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Abstract - Clean-room robotic systems play a crucial role in semiconductor manufacturing, pharmaceutical assembly, 

and precision laboratory settings. These robots must operate reliably to avoid costly production delays and product 

contamination. Early detection of mechanical faults through vibration and acoustic signal analysis can improve 

reliability, reduce maintenance costs, and prevent unplanned downtime. This paper reviews key methods for extracting 

vibration and acoustic features, signal processing techniques, diagnostic models, experimental results, and future 

research directions. Results show that frequency domain analysis, machine learning classifiers, and sensor fusion 

improve fault detection accuracy in robotic joints, motors, and bearings. 
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1. Introduction 
Robotic systems used in clean-room environments support 

high-precision tasks where even minor faults can lead to 

critical failure. Examples include robotic arms used in wafer 

handling, optical inspection systems, and automated assembly 

machines. Contaminants from maintenance or faulty operation 

can compromise product quality. Traditional maintenance 

approaches rely on time-based or reactive maintenance. These 

approaches either lead to unnecessary downtime or 

catastrophic failure before scheduled maintenance. Vibration 

and acoustic signal analysis offer a non-invasive and 

continuous method for monitoring the health of robotic 

components. Early detection of abnormal patterns in these 

signals can alert operators before failures occur. This paper 

examines the application of vibration and acoustic signals for 

the early detection of faults. It reviews sensor technologies, 

feature extraction methods, pattern classification techniques, 

and experimental case studies in clean-room robotics. 

 

2. Background 
2.1. Clean-Room Robotics 

Clean-room robotics must meet stringent environmental 

requirements, including low particle emission, precise motion, 

and repeatability. These robots often use high-precision 

actuators, gearboxes, and bearings. Faults in any mechanical 

component may generate subtle vibration or sound changes. 

 

2.2. Fault Types in Robotic Systems 

Common faults include bearing wear, gear misalignment, 

motor imbalance, loose fasteners, and lubrication degradation. 

These faults may not be visible but produce measurable 

changes in vibration or acoustic emissions. 

 

2.3. Signal Sources and Sensors 

Data for fault detection can be collected using 

accelerometers, microphones, and piezoelectric sensors 

mounted on robot links, motors, and end effectors. Sensors 

must be sensitive, have low noise, and suitable frequency 

response for the targeted fault frequencies. 

 

3. Methods for Vibration and Acoustic Analysis 
3.1. Time Domain Analysis 

Time domain features include root mean square (RMS), 

peak amplitude, crest factor, kurtosis, and skewness. These 

features provide initial indications of abnormal behavior. Time 

domain analysis is simple but may not reveal specific fault 

signatures. 

 

3.2. Frequency Domain Analysis 

Transform methods, such as the Fast Fourier Transform 

(FFT), convert time signals into their corresponding frequency 

components. Faults often manifest as distinct peaks at 

characteristic frequencies related to bearing races, gear mesh 

frequencies, or imbalance. Frequency-domain features enhance 

the differentiation of fault types. 
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Fig 1: Frequency Spectrum Comparison 

 

Description: This figure compares the frequency spectrum of a 

robotic joint motor under normal operation versus bearing fault 

conditions. Fault conditions show additional peaks at 

characteristic bearing frequencies, indicating early mechanical 

degradation. 

 

3.3. Time-Frequency Analysis 

Techniques such as Short Time Fourier Transform (STFT) 

and wavelet transform capture changes over time. These 

methods are useful when faults evolve over time or when 

signals are non-stationary. 

 

 
Fig 2: Time-Frequency Spectrogram of Acoustic Signal 

Description: A time-frequency spectrogram showing 

increased energy concentration at higher frequencies during a 

loose fastener fault. This highlights the advantage of time-

frequency analysis over time domain analysis alone. 

 

3.4. Machine Learning Techniques 

Machine learning models categorize signals as either 

normal or faulty. Common classifiers include support vector 

machines (SVM), random forests, k-nearest neighbors (KNN), 

and artificial neural networks (ANN). Features extracted from 

time, frequency, and time-frequency domains can be input to 

these models. 

 

4. Experimental Setup 
4.1. Robot Platform 

A six-axis industrial robot used in a semiconductor clean 

room was instrumented with triaxial accelerometers on the 

shoulder and wrist joints. A high-sensitivity microphone was 

positioned near the robot base. 

 

4.2. Fault Simulation 

Faults were introduced one at a time to isolate their 

effects. These included bearing degradation in joint motors, 

loose bolts in the wrist assembly, and intentional imbalance 

introduced to a rotating tool.        

 

Table 1: Common Fault Types and Signal Characteristics 

Fault Type Vibration Signature 
Acoustic 

Signature 

Bearing wear 
Increased RMS, peaks at 

characteristic frequencies 

High-frequency 

noise bursts 

Gear 

misalignment 

Harmonics at gear mesh 

frequency 

Periodic tonal 

noise 

Motor 

imbalance 

Dominant low-frequency 

peak 

Low-frequency 

humming 

Loose 

fasteners 

Irregular amplitude 

spikes 

Intermittent 

rattling sounds 

Lubrication 

loss 

Gradual increase in 

broadband vibration 

Increased 

friction noise 

 

4.3. Data Acquisition 

Signals were acquired at a 20 kHz sampling rate. Each 

experiment run included 60 seconds of operation under normal 

and faulty conditions. 

 

5. Results 
5.1. Feature Extraction 

Time-domain features, such as RMS, increased under 

motor bearing faults. Frequency-domain analysis revealed 

additional peaks near the characteristic bearing frequencies at 

300 Hz and 600 Hz. Time-frequency spectrograms showed 

energy concentration shifts for imbalanced rotor conditions. 
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Table 2: Extracted Signal Features 

Feature 

Category 
Feature Name Description 

Time domain RMS Measures signal energy 

Time domain Kurtosis 
Detects impulsive 

faults 

Frequency 

domain 
Peak frequency 

Identifies fault 

frequency 

Frequency 

domain 
Spectral energy 

Indicates abnormal 

vibration 

Time-frequency 
Wavelet 

coefficients 
Tracks evolving faults 

 

5.2. Classification Performance 

A random forest classifier trained on combined time and 

frequency features achieved 95 percent accuracy in fault 

detection. An SVM achieved 92 percent accuracy. ANN 

models showed slightly higher false positive rates. 
 

Table 3: Classification Performance Comparison 

Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

Support Vector 

Machine 
92 90 91 

Random Forest 95 94 95 

Artificial Neural 

Network 
93 91 92 

Vibration + 

Acoustic Fusion 
98 97 98 

 

5.3. Sensor Fusion Benefits 

The integration of vibration and acoustic signals resulted 

in a measurable improvement in fault detection performance 

compared to vibration-based analysis alone. Classification 

accuracy increased by approximately 3 percent when acoustic 

features were incorporated, indicating that the two sensing 

modalities provide complementary information rather than 

redundant measurements. Vibration sensors are highly 

effective for detecting faults associated with rotating 

components such as bearings and motors, where mechanical 

defects generate periodic or harmonic vibration patterns. 

However, certain fault types, particularly loose fasteners and 

early-stage structural looseness, produce weak or irregular 

vibration signatures that may not consistently exceed vibration-

based detection thresholds. In contrast, these faults generate 

distinct acoustic emissions characterized by intermittent high-

frequency impulses caused by micro-impacts and frictional 

interactions. The inclusion of microphone data enhanced 

sensitivity to such transient events, reducing false negatives for 

loose fastener faults. This improvement is reflected in the 

confusion matrix and ROC analysis, where sensor fusion 

significantly increased recall and AUC values for this fault 

category. Additionally, acoustic features improved fault 

separability under low-load operating conditions, where 

vibration amplitudes were inherently small. Overall, sensor 

fusion improved classification robustness and reliability by 

capturing both structure-borne and airborne manifestations of 

mechanical faults. This multi-modal approach is particularly 

advantageous in clean-room robotics, where early detection of 

subtle faults is crucial for preventing contamination, 

minimizing downtime, and maintaining high-precision 

operation. 
 

6. Discussion 
The experimental results demonstrate that vibration and 

acoustic signal analysis can detect early fault conditions in 

clean-room robots. Frequency-domain and time-frequency 

techniques reveal fault signatures that are not apparent in the 

time domain alone. Machine learning classifiers trained on 

extracted features show high accuracy. Sensor fusion is 

effective for differentiating complex faults. Challenges persist 

in real-time implementation due to high data volume, noise 

interference, and the requirement for robust feature selection. 

Clean-room environments impose restrictions on sensor 

placement and require non-intrusive sensors. 
 

7. Future Work 
Future research should explore deep learning models that 

learn features directly from raw signals. Techniques such as 

convolutional neural networks and recurrent neural networks 

may capture more subtle patterns. Adaptive thresholding and 

real-time embedded monitoring systems should be developed 

for industrial deployment. Long-term field testing in 

operational clean rooms will validate these methods. 
 

8. Conclusion 
Vibration and acoustic signal analysis provides a powerful 

approach for early fault detection in clean-room robotics. 

Combining time, frequency, and time-frequency features with 

machine learning models yields high detection accuracy. Early 

fault detection enables planned maintenance, reduces 

downtime, and supports high-precision operations required in 

clean rooms. 
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