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Abstract - Federated learning (FL) is emerging as a promising approach for training machine learning models on
distributed devices without violating the data privacy of these devices. In this paper, we examine federated learning
for smartphone sensor data applications that involve both significant challenges related to privacy and data
heterogeneity. Our primary interest lies in techniques such as differential privacy, secure aggregation, and
homomorphic encryption that will ensure privacy over user-sensitive information during model training. We also pose
and discuss heterogeneous data across devices, particularly non-independent and identically distributed (non-11D)
data, by investigating methods such as normalization of data, personalized learning, and federated transfer learning.
Using real-world smartphone sensor datasets, we demonstrate experimentally that federated learning is effective in
training robust models while preserving privacy and accounting for device-specific data variations. Our findings
highlight that federated learning can be regarded as a way to scale-up and privacy-preserve mobile-based machine
learning, which may open new avenues for building real-time Al systems on top of devices themselves.

Keywords - Federated learning, smartphone sensor data, privacy-preserving techniques, differential privacy, secure
aggregation, homomorphic encryption, heterogeneous data, non-11D data, personalized learning, federated transfer

learning.

1. Introduction

Smartphone proliferation has led to a massive increase
in the creation of sensor data that encompasses such wide-
ranging information as movement, location, environmental
conditions, and activity on the device. This creates immense
potential to train machine learning models to further improve
user experience in health monitoring, fitness tracking, and
other applications like recommendations. However,
centralized techniques of traditional machine learning carry
the risk of huge privacy exposure because sensitive data are
collected, stored, and processed on cloud servers. Therefore,
with the increase in the threat of data privacy, the necessity
for techniques that allow model training on users' devices
without any violation of their data's confidentiality has
emerged.[1] This is solved using federated learning, which
has emerged as one of the solutions. Federated learning has
enabled training machine learning models in decentralized
settings across multiple devices. Only the updates of the
model, not the raw data, are sent to a central server in FL,
thereby retaining data on the device. Although FL holds
great benefits in terms of privacy, it poses issues when
applied to heterogeneous data produced by smartphone
sensors. These devices often generate non-independent and
identically distributed (non-11D) data, meaning that the data
collected by one device is quite different from that of
another, making training complicated.[1]

This paper focuses on the application of federated
learning to smartphone sensor data, emphasizing two main
challenges: privacy preservation and handling heterogeneous
data across devices. The paper discuss privacy-preserving
techniques like differential privacy, secure aggregation, and

homomorphic encryption to make sure that the data collected
from the user remains private.[2] It also study approaches for
handling heterogeneity, like data normalization and
personalized federated learning, that can deal with the issue
of non-11D data distribution. We present through a set of
experiments how federated learning can train models
effectively while keeping privacy and device-specific
variations in sensor data intact. Addressing these important
issues, this paper contributes to the emerging research in
federated learning and the potential for its realization in the
enabling of privacy-preserving decentralized machine
learning on smartphones.[2] Results of this work give
insights into the feasibility of federated learning as a
practical solution for mobile-based Al applications, paving
the way for real-time, privacy-conscious machine learning on
resource-constrained devices.

2. Related Work

Federated learning (FL) has received much attention as a
promising approach to decentralized machine learning,
especially for applications involving sensitive data, such as
data generated by smartphone sensors. This section reviews
relevant research on federated learning, privacy-preserving
techniques, and methods for handling heterogeneous data
across devices.

2.1. Federated Learning in Mobile Applications

The first is the idea from McMahan et al. to Federated
Learning in 2016, for an investigation of feasibility by
training machine learning models on many mobile devices
leaving data on each device local for privacy purposes,
where the device sends the updated version of the model to
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the centralized server instead of submitting raw data itself[1].
Ever since its creation, this has been much explored and
optimized to improve both on efficiency and scalability.
Hard et al. (2018) proposed the method Federated Averaging
as an optimization mechanism that diminishes overhead from
devices in communications to achieve more than one training
local iterations before transmitting models to servers. [2]
Various works show that federated learning is very effective
in preserving users' privacy at the same time training models
in relation to data such as readings from sensors like
smartphones. Wang et al. (2023) applied federated learning
for mobile health data in predicting chronic diseases, which
showed its potential on maintaining privacy as well as giving
meaningful results. [3] Similarly, Zhang et al. (2021)
discussed federated learning for gesture recognition with
smartphone accelerometer data with an emphasis on the
model's performance and privacy-preserving benefits.[4].

2.2. Privacy-Preserving Techniques in Federated Learning
The foremost major concern with using smartphone
sensor data is privacy. Several techniques regarding privacy
preservation have been proposed with the intent to mitigate
risks involved due to leakage during the training process of
the model.
Differential Privacy: One of the promising techniques
proposed with federated learning toward preserving privacy
may be called differential privacy. McMahan et al. (2018)
have introduced differential privacy into the federated
learning framework such that data contribution at the
individual level is private even in the training of the model.
The technique incorporates noise in a way that prevents any
information leakage about the individual data points. Very
recently, with the development of differential privacy, for
example, adaptive mechanisms, it has fine-tuned the
application to federated learning and brought it to an
interesting balance between the protection of breach of
privacy and model accuracy.[5] Secure aggregation protocols
enable devices to calculate and then transmit aggregated
updates of the models in such a manner that no one would be
able to find out what every individual is actually
contributing. Recently, Bonawitz et al. published a method
of secure aggregation in 2019 that protected the central
server from receiving all sensitive information regarding
model updates by individuals through aggregated models.
The technique is heavily used within federated learning
systems for augmenting privacy and security without losing
on collaborative training [6].
Homomorphic Encryption: HE is the technique by which
computations are performed on encrypted data without
allowing the central server to access raw data in the training
process. Shokri et al. (2024) discussed the use of
homomorphic encryption in federated learning while
allowing secure model training without exposing sensitive
data. [7] However, high overhead in computation and
complexity persists, especially in resource-constrained
mobile devices.

3. Federated Learning in the Context of

Smartphone Sensor Data

3.1. Smartphone Sensors

A smartphone is provided with several sensors, where data of
various types can be collected. In this regard, the data
received is used within different applications; these include
health monitoring and analysis of user behavior. The most
frequent sensors on the smartphone are as follows:
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Fig 1: Smartphone Sensors
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e Accelerometer: It calculates acceleration forces
acting in three dimensions on the device, usually for
use in activity recognition, step counting, and
motion tracking.

e Gyroscope: The rate of rotation about axes of the
device, usually it is combined with the
accelerometer in gesture recognition, device
orientation, and motion analysis.

e GPS: This gives location-based data. Thus,
applications like navigation, geofencing, and
location-based services use it.

e Camera: This captures images and videos, hence
applications like face recognition, AR, and object
detection.

e Magnetometer: It measures magnetic fields and is
used to determine compass direction and
orientation.

e Barometer: This measures atmospheric pressure,
which can be read to determine the elevation or
weather changes.

These are sensor devices that create highly useful data
for modeling very diverse and varied applications. Some of
the applications include health monitoring, activity
recognition, environmental sensing, and personalized
services.

3.2. Data Collection Challenges

Although smartphone sensors carry rich and diverse data,
some difficulties are present while collecting this data from
such devices:

e Noise: Sensor data is noisy because of
environmental factors, device limitations, and
sensor  calibration issues. For instance,

accelerometers may be sensitive to environmental
vibrations around the user, causing them to register
incorrect readings.

e Variability: A different model used by different
models of smartphones would cause inconsistency
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in the data. Differing qualities, placements, and
calibrations of sensors may produce a different
distribution of data, hence making it impossible to
construct models that are generally applicable.

e Inconsistencies: Some of the factors that are liable
for the inconsistency of sensor data include user
behavior or environmental conditions. For example,
GPS readings are not very periodic because it has
obstacles like buildings and high roofs. This is
primarily because of spasmodic and sporadic use of
sensors to serve the needs of an application that
results in some amount of data gaps.

e Data Privacy: In general, sensor data involves
personal information. That may be a location or
even activity about a user. So, it's important that the
design of an application be privacy-preserving and
that the data cannot leave the device for anybody.

3.3. Federated Learning for Sensor Data

It is a powerful solution in machine learning models to
be trained using smartphone sensor data but keep data on the
devices, thus alleviating privacy and data consistency
concerns. In FL, instead of sending raw sensor data to the
central server, models are trained locally on each device
using data available on that device, whereas model updates,
aggregated in a privacy-preserving way, are sent to the
central server for the improvement of the global model.

Benefits of the application of FL on smartphone sensor data
are:

e Privacy preservation: FL has the property where
sensitive data would never leave a device. Rather,
only aggregate model updates shared ensure user
privacy.

e Handling Heterogeneity: FL could handle the
heterogeneity of sensor data that may originate from
different sources. Even heterogeneous types,
qualities, and configurations of sensors FL enables
every sensor device to contribute in updating global
models without data exchange.

e Efficiency: FL enables training the model on the
target device, which reduces the amount of data
upload needed, thereby reducing network resource
usage and minimizing the power the devices
consume. The devices may periodically update their
models locally, with the help of any resources that
can be accessed.

FL is a suitable and promising framework toward
tapping the abundance of sensor data collected by a
smartphone, in an efficient, real-time manner that overcomes
issues from data variability, noise, as well as associated
privacy.

4. Privacy-Preserving Techniques for Federated
Learning

The most relevant issue here would be privacy concern
by the sensitive nature of data captured, such as personal
activity, location, and behavior patterns. Preserving

federation learning's ability to preserve privacy is important;
for this reason, several techniques have been designed to
protect user data during model training and aggregation.
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e The most popular technique applied to FL is
differential privacy. In this method, contributions of
the individual data points cannot be reconstructed or
even traced from the updates of the aggregated
model. The differential privacy method injects noise
into the updates of the models so that it is
impossible for traceability to updates of single user
data to occur. The noise is calibration noise; this
means that an amount added is balanced between
preserving privacy and providing good model
accuracy. This guarantees that even if an adversarial
party gains access to the aggregated model updates,
he will not be able to extract any private
information regarding the individual users or their
data.

e  Another key privacy-preserving technique is Secure
Aggregation. It does not allow the central server to
see any raw data during model training. The model
updates are not sent from each device to the server.
Instead, secure aggregation protocols forward the
aggregate of the updates to the server without
revealing which device contributed which part of
the data. This is because encryption techniques
ensure that the model updates remain encrypted
until they reach the server. The aggregation process
will keep individual updates from the devices secret
so that sensitive information about the users
involved in the federated learning process will not
leak out.

e Homomorphic encryption plays a major role in
ensuring data confidentiality in model training and
aggregation. It enables computations on encrypted
data without decryption. This means in federated
learning that the central server can aggregate model
updates from devices without ever accessing the
raw updates themselves. Such a method is
especially useful for maintaining privacy of
sensitive applications like health monitoring or
location tracking when even intermediate data
processing needs to be confidential. Though there is
some computation overhead associated with
homomorphic encryption, recent developments in
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encryption algorithms make this method even more
practicable to deploy on mobile devices.
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Fig 3: Homomorphic encryption

o Federated Transfer Learning: This is a very
interesting method that combines the benefits of
both transfer learning and federated learning. This is
yet another method to enhance the protection of
privacy while improving the performance of the
model across heterogeneous devices. This
minimizes the sensitive data that has to be
transferred again since federated transfer learning
will enable other devices to modify their model
depending on pre-trained models or knowledge
from another device, which will make a device use
knowledge already acquired in other devices rather
than only its local data. In this way, federated
transfer learning transfers knowledge between
devices and enhances the generalization of the
models while minimizing privacy risks that come
with training models on limited or sensitive data.

All these privacy-preserving techniques are combined to
collectively ensure that federated learning is applicable to
data from smartphone sensors without compromising user
privacy. All of differential privacy, secure aggregation,
homomorphic encryption, and federated transfer learning
enhance the model training efficiency and security and
therefore apply in privacy-sensitive applications.

4. Handling Heterogeneous Data across Devices
One of the biggest challenges federated learning will
face when applied to smartphone sensor data is how to
handle heterogeneity in data across devices. Because of
differences in user behaviors, device configurations, and
environmental conditions, the data collected by smartphones
are often non-independent and identically distributed (non-
[1D). This non-1ID nature creates several challenges to the
convergence and performance of models since it becomes
hard for the model to generalize across different devices
while trained on data not drawn from the same distribution.
For example, accelerometer data captured by one user is
different from another user because their movement patterns
and placement of the device might differ. These differences
lead to lower convergence rates, lower precision models, and
inability to have a model that would fit on all devices.

To solve this problem, the application of Data
Normalization and Standardization techniques is of extreme
importance. It allows standardizing or normalizing sensor
data to be used for making the input data uniform on devices
despite having a raw data set with very large variations. It
means a series of steps focusing on rescaling readings from
the sensor to an applicable range like [0, 1] in normalization;
with standardization values are further normalized to zero
mean and a unit standard deviation. Such effects reduce ones
that will appear due to nonuniform sensor readings; a
federated learning model would adjust better around devices
having these. This will normalize the sensor values of
features that are acceleration, location, or orientation and the
same on diverse smartphones for useful model training
aggregation.

Personalized Federated Learning builds upon federated
learning while focusing on improved model performance
given heterogeneous data across different devices to
customize models according to specific characteristics at an
individual's device. Rather than having one model to be
trained on all the devices, federated learning, which is
personalized, allows each device to have a unique model to
help it better serve its local data distribution and usage
patterns. For instance, a smartphone primarily used for
fitness tracking will probably have different sensor data than
one primarily used for navigation. Personalized models are
fine-tuned on local data from each device, so the model's
predictions are more accurate and relevant to the user's
context. Personalization can be achieved by maintaining a
global model that serves as a starting point, while each
device adjusts its model locally based on its specific data.
This will let every device utilize its unique sensor data, but
still benefit from the general knowledge that is present in the
global model. Non-1ID challenges can be dealt with and
personalized federated learning as well as normalization of
data techniques support effective handling of the
heterogeneity of smartphone sensor data by FL. These assure
the proper usage of data that are unique to a device results in
higher accuracy in models, quicker convergence, and
practical federated learning.

4. Methodology
4.1. Federated Learning Framework

The federated learning (FL) framework follows server-
client architecture, as it is a smartphone sensor data design.
Several devices, under the coordination of a central server,
collaboratively train a model; the server keeps track of the
global model and coordinates the model updates from
clients, while local training of the model is done at the clients
themselves using their sensor data. The data never leaves the
device; hence, it is not transmitted directly to the server and
maintains privacy.
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Data partitioning is a crucial aspect of federated learning
because every client trains the model with its local dataset.
This local dataset usually consists of sensor data obtained
from the sensors of the device itself, such as an
accelerometer, GPS, camera, etc. Because of the non-1ID
nature of the data across devices, data partition should be
carried out in a manner that captures the heterogeneity in
devices. It is coordinated through the server in its training
process by aggregating the local model updates from each
client. Communication protocols in the form of secure
aggregation and differential privacy ensure that only
aggregated model updates are shared, thus protecting user
data. Additionally, synchronization techniques like periodic
synchronization and protocols on communication efficiency
(for example, model compression) reduce the impact of
network latency and the number of rounds of communication
between the clients and the server.

4.2. Preprocessing of Sensor Data

To be able to train the model on sensor data collected,
several preprocessing steps have to be performed in order to
ensure data quality and consistency. Sensor data are noisy
and often inconsistent; therefore, in preprocessing, noise
removal techniques such as filtering out extreme outliers, for
example, or smoothing algorithms like moving averages
usually form part of the preprocessing pipeline. The feature
extraction part of the preprocessing pipeline is concerned
with how to identify meaningful features from raw sensor
data. This might range from extracting mean, standard
deviation, signal magnitude area features from accelerometer
data to represent different user motion patterns. This is more
meaningful for model training than raw time-series data.
Therefore, it will improve the model accuracy and reduce the
computational cost.

Handling missing values is another very important
preprocessing step. The sensor data are incomplete for a
number of reasons, such as inactivity on the device or even
sensor failure. Imputation is an important technique, either
mean imputation or regression imputation. The other one is
interpolation of data, which can also be used for filling in the
missing data points. If missing data occurs too frequently or
is critical for training, then the data will be discarded so that
the model trains properly.

Table 1. Accelerometer data.

Timestamp Unix Timestamp  Milliseconds X Y A
02-02-21 10:28:14 AM 1,612,261,680 1 -1.63639 -0.60269 9.899107
02-02-21 10:28:14 AM 1,612,261,680 12 -1.69412 -049502 9.731311
02-02-2110:28:14 AM 1.612,261,680 21 -164596 -0.63858 9.702597
02-02-2110:28:14 AM 1,612,261,680 30 -1.74915 -0.55005 9.968499
02-02-2110:28:14 AM 1,612,261,680 41 -166271 -0.45912 9.853643
Table 2. Gyroscope data.

Timestamp Unix Timestamp  Milliseconds X Y Z
02-02-2110:28:14 AM 1,612,261,680 1 0.003595 -0.00426 -0.0028
02-02-21 10:28:14 AM 1,612,261,680 12 -6.66E-04 -0.00213 -6.66E-04
02-02-2110:28:14 AM 1.612,261,680 20 0.001465 -0.0032  3.99E-04
02-02-2110:28:14 AM 1.612,261,680 31 0.003595 -0.00213 -0.00173
02-02-2110:28:14 AM 1,612,261,680 41 0.00466 -0.00213 -6.66E-04

Fig 5: Sensor Data

4.3. Training Process

In federated learning, training is round-by-round, where
model aggregation follows the local training. The server
starts with an initial global model that it distributes to all
clients. Each client then trains its local model on its sensor
data. Traditionally, optimization techniques such as
stochastic gradient descent or Adam, based on gradient
descent, are used to minimize the loss function. This is
known as updating parameters of the models based on
locally available data that does not use the actual transferred
data. Gradients or the weights returned back by the end of
each round are aggregated by every client and relayed to the
server. By aggregating each of these returned updates, it
constructs a fresh global model on the server-side. The
described process is also known as ‘aggregation in the
gradient layer'. It averages the updates, weighing them by the
amount of data on each device so that clients with more data
have a larger influence on the global model. More advanced
techniques such as secure aggregation have been used in
order to ensure that the server cannot get any individual
client's model update without violating privacy.

Other techniques include adaptive gradient methods,
learning rate adjustment, and regularization among others, in
an effort to optimize a training procedure and the
performance of the models. Others are communication
efficiency protocols such as early stopping where the
probability of overfitting does not occur, much more
computationally expensive rounds of training would have
been avoided. Others include protocols such as model
compression or quantization which would reduce the size of
updates to the models, hence decreasing the overhead of
communication. This, in turn, trains a robust model that is
deployable on smartphones while still preserving privacy,
data  efficiency, and model performance across
heterogeneous devices.
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5. Challenges and Open Issues
5.1. Scalability

One of the significant challenges with federated learning
is scalability, especially in terms of extending the system to
handle a large number of devices. The complexity of
coordinating model training and aggregation increases with
an increase in the number of participating devices. In this
system, every device might have different computational
powers, network bandwidth, and battery capacity, leading to
inconsistent training processes. It involves more devices in
the process and grows the volume of model updates being
sent to a central server. Such an effect could lead to
communication overhead due to increased information
transmission. Techniques like efficient communication
protocols and techniques of model aggregation help in
tackling the scalability issues of the same. Strategies that
involve model compression, asynchronous updates, and
client sampling will help with relieving strain on network
resources, ensuring it does not collapse at large scales.

5.2. Device Resource Constraints

Naturally, smartphones are devices that are very
resource-constrained, and therefore, these resources pose a
tremendous challenge to federated learning. Mobile devices
normally have limited capacities in terms of computational
power, memory, and battery life-all of which limit their
ability to efficiently participate in federated learning
processes. This is because substantial computational
resources in training a machine learning model significantly
consume energy; hence, making the device's usability for
other tasks low. Moreover, the training process may be
memory-intensive for a device since models have to store
weights and gradients as well as other intermediate values.
Thus, federated learning frameworks should implement
lightweight model architectures, model quantization and
more efficient optimization algorithms to take account of
these constraints. Other techniques may involve local model
update or offloading part of the computation to more
powerful edge devices so that the smartphone balances the
intensity of computation with energy consumption.

5.3. Data Privacy

Federated learning tries to protect the privacy of data by
keeping the sensitive data on the local device, but there are
challenges in fully maintaining privacy throughout the
learning process. Differential privacy, secure aggregation,
and homomorphic encryption help reduce the risk of leakage
but do not completely eliminate it. For example, adversaries
might use patterns in model updates for side-channel attacks
or infer private information about individual users. Federated
learning relies on local data updates, so one might also be
concerned whether aggregated model updates may still leak
private user behaviours or characteristics. Ongoing research
into stronger privacy-preserving techniques, better secure
aggregation protocols, and methods for detecting and
preventing adversarial attacks is needed to enhance privacy
guarantees in federated learning systems.

5.4. Data Quality

Data quality is the biggest problem with federated
learning, particularly in sensor data from smartphones.
Sensor data are generally noisy and frequently include
inaccuracies. For example, this can be due to calibration
errors on devices, environmental influences, or even
malfunctions within the sensors themselves. Noise degrades
the quality of the model, which may cause incorrect
predictions or slower convergence. Missing values are
another critical problem with sensor data. The causes of
missing data may arise from the fact that a sensor has failed
or the device was inactive, which resulted in insubstantial
sampling. Handling the problems involves elimination of
noise, such as filter and smoothing, detection of outliers, and
imputation techniques to provide values for the missing data.
Nonetheless, these are not very effective and are secondary
to the root variation in readings from different sensor
devices. This is one area where federated learning models
have been researched; that is, how they can even perform
well despite the presence of noisy and incomplete data.

This raises several challenges and open issues toward
the deployment of federated learning systems on sensor-rich
smartphones, and techniques including model compression,
privacy-preserving methods, and data preprocessing have
immense potential to further address some of these issues,
hence a pressing need for ongoing research in that direction
to mitigate the current barriers toward making federated
learning scale-up, resource-aware, and safe for a whole host
of realistic applications.

6. Conclusion

Federated learning might unlock the sensor data of
phones with minimal deviation from privacy, and it is
especially toward the limitation of scattered data. Thus,
federated learning brings privacy issues down to their barest
minimum as it allows training models to be conducted
straight on devices without transferring sensitive data that
may cause personal information. However, federated
learning of smartphone sensor data will be successful only if
the kind of host of challenges associated with heterogeneous
data across the devices is mitigated; the limitation at the
device level addresses resource limitations, ensures privacy
in data collection, and addresses quality in data.

Some of the techniques applied in these directions
include differential privacy, secure aggregation, and
personalized federated learning. Other techniques that are
equally important in helping to make the data reliable and
consistent include normalization of data, feature extraction,
and noise removal, which are often required for noisy and
incomplete sensor data. In scaled federated learning systems,
which involve a number of devices of various sensor
capacities, communication protocols and model architectures
need to strike the right balance in computational load with
respect to energy consumption.

In summary, while promising in the space of privacy-
preserved applications in machine learning applications,
further innovation in its systems' scalability of processing
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data together with improvement for privacy protection makes
federated learning closer. Moving forward with growing
technology and subsequent solutions that could emerge,
federation learning would be a foundational aspect in
widespread distributed machine applications in improving
both efficacy and safety and personalization in countless
domains.
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