
International Journal of Artificial Intelligence, Data Science, and Machine Learning 

Grace Horizon Publication | Volume 7, Issue 1, 1-7, 2026 

ISSN: 3050-9262 | https://doi.org/10.63282/3050-9262.IJAIDSML-V7I1P101  

 

 

 

Original Article  

 

Federated Learning with Smartphone Sensor Data 
 

Dheeraj Vaddepally 

Independent Researcher, USA. 

 

Received On: 12/11/2025        Revised On: 15/12/2025       Accepted On: 21/12/2025         Published On: 02/01/2026 

 

Abstract - Federated learning (FL) is emerging as a promising approach for training machine learning models on 

distributed devices without violating the data privacy of these devices. In this paper, we examine federated learning 

for smartphone sensor data applications that involve both significant challenges related to privacy and data 

heterogeneity. Our primary interest lies in techniques such as differential privacy, secure aggregation, and 

homomorphic encryption that will ensure privacy over user-sensitive information during model training. We also pose 

and discuss heterogeneous data across devices, particularly non-independent and identically distributed (non-IID) 

data, by investigating methods such as normalization of data, personalized learning, and federated transfer learning. 

Using real-world smartphone sensor datasets, we demonstrate experimentally that federated learning is effective in 

training robust models while preserving privacy and accounting for device-specific data variations. Our findings 

highlight that federated learning can be regarded as a way to scale-up and privacy-preserve mobile-based machine 

learning, which may open new avenues for building real-time AI systems on top of devices themselves. 

 

Keywords - Federated learning, smartphone sensor data, privacy-preserving techniques, differential privacy, secure 

aggregation, homomorphic encryption, heterogeneous data, non-IID data, personalized learning, federated transfer 

learning. 

 

1. Introduction  
Smartphone proliferation has led to a massive increase 

in the creation of sensor data that encompasses such wide-

ranging information as movement, location, environmental 

conditions, and activity on the device. This creates immense 

potential to train machine learning models to further improve 

user experience in health monitoring, fitness tracking, and 

other applications like recommendations. However, 

centralized techniques of traditional machine learning carry 

the risk of huge privacy exposure because sensitive data are 

collected, stored, and processed on cloud servers. Therefore, 

with the increase in the threat of data privacy, the necessity 

for techniques that allow model training on users' devices 

without any violation of their data's confidentiality has 

emerged.[1] This is solved using federated learning, which 

has emerged as one of the solutions. Federated learning has 

enabled training machine learning models in decentralized 

settings across multiple devices. Only the updates of the 

model, not the raw data, are sent to a central server in FL, 

thereby retaining data on the device. Although FL holds 

great benefits in terms of privacy, it poses issues when 

applied to heterogeneous data produced by smartphone 

sensors. These devices often generate non-independent and 

identically distributed (non-IID) data, meaning that the data 

collected by one device is quite different from that of 

another, making training complicated.[1] 

 

This paper focuses on the application of federated 

learning to smartphone sensor data, emphasizing two main 

challenges: privacy preservation and handling heterogeneous 

data across devices. The paper discuss privacy-preserving 

techniques like differential privacy, secure aggregation, and 

homomorphic encryption to make sure that the data collected 

from the user remains private.[2] It also study approaches for 

handling heterogeneity, like data normalization and 

personalized federated learning, that can deal with the issue 

of non-IID data distribution. We present through a set of 

experiments how federated learning can train models 

effectively while keeping privacy and device-specific 

variations in sensor data intact. Addressing these important 

issues, this paper contributes to the emerging research in 

federated learning and the potential for its realization in the 

enabling of privacy-preserving decentralized machine 

learning on smartphones.[2] Results of this work give 

insights into the feasibility of federated learning as a 

practical solution for mobile-based AI applications, paving 

the way for real-time, privacy-conscious machine learning on 

resource-constrained devices. 

 

2. Related Work 
Federated learning (FL) has received much attention as a 

promising approach to decentralized machine learning, 

especially for applications involving sensitive data, such as 

data generated by smartphone sensors. This section reviews 

relevant research on federated learning, privacy-preserving 

techniques, and methods for handling heterogeneous data 

across devices. 

 

2.1. Federated Learning in Mobile Applications 

The first is the idea from McMahan et al. to Federated 

Learning in 2016, for an investigation of feasibility by 

training machine learning models on many mobile devices 

leaving data on each device local for privacy purposes, 

where the device sends the updated version of the model to 
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the centralized server instead of submitting raw data itself[1]. 

Ever since its creation, this has been much explored and 

optimized to improve both on efficiency and scalability. 

Hard et al. (2018) proposed the method Federated Averaging 

as an optimization mechanism that diminishes overhead from 

devices in communications to achieve more than one training 

local iterations before transmitting models to servers. [2] 

Various works show that federated learning is very effective 

in preserving users' privacy at the same time training models 

in relation to data such as readings from sensors like 

smartphones. Wang et al. (2023) applied federated learning 

for mobile health data in predicting chronic diseases, which 

showed its potential on maintaining privacy as well as giving 

meaningful results. [3] Similarly, Zhang et al. (2021) 

discussed federated learning for gesture recognition with 

smartphone accelerometer data with an emphasis on the 

model's performance and privacy-preserving benefits.[4]. 

 

2.2. Privacy-Preserving Techniques in Federated Learning 

The foremost major concern with using smartphone 

sensor data is privacy. Several techniques regarding privacy 

preservation have been proposed with the intent to mitigate 

risks involved due to leakage during the training process of 

the model. 

Differential Privacy: One of the promising techniques 

proposed with federated learning toward preserving privacy 

may be called differential privacy. McMahan et al. (2018) 

have introduced differential privacy into the federated 

learning framework such that data contribution at the 

individual level is private even in the training of the model. 

The technique incorporates noise in a way that prevents any 

information leakage about the individual data points. Very 

recently, with the development of differential privacy, for 

example, adaptive mechanisms, it has fine-tuned the 

application to federated learning and brought it to an 

interesting balance between the protection of breach of 

privacy and model accuracy.[5] Secure aggregation protocols 

enable devices to calculate and then transmit aggregated 

updates of the models in such a manner that no one would be 

able to find out what every individual is actually 

contributing. Recently, Bonawitz et al. published a method 

of secure aggregation in 2019 that protected the central 

server from receiving all sensitive information regarding 

model updates by individuals through aggregated models. 

The technique is heavily used within federated learning 

systems for augmenting privacy and security without losing 

on collaborative training [6]. 

Homomorphic Encryption: HE is the technique by which 

computations are performed on encrypted data without 

allowing the central server to access raw data in the training 

process. Shokri et al. (2024) discussed the use of 

homomorphic encryption in federated learning while 

allowing secure model training without exposing sensitive 

data. [7] However, high overhead in computation and 

complexity persists, especially in resource-constrained 

mobile devices. 

 

 

 

3. Federated Learning in the Context of 

Smartphone Sensor Data 
3.1. Smartphone Sensors 

A smartphone is provided with several sensors, where data of 

various types can be collected. In this regard, the data 

received is used within different applications; these include 

health monitoring and analysis of user behavior. The most 

frequent sensors on the smartphone are as follows: 

 

 

 
Fig 1: Smartphone Sensors 

 

 Accelerometer: It calculates acceleration forces 

acting in three dimensions on the device, usually for 

use in activity recognition, step counting, and 

motion tracking. 

 Gyroscope: The rate of rotation about axes of the 

device, usually it is combined with the 

accelerometer in gesture recognition, device 

orientation, and motion analysis. 

 GPS: This gives location-based data. Thus, 

applications like navigation, geofencing, and 

location-based services use it. 

 Camera: This captures images and videos, hence 

applications like face recognition, AR, and object 

detection. 

 Magnetometer: It measures magnetic fields and is 

used to determine compass direction and 

orientation. 

 Barometer: This measures atmospheric pressure, 

which can be read to determine the elevation or 

weather changes. 

 

These are sensor devices that create highly useful data 

for modeling very diverse and varied applications. Some of 

the applications include health monitoring, activity 

recognition, environmental sensing, and personalized 

services. 

 

3.2. Data Collection Challenges 

Although smartphone sensors carry rich and diverse data, 

some difficulties are present while collecting this data from 

such devices: 

 Noise: Sensor data is noisy because of 

environmental factors, device limitations, and 

sensor calibration issues. For instance, 

accelerometers may be sensitive to environmental 

vibrations around the user, causing them to register 

incorrect readings. 

 Variability: A different model used by different 

models of smartphones would cause inconsistency 
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in the data. Differing qualities, placements, and 

calibrations of sensors may produce a different 

distribution of data, hence making it impossible to 

construct models that are generally applicable. 

 Inconsistencies: Some of the factors that are liable 

for the inconsistency of sensor data include user 

behavior or environmental conditions. For example, 

GPS readings are not very periodic because it has 

obstacles like buildings and high roofs. This is 

primarily because of spasmodic and sporadic use of 

sensors to serve the needs of an application that 

results in some amount of data gaps. 

 Data Privacy: In general, sensor data involves 

personal information. That may be a location or 

even activity about a user. So, it's important that the 

design of an application be privacy-preserving and 

that the data cannot leave the device for anybody. 

 

3.3. Federated Learning for Sensor Data 

It is a powerful solution in machine learning models to 

be trained using smartphone sensor data but keep data on the 

devices, thus alleviating privacy and data consistency 

concerns. In FL, instead of sending raw sensor data to the 

central server, models are trained locally on each device 

using data available on that device, whereas model updates, 

aggregated in a privacy-preserving way, are sent to the 

central server for the improvement of the global model. 

 

Benefits of the application of FL on smartphone sensor data 

are: 

 Privacy preservation: FL has the property where 

sensitive data would never leave a device. Rather, 

only aggregate model updates shared ensure user 

privacy. 

 Handling Heterogeneity: FL could handle the 

heterogeneity of sensor data that may originate from 

different sources. Even heterogeneous types, 

qualities, and configurations of sensors FL enables 

every sensor device to contribute in updating global 

models without data exchange. 

 Efficiency: FL enables training the model on the 

target device, which reduces the amount of data 

upload needed, thereby reducing network resource 

usage and minimizing the power the devices 

consume. The devices may periodically update their 

models locally, with the help of any resources that 

can be accessed. 

 

FL is a suitable and promising framework toward 

tapping the abundance of sensor data collected by a 

smartphone, in an efficient, real-time manner that overcomes 

issues from data variability, noise, as well as associated 

privacy. 

 

4. Privacy-Preserving Techniques for Federated 

Learning 
The most relevant issue here would be privacy concern 

by the sensitive nature of data captured, such as personal 

activity, location, and behavior patterns. Preserving 

federation learning's ability to preserve privacy is important; 

for this reason, several techniques have been designed to 

protect user data during model training and aggregation. 

 

 
Fig 2: FL privacy Techniques 

 

 The most popular technique applied to FL is 

differential privacy. In this method, contributions of 

the individual data points cannot be reconstructed or 

even traced from the updates of the aggregated 

model. The differential privacy method injects noise 

into the updates of the models so that it is 

impossible for traceability to updates of single user 

data to occur. The noise is calibration noise; this 

means that an amount added is balanced between 

preserving privacy and providing good model 

accuracy. This guarantees that even if an adversarial 

party gains access to the aggregated model updates, 

he will not be able to extract any private 

information regarding the individual users or their 

data. 

 Another key privacy-preserving technique is Secure 

Aggregation. It does not allow the central server to 

see any raw data during model training. The model 

updates are not sent from each device to the server. 

Instead, secure aggregation protocols forward the 

aggregate of the updates to the server without 

revealing which device contributed which part of 

the data. This is because encryption techniques 

ensure that the model updates remain encrypted 

until they reach the server. The aggregation process 

will keep individual updates from the devices secret 

so that sensitive information about the users 

involved in the federated learning process will not 

leak out. 

 Homomorphic encryption plays a major role in 

ensuring data confidentiality in model training and 

aggregation. It enables computations on encrypted 

data without decryption. This means in federated 

learning that the central server can aggregate model 

updates from devices without ever accessing the 

raw updates themselves. Such a method is 

especially useful for maintaining privacy of 

sensitive applications like health monitoring or 

location tracking when even intermediate data 

processing needs to be confidential. Though there is 

some computation overhead associated with 

homomorphic encryption, recent developments in 
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encryption algorithms make this method even more 

practicable to deploy on mobile devices. 

 

 

 
Fig 3: Homomorphic encryption 

 

 Federated Transfer Learning: This is a very 

interesting method that combines the benefits of 

both transfer learning and federated learning. This is 

yet another method to enhance the protection of 

privacy while improving the performance of the 

model across heterogeneous devices. This 

minimizes the sensitive data that has to be 

transferred again since federated transfer learning 

will enable other devices to modify their model 

depending on pre-trained models or knowledge 

from another device, which will make a device use 

knowledge already acquired in other devices rather 

than only its local data. In this way, federated 

transfer learning transfers knowledge between 

devices and enhances the generalization of the 

models while minimizing privacy risks that come 

with training models on limited or sensitive data. 

 

All these privacy-preserving techniques are combined to 

collectively ensure that federated learning is applicable to 

data from smartphone sensors without compromising user 

privacy. All of differential privacy, secure aggregation, 

homomorphic encryption, and federated transfer learning 

enhance the model training efficiency and security and 

therefore apply in privacy-sensitive applications. 

 

4. Handling Heterogeneous Data across Devices 
One of the biggest challenges federated learning will 

face when applied to smartphone sensor data is how to 

handle heterogeneity in data across devices. Because of 

differences in user behaviors, device configurations, and 

environmental conditions, the data collected by smartphones 

are often non-independent and identically distributed (non-

IID). This non-IID nature creates several challenges to the 

convergence and performance of models since it becomes 

hard for the model to generalize across different devices 

while trained on data not drawn from the same distribution. 

For example, accelerometer data captured by one user is 

different from another user because their movement patterns 

and placement of the device might differ. These differences 

lead to lower convergence rates, lower precision models, and 

inability to have a model that would fit on all devices. 

 

To solve this problem, the application of Data 

Normalization and Standardization techniques is of extreme 

importance. It allows standardizing or normalizing sensor 

data to be used for making the input data uniform on devices 

despite having a raw data set with very large variations. It 

means a series of steps focusing on rescaling readings from 

the sensor to an applicable range like [0, 1] in normalization; 

with standardization values are further normalized to zero 

mean and a unit standard deviation. Such effects reduce ones 

that will appear due to nonuniform sensor readings; a 

federated learning model would adjust better around devices 

having these. This will normalize the sensor values of 

features that are acceleration, location, or orientation and the 

same on diverse smartphones for useful model training 

aggregation. 

 

Personalized Federated Learning builds upon federated 

learning while focusing on improved model performance 

given heterogeneous data across different devices to 

customize models according to specific characteristics at an 

individual's device. Rather than having one model to be 

trained on all the devices, federated learning, which is 

personalized, allows each device to have a unique model to 

help it better serve its local data distribution and usage 

patterns. For instance, a smartphone primarily used for 

fitness tracking will probably have different sensor data than 

one primarily used for navigation. Personalized models are 

fine-tuned on local data from each device, so the model's 

predictions are more accurate and relevant to the user's 

context. Personalization can be achieved by maintaining a 

global model that serves as a starting point, while each 

device adjusts its model locally based on its specific data. 

This will let every device utilize its unique sensor data, but 

still benefit from the general knowledge that is present in the 

global model. Non-IID challenges can be dealt with and 

personalized federated learning as well as normalization of 

data techniques support effective handling of the 

heterogeneity of smartphone sensor data by FL. These assure 

the proper usage of data that are unique to a device results in 

higher accuracy in models, quicker convergence, and 

practical federated learning. 

 

4. Methodology 
4.1. Federated Learning Framework 

The federated learning (FL) framework follows server-

client architecture, as it is a smartphone sensor data design. 

Several devices, under the coordination of a central server, 

collaboratively train a model; the server keeps track of the 

global model and coordinates the model updates from 

clients, while local training of the model is done at the clients 

themselves using their sensor data. The data never leaves the 

device; hence, it is not transmitted directly to the server and 

maintains privacy. 
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Fig 4: FL Framework 

 

Data partitioning is a crucial aspect of federated learning 

because every client trains the model with its local dataset. 

This local dataset usually consists of sensor data obtained 

from the sensors of the device itself, such as an 

accelerometer, GPS, camera, etc. Because of the non-IID 

nature of the data across devices, data partition should be 

carried out in a manner that captures the heterogeneity in 

devices. It is coordinated through the server in its training 

process by aggregating the local model updates from each 

client. Communication protocols in the form of secure 

aggregation and differential privacy ensure that only 

aggregated model updates are shared, thus protecting user 

data. Additionally, synchronization techniques like periodic 

synchronization and protocols on communication efficiency 

(for example, model compression) reduce the impact of 

network latency and the number of rounds of communication 

between the clients and the server. 

 

4.2. Preprocessing of Sensor Data 

To be able to train the model on sensor data collected, 

several preprocessing steps have to be performed in order to 

ensure data quality and consistency. Sensor data are noisy 

and often inconsistent; therefore, in preprocessing, noise 

removal techniques such as filtering out extreme outliers, for 

example, or smoothing algorithms like moving averages 

usually form part of the preprocessing pipeline. The feature 

extraction part of the preprocessing pipeline is concerned 

with how to identify meaningful features from raw sensor 

data. This might range from extracting mean, standard 

deviation, signal magnitude area features from accelerometer 

data to represent different user motion patterns. This is more 

meaningful for model training than raw time-series data. 

Therefore, it will improve the model accuracy and reduce the 

computational cost. 

 

Handling missing values is another very important 

preprocessing step. The sensor data are incomplete for a 

number of reasons, such as inactivity on the device or even 

sensor failure. Imputation is an important technique, either 

mean imputation or regression imputation. The other one is 

interpolation of data, which can also be used for filling in the 

missing data points. If missing data occurs too frequently or 

is critical for training, then the data will be discarded so that 

the model trains properly. 

 
Fig 5: Sensor Data 

 

4.3. Training Process  

In federated learning, training is round-by-round, where 

model aggregation follows the local training. The server 

starts with an initial global model that it distributes to all 

clients. Each client then trains its local model on its sensor 

data. Traditionally, optimization techniques such as 

stochastic gradient descent or Adam, based on gradient 

descent, are used to minimize the loss function. This is 

known as updating parameters of the models based on 

locally available data that does not use the actual transferred 

data. Gradients or the weights returned back by the end of 

each round are aggregated by every client and relayed to the 

server. By aggregating each of these returned updates, it 

constructs a fresh global model on the server-side. The 

described process is also known as 'aggregation in the 

gradient layer'. It averages the updates, weighing them by the 

amount of data on each device so that clients with more data 

have a larger influence on the global model. More advanced 

techniques such as secure aggregation have been used in 

order to ensure that the server cannot get any individual 

client's model update without violating privacy. 

 

Other techniques include adaptive gradient methods, 

learning rate adjustment, and regularization among others, in 

an effort to optimize a training procedure and the 

performance of the models. Others are communication 

efficiency protocols such as early stopping where the 

probability of overfitting does not occur, much more 

computationally expensive rounds of training would have 

been avoided. Others include protocols such as model 

compression or quantization which would reduce the size of 

updates to the models, hence decreasing the overhead of 

communication. This, in turn, trains a robust model that is 

deployable on smartphones while still preserving privacy, 

data efficiency, and model performance across 

heterogeneous devices. 
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5. Challenges and Open Issues 
5.1. Scalability 

One of the significant challenges with federated learning 

is scalability, especially in terms of extending the system to 

handle a large number of devices. The complexity of 

coordinating model training and aggregation increases with 

an increase in the number of participating devices. In this 

system, every device might have different computational 

powers, network bandwidth, and battery capacity, leading to 

inconsistent training processes. It involves more devices in 

the process and grows the volume of model updates being 

sent to a central server. Such an effect could lead to 

communication overhead due to increased information 

transmission. Techniques like efficient communication 

protocols and techniques of model aggregation help in 

tackling the scalability issues of the same. Strategies that 

involve model compression, asynchronous updates, and 

client sampling will help with relieving strain on network 

resources, ensuring it does not collapse at large scales. 

 

5.2. Device Resource Constraints  

Naturally, smartphones are devices that are very 

resource-constrained, and therefore, these resources pose a 

tremendous challenge to federated learning. Mobile devices 

normally have limited capacities in terms of computational 

power, memory, and battery life-all of which limit their 

ability to efficiently participate in federated learning 

processes. This is because substantial computational 

resources in training a machine learning model significantly 

consume energy; hence, making the device's usability for 

other tasks low. Moreover, the training process may be 

memory-intensive for a device since models have to store 

weights and gradients as well as other intermediate values. 

Thus, federated learning frameworks should implement 

lightweight model architectures, model quantization and 

more efficient optimization algorithms to take account of 

these constraints. Other techniques may involve local model 

update or offloading part of the computation to more 

powerful edge devices so that the smartphone balances the 

intensity of computation with energy consumption. 

 

5.3. Data Privacy  

Federated learning tries to protect the privacy of data by 

keeping the sensitive data on the local device, but there are 

challenges in fully maintaining privacy throughout the 

learning process. Differential privacy, secure aggregation, 

and homomorphic encryption help reduce the risk of leakage 

but do not completely eliminate it. For example, adversaries 

might use patterns in model updates for side-channel attacks 

or infer private information about individual users. Federated 

learning relies on local data updates, so one might also be 

concerned whether aggregated model updates may still leak 

private user behaviours or characteristics. Ongoing research 

into stronger privacy-preserving techniques, better secure 

aggregation protocols, and methods for detecting and 

preventing adversarial attacks is needed to enhance privacy 

guarantees in federated learning systems.  

 

5.4. Data Quality  

Data quality is the biggest problem with federated 

learning, particularly in sensor data from smartphones. 

Sensor data are generally noisy and frequently include 

inaccuracies. For example, this can be due to calibration 

errors on devices, environmental influences, or even 

malfunctions within the sensors themselves. Noise degrades 

the quality of the model, which may cause incorrect 

predictions or slower convergence. Missing values are 

another critical problem with sensor data. The causes of 

missing data may arise from the fact that a sensor has failed 

or the device was inactive, which resulted in insubstantial 

sampling. Handling the problems involves elimination of 

noise, such as filter and smoothing, detection of outliers, and 

imputation techniques to provide values for the missing data. 

Nonetheless, these are not very effective and are secondary 

to the root variation in readings from different sensor 

devices. This is one area where federated learning models 

have been researched; that is, how they can even perform 

well despite the presence of noisy and incomplete data. 

 

This raises several challenges and open issues toward 

the deployment of federated learning systems on sensor-rich 

smartphones, and techniques including model compression, 

privacy-preserving methods, and data preprocessing have 

immense potential to further address some of these issues, 

hence a pressing need for ongoing research in that direction 

to mitigate the current barriers toward making federated 

learning scale-up, resource-aware, and safe for a whole host 

of realistic applications. 

 

6. Conclusion 
Federated learning might unlock the sensor data of 

phones with minimal deviation from privacy, and it is 

especially toward the limitation of scattered data. Thus, 

federated learning brings privacy issues down to their barest 

minimum as it allows training models to be conducted 

straight on devices without transferring sensitive data that 

may cause personal information. However, federated 

learning of smartphone sensor data will be successful only if 

the kind of host of challenges associated with heterogeneous 

data across the devices is mitigated; the limitation at the 

device level addresses resource limitations, ensures privacy 

in data collection, and addresses quality in data. 

 

Some of the techniques applied in these directions 

include differential privacy, secure aggregation, and 

personalized federated learning. Other techniques that are 

equally important in helping to make the data reliable and 

consistent include normalization of data, feature extraction, 

and noise removal, which are often required for noisy and 

incomplete sensor data. In scaled federated learning systems, 

which involve a number of devices of various sensor 

capacities, communication protocols and model architectures 

need to strike the right balance in computational load with 

respect to energy consumption. 

 

In summary, while promising in the space of privacy-

preserved applications in machine learning applications, 

further innovation in its systems' scalability of processing 
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data together with improvement for privacy protection makes 

federated learning closer. Moving forward with growing 

technology and subsequent solutions that could emerge, 

federation learning would be a foundational aspect in 

widespread distributed machine applications in improving 

both efficacy and safety and personalization in countless 

domains. 
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