Moreover, 

the vast majority of research prototypes are limitedly tested 

and rarely used in complex distributed systems like cloud 

data warehouses or scaled analytics engines. This creates a 

sound and pressing need of systems that can learn, adapt and 

optimize at all times in the dynamics of the world we operate 

in. 

 

3. Methodology 
3.1. System Architecture 

AI-driven decision-making as a part of the entire query 

optimization pipeline. It works by having an SQL query of a 

user turned into a structured form followed by turning [10-

12] such a structured form into embeddings through a 

transformer model. Such embeddings are used by a 

reinforcement learning (RL) agent when searching the most 

effective query execution plan. After the plan is 

implemented, runtime measurements are monitored and fed 

back to the learning model where further enhancement is 

made by closed-loop optimization. 

 Query Parsing: The initial phase of the architecture 

takes the raw SQL input and changes it into an 

internal logical form. The parser identifies relational 

operators, predicates, join conditions and schema 

metadata, in order to construct a query tree 

containing the high level semantics of the request. It 

is the form of representation, which is structured, 

that forms the foundation of the downstream 

learning models, so that the syntactic accuracy, as 

well as relational dependencies, can be upheld once 

the optimization process commences. 

 Embedding Generation: We use a generator based 

on transformers to learn to capture the query 

structures hidden complexity. It transforms logical 

query tree into high dimensional vector 

representation that encodes relations between tables, 

attributes and operators. Contextual insight These 

embeddings give a much more detailed contextual 

insight than conventional statistical heuristics. 

Consequently, the optimizer is made capable of 

generalizing its decision-making to unseen queries 

and dynamic workloads, to provide flexibility 

which is beyond what the traditional cost-based 

models can provide. 

 Plan Search: A reinforcement learning agent 

conducts intelligent searching of the execution plan 

space. Rather than searching by brutality or given 

rules, the agent gets to discover which join orders, 

operator selections, and physical strategies perform 

better. It uses rewards based on execution results as 

an evaluation of actions, and increase in effect 

gradually refines its policy to faster and more 

accurate optimization decisions. This strategy 

enables unceasing training which adapts to work 

load and environmental shifts. 

 Execution Feedback Loop: Once an executed plan 

has been executed on top of the target database 

engine, performance measures like time taken to 

execute the plan, amount of resources used and the 

costs are collected and fed back to the optimizer. 

Such feedback is key to closing the loop: the system 

is constantly improving its learning models, 

correcting previous assumptions, and continuing to 

make better decisions in selecting a plan. With time 

the optimizer changes in response to changing data 

distributions, system loads and hardware 

characteristics- attaining autonomous and self-

tuning behavior. 

 

 
Fig 3: System Architecture 
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3.2. Query Embedding Model 

We encode SQL queries into dense vectors in our 

system, which are simultaneously syntactically and 

semantically expressed in terms of their execution. [13-15] 

This starts with the SQL text being translated into a series of 

tokens, including names of the tables, names of the columns, 

operators, and join keywords. These tokens are then 

processed into an embedding model based on transformers 

which produces a continuous representation of a whole query 

in a Vector. To put it simply, query embedding is got 

through the use of a transformer model across the sequence 

of SQL tokens. The transformer architecture enables the 

model to discover long-range correlations within query 

structures consisting of complex queries, which can include 

nested subqueries of deep chained join criteria. The model is 

not taught SQL as plain text; it is taught the relationship 

between query operators, as well as how various clauses 

contribute to complexity of execution. Nonetheless, it should 

be noted that SQL queries are not entirely linear directions: 

they can be thought of as graphs that have relationships as 

nodes. As an example, join predicates establish relationships 

between tables explicitly, which affect the join order and the 

complexity of the plan. In order to build in this relational 

context, we build a query graph on which nodes denote 

tables or operations and dependencies denote join, or 

dependency relationships. This graph structure is then fed 

through a Graph Neural Network (GNN) to allow the model 

to reason about graph topology. The GNN combines 

information on the edges into a code that indicates the tables 

which are joined, the joins that are required and selective 

filters. This adds richness to embedding of structural 

awareness that would have been missed by a purely text 

based model. Our model consists of transformer embeddings 

coupled with graph-based relational features, which makes it 

generate a hybrid query representation with linguistic 

meaning and execution-relevant topology. This coherent 

result has a unified output of vectors to aid in a smarter 

decision making process during plan search to enable the 

reinforcement learning agent distinguish between logically 

similar yet structurally dissimilar queries. The embedding 

model is also adapted, as the optimizer keeps on improving 

its capacity to capture the performance critical features of the 

SQL workloads as execution feedback is presented 

continuously. 

 

3.3. Generative Query Rewriting 

In this element, the system relies on the generative AI 

model that automatically reformulates SQL queries into a 

more efficient one and refers to the semantic meaning. The 

principle behind it is that given a query as input, the model 

will generate another query as a rewritten query with the 

learnt query embedding and a group of performance and 

resource constraints as input. That is, a generative AI model 

rewrites the positive query with respect to query vector 

representation and system constraints like the latency 

constraint or memory restriction, or preference to distributed 

strategies of execution. The purpose of these rewritten 

variations is to save cost of execution, as well as produce 

identical results in the database. The rewriting engine is 

based on generative transformer architecture trained on a 

large set of similar query patterns and canonical optimization 

techniques. It inherits transformations including pushing 

filters nearer to data representation or rearranging joins as 

part of minimizing the intermediate results and converting 

inefficient constructs such as the damaged nesting of 

subqueries into an efficient format like common table 

expressions or set operations. The generative model is able to 

search a broader space than the rule-based optimizers, which 

can only rewrite according to predefined templates, and 

therefore find new rewrites that cannot be easily identified 

using modern heuristics. Semantic correctness is one of the 

requirements. To impose similarity between two original and 

rewritten queries, the model implements a logic based 

validation layer. This component uses the constraint 

checking and relational algebra rules to ensure that both 

queries generate identical results across all legal database 

states. Further runtime sampling may be used to verify 

similar results in sets of representative data distributions. 

When the model generates a transformation that cannot pass 

any semantic check, then this rewrite is rejected and another 

alternative is produced. With the system constantly 

improving its rewriting strategy as feedback on execution, 

the system is informed on what rewrite operations provide 

the biggest increases in performance under the various 

workload circumstances. Due to that optimizer gets steadily 

more capable of producing quality execution alternatives, 

making it possible to perform self-optimizing query 

processing without using manual optimization hints or fixed 

optimization rules. 

 

3.4. Reinforcement Learning Optimization 

Our optimizer involves the fundamental decision-

making unit that operates on the basis of reinforcement 

learning whereby the agent needs to constantly learn how to 

choose effective plans of query execution that benefit most 

based on the real execution experience. [16-18] The agent 

makes decisions on various physical plan options including 

join strategies, operator selections and the data placement 

decisions and gets a reward after it is executed. The reward is 

calculated based on the negative value of a weighted result of 

key performance measures that are the execution time, the 

amount of memory used, and the amount of data transferred 

across the network. The weights, which are alpha, beta, and 

gamma, are the proportionate significance of every measure 

based on the objectives of the system. E.g. alpha can be used 

when latency is important, beta when memory is limited, and 

gamma when the network transfer is expensive. Because the 

maximization of the reward causes the agent to pursue a 

more efficient strategy of execution, it can be believed that 

as the agent maximizes the reward, the agent will be inclined 

to pursue more efficient implementation strategies. This is 

because the more the agent can explore query plans, the 

more it develops an appreciation of the decisions that result 

in desirable system performance at different workloads and 

data characteristics. The reinforcement learning agent has the 

advantage of being based on feedback rather than 

assumptions and other estimates applied by other cost based 

optimizers that rely on estimated outcomes of real execution 

on actual hardware. The learning process has thus been 

automated to change in data distributions, workload patterns, 
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resource availability so that manual retuning is eliminated. 

The policy improvement process is used to enhance its 

decision model over time by the agent. Plans with a 

consistent low execution overhead have plans strengthened, 

whereas actions that perform poorly are punished, which 

lowers the opportunity of similar unsuccessful plan selection. 

Also, the exploration strategies are useful in ensuring that the 

optimizer keeps finding new alternatives of the plan and does 

not end up in the trap of early convergence to suboptimal 

behavior. This self-optimization feedback loop makes query 

execution faster and much more efficient than conventional 

heuristics and is resistant to actively changing distributed 

systems. 

 

3.5. Machine Learning Pipeline 

 
Fig 4: Machine Learning Pipeline 

 

 Fetch Data: The pipeline starts by acquiring the 

appropriate data through multiple sources including 

databases, APIs, logs or data warehouses. This is 

done to make sure that the model has access to 

actual operational data that gives the real-life 

patterns and conditions that it should be dealing 

with. Information is collected in both forms, 

structured and unstructured with regard to usage. 

 Clean Data: Raw data may include noise, missing 

data, inconsistencies or even duplicates. At this 

phase, the quality of data is enhanced by the 

manipulation of bad records, format mismatch, and 

the management of missed or wrong values. 

Assuming that there should be no bias and error in 

the model training, it requires clean data. 

 Prepare Data: After cleaning the data, it should be 

converted into a format that is usable in machine-

learning. These include operations like feature 

extraction, normalization, encoding of the 

categorical values and division of data into training 

and testing segments. Correct planning helps in 

increasing the learning capabilities of the model to 

pick-up useful trends. 

 Train Model: This step involves the use of machine 

learning algorithms on the data that has been 

prepared to create a predictive or a decision-making 

model. The model is trained to reduce error through 

iterative optimization and this helps the model to 

generalize. Hyperparameters can be adjusted during 

training to have a better performance. 

 Evaluate Model: Once training is over, the model is 

thoroughly tested on unseen data to determine its 

ability to be accurate and robust as well as effective 

in general. The evaluation measures, which include 

precision, recall, latency, and resource usage, are 

evaluated. This phase identifies the compatibility of 

the model to the requirements of system 

performance preceding deployment. 

 Deploy to Production: When the model is validated, 

it is then incorporated into a live environment 

whereby it is incorporated into the production 

system. It can be deployed by wrapping the model 

as microservices or APIs, and automatically scaling 

it to meet the workload of real users. 

 Evaluate Data: The task is repeated after 

implementation by observing the performance of 

the model and monitoring its effectiveness on the 

long term. The step assists in identifying problems 

like performance drift due to changing data patterns. 

Continuous improvement and re-training where 

needed and based on new data at the pipeline is fed 

back into the pipeline. 

 

4. Results and Discussion 
4.1. Experimental Setup 

In order to rigorously assess the effectiveness and 

practicability of our proposed generative query optimizer, we 

created a detailed experimental framework, inspired by a real 

world set of analytical workloads. The system was installed 

on a ten node Cycle with Amazon EC2 nodes that were set to 

operate in distributed mode in Apache Spark. All of the 

nodes are equipped with enough computer capacity and high 

speed network connectivity to perform data processing 

operations that are extensive and rich unique to large-scale 

enterprise deployments. The Spark selection guarantees that 

it is compatible with the current cloud-native data platforms 

that are common in undertaking big-data analytics. In this 

case, we chose the TPC-H suite on one terabyte-level dataset 

to use in benchmarking. TPC-H is a proven decision support 

benchmark with complex analytical queries including multi-

table join, aggregation, and nested queries and thus, it is very 

useful in determining the effectiveness of query optimization 

techniques. The benchmark workload is based on the 

realistic business cases like revenue analysis, a supplier 

evaluate and order prioritizing that require planning the 

query and physical execution layers. In order to rank the 

performance improvements provided by our optimizer, we 

used the default Spark Catalyst optimizer as a benchmark. 

Catalyst is generally considered to be among the most 

advanced cost-based query optimizers in production-scale 

distributed systems and thus to beat it is showing a sign of 

undisputed practical utility. Each of the experiments was run 

several times to have the same behavior and average 

performance metrics, including query execution time, 

memory footprint, and network shuffle volume, were taken 

to consider the variability of the systems. Moreover, we have 

an evaluation environment with such elements as execution 

logging and monitoring, which store detailed feedback 

required by the reinforcement learning element to improve 

the tactic through an iterative approach. On the whole, this 
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experimental design offers realistic and difficult environment 

to prove not only raw performance benefits but also the 

flexibility, stability, and accuracy of the proposed 

optimization strategy when operating under distributed and 

data-intensive workloads. 

 

4.2. Performance Metrics 

Table 1: Performance Metrics 

Metric Improvement 

Query Latency 41% 

Throughput 32% 

Memory Use 27% 

 

4.2.1. Query Latency:  

Query latency defines the number of seconds it takes to 

complete a SQL query. The proposed generative 

optimization system recorded a significant reduction in 

latency, up to 41 percent, relative to the base case Catalyst 

optimizer in our experiments. This performance 

improvement is due to the better join ordering, application of 

filters earlier and accurate choice of resources based plans. A 

decrease in latency has a direct impact on interactive 

analytics and shortens the time lag in the processing of time-

sensitive workloads. The enhancement percentage of 41% in 

the comparison column indicates the degree of reliability of 

the consistent rapid execution in large-scale distributed 

setting to be able to respond to analytics on a real-time basis. 

 

4.2.2. Throughput:  

The number of queries which the system is capable of 

handling within a given time is termed as throughput. Our 

optimizer delivered a throughput improvement of 102 than 

the cluster under the same conditions practically doubling the 

list of queries processed. Such an enhancement is an 

immediate consequence of the more effective plan 

generation, which minimizes resource contention, as well as 

the pipeline stalls within the distributed execution 

framework. The 32% improvement figure is another 

indicator of general increase in cluster use which allows to 

achieve higher concurrency and enhanced scale of 

workloads. Improved throughput can be particularly 

beneficial to multi-tenant data platforms and providers of 

cloud analytics with a vast user base at a time. 

 

4.2.3. Memory Use:  

The use of memory is a critical point in distributed 

query processing as intensive use of memory may result in 

expensive spill operations and poor performance. Our 

optimizer lowered memory consumption by an average of 

27% which is a considerable success and a point towards the 

more efficient choice of the execution operators and the 

amount of intermediate data. The scale of the improvement 

of 27 per cent over the baseline highlights the capability of 

our model to make a trade-off between the space-efficient 

plans and the execution speed. Such optimization enables 

more queries to be executed at the same time, reduces the 

chances of out-of-memory exceptions, and reduces the cost 

of infrastructure in a cloud setting where the cost of memory 

can be billed accordingly. 

 

 
Fig 5: Graph representing Performance Metrics 

 

4.3. Discussion 

The experimental findings indicate that our generative 

query optimization framework yields the most significant 

performance improvements on complex analytical queries 

especially those related to the multi-way joins, window 

functions and heavy aggregation load. Such types of queries 

are usually characterized by large intermediate data and 

necessitate advanced execution choices including the choice 

of join strategy, as well as the re-distribution of data 

throughout the cluster. Our system significantly decreases 

the shuffle cost and intermediate memory usage through 

clever rearrangements of join operations and the choice of 

predicates, increasing significantly its execution time. Also, 

with high-skew data sets, i.e. those with some keys occurring 

much more often than others, our optimizer is approximately 

two times better than the baseline. This is mainly because it 
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can learn skew-conscious execution plans, which reduce 

straggler tasks, which is usually a major problem with 

distributed environments. the reinforcement learning process 

can modify the plans according to the observed runtime 

behavior, which enables the system to dynamically optimize 

the strategy of distributing the data instead of relying solely 

on the histograms or sampling assumption. Not every 

workload is equal though. The performance difference is 

minor with simpler transactional queries that are common in 

OLTP situations like look-ups on a single table or simple 

update operations. The existing cost-based heuristics are 

already searching these queries much effectively and the low 

execution time does not offer much room to be improved. In 

other instances, invoking the learning-based optimizer can be 

more costly than a potential gain can be. This fact shows that 

decision support systems, ETL processes and scientific 

workloads have the highest value of our approach where 

query complexity and data volume are much more 

complicated. In general, the results have validated the 

hypothesis that generative and learning-based optimization 

perform extremely well in high plan exploration 

requirements but otherwise, the traditional techniques are 

efficient in simple tasks. Our system is thus an addition, and 

not a substitute to the current existing optimizer strategies, 

given that we work on high-impact analytical queries 

executions. 

 

5. Conclusion 
The study confirms that the joint use of generative 

artificial intelligence with reinforcement learning and 

continuous feedback provides an effective new avenue in 

autonomous relational query optimization in distributed 

analytics platforms. The outdated optimizers rely on the use 

of off-the-shelf cost models and transformation rules, which 

in most cases fail to scale to changing datasets, 

heterogeneous compute resources, and workloads basis on 

cloud-native computing. By comparison, our suggested 

implementation will provide a dynamic learning pipeline 

with the ability to synthesize new execution plans, rewrite 

complex SQL structure, and optimize the performance 

through observation during runtime; in other words, this 

feature allows it to improve its performance in real time. 

With the help of the embeddings based on transformers, the 

optimizer can learn high-level semantic and structural 

properties of SQL queries, which are not reflected by 

traditional text or tree-based representations. Reinforcement 

learning is then used to utilize real implementation outcomes 

in order to decide consecutively with higher accuracy and is 

highly adaptable to changing workloads and data 

distributions. Test findings of large-scale TPC-H benchmark 

show substantial query latency working memory decreases, 

enhanced throughput efficiency and minimized memory 

footprint in contrast to the well-known Catalyst optimizer. 

The experimental results prove the practicality of generative 

query optimization as an effective addition to the current 

data processing systems, and in high-complexity analytical 

scenarios (including multi-way joins, biased distribution, and 

window functions). Besides, the feedback-based learning 

mechanism of the system makes sure that the performance 

continues to increase in the long run so that it does not have 

to be manually modified or heuristically updated by database 

administrators. Although there are tremendous improvements 

in the case of decision-support workloads, more basic OLTP-

like queries exhibit less significant improvement, which 

indicates that the method is an add-on to, and not a substitute 

of the established cost-based mechanisms. Considering the 

future, a number of major improvements can be made to 

ensure more opportunities and scope of activities of the 

system. Future efforts will be aimed at assisting federated 

databases and querying in graph structure which introduces 

further optimization issues that are based on locality of 

distributed data, changing relationships, and sophisticated 

traversal operations. Expansions into edge computing spaces 

will facilitate smart plan optimization near data sources, 

which will overcome latency and resource limitations in IoT-

oriented situations. Lastly, the low-latency streaming 

generation will be integrated and this will create new 

opportunities in real-time analytics and ongoing execution of 

queries. All in all this study is a significant interim to self-

driving data base systems that will prepare the way to next 

generation data engines that can work efficiently, 

autonomously, as well as intelligently in varied and 

dynamically evolving computing environments. 
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