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Abstract - Clean-room robotic systems play a crucial role in semiconductor manufacturing, pharmaceutical assembly,
and precision laboratory settings. These robots must operate reliably to avoid costly production delays and product
contamination. Early detection of mechanical faults through vibration and acoustic signal analysis can improve
reliability, reduce maintenance costs, and prevent unplanned downtime. This paper reviews key methods for extracting
vibration and acoustic features, signal processing techniques, diagnostic models, experimental results, and future
research directions. Results show that frequency domain analysis, machine learning classifiers, and sensor fusion

improve fault detection accuracy in robotic joints, motors, and bearings.
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1. Introduction

Robotic systems used in clean-room environments support
high-precision tasks where even minor faults can lead to
critical failure. Examples include robotic arms used in wafer
handling, optical inspection systems, and automated assembly
machines. Contaminants from maintenance or faulty operation
can compromise product quality. Traditional maintenance
approaches rely on time-based or reactive maintenance. These
approaches either lead to unnecessary downtime or
catastrophic failure before scheduled maintenance. Vibration
and acoustic signal analysis offer a non-invasive and
continuous method for monitoring the health of robotic
components. Early detection of abnormal patterns in these
signals can alert operators before failures occur. This paper
examines the application of vibration and acoustic signals for
the early detection of faults. It reviews sensor technologies,
feature extraction methods, pattern classification techniques,
and experimental case studies in clean-room robotics.

2. Background
2.1. Clean-Room Robotics

Clean-room robotics must meet stringent environmental
requirements, including low particle emission, precise motion,
and repeatability. These robots often use high-precision
actuators, gearboxes, and bearings. Faults in any mechanical
component may generate subtle vibration or sound changes.

2.2. Fault Types in Robotic Systems
Common faults include bearing wear, gear misalignment,
motor imbalance, loose fasteners, and lubrication degradation.

These faults may not be visible but produce measurable
changes in vibration or acoustic emissions.

2.3. Signal Sources and Sensors

Data for fault detection can be collected using
accelerometers, microphones, and piezoelectric sensors
mounted on robot links, motors, and end effectors. Sensors
must be sensitive, have low noise, and suitable frequency
response for the targeted fault frequencies.

3. Methods for Vibration and Acoustic Analysis
3.1. Time Domain Analysis

Time domain features include root mean square (RMS),
peak amplitude, crest factor, kurtosis, and skewness. These
features provide initial indications of abnormal behavior. Time
domain analysis is simple but may not reveal specific fault
signatures.

3.2. Frequency Domain Analysis

Transform methods, such as the Fast Fourier Transform
(FFT), convert time signals into their corresponding frequency
components. Faults often manifest as distinct peaks at
characteristic frequencies related to bearing races, gear mesh
frequencies, or imbalance. Frequency-domain features enhance
the differentiation of fault types.
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Fig 1: Frequency Spectrum Comparison

Description: This figure compares the frequency spectrum of a
robotic joint motor under normal operation versus bearing fault
conditions. Fault conditions show additional peaks at
characteristic bearing frequencies, indicating early mechanical
degradation.

3.3. Time-Frequency Analysis

Techniques such as Short Time Fourier Transform (STFT)
and wavelet transform capture changes over time. These
methods are useful when faults evolve over time or when
signals are non-stationary.

Fig 2: Time-Frequency Spectrogram of Acoustic Signal

Description: A time-frequency spectrogram  showing
increased energy concentration at higher frequencies during a
loose fastener fault. This highlights the advantage of time-
frequency analysis over time domain analysis alone.

3.4. Machine Learning Techniques

Machine learning models categorize signals as either
normal or faulty. Common classifiers include support vector
machines (SVM), random forests, k-nearest neighbors (KNN),
and artificial neural networks (ANN). Features extracted from
time, frequency, and time-frequency domains can be input to
these models.

4. Experimental Setup
4.1. Robot Platform

A six-axis industrial robot used in a semiconductor clean
room was instrumented with triaxial accelerometers on the
shoulder and wrist joints. A high-sensitivity microphone was
positioned near the robot base.

4.2. Fault Simulation

Faults were introduced one at a time to isolate their
effects. These included bearing degradation in joint motors,
loose bolts in the wrist assembly, and intentional imbalance
introduced to a rotating tool.

Table 1: Common Fault Types and Signal Characteristics

. . . Acoustic
Fault Type Vibration Signature Signature
. Increased RMS, peaks at | High-frequency
Bearing wear . . .
characteristic frequencies noise bursts
Gear Harmonics at gear mesh Periodic tonal
misalignment frequency noise
Motor Dominant low-frequency | Low-frequency
imbalance peak humming
Loose Irregular amplitude Intermittent
fasteners spikes rattling sounds
Lubrication Gradual increase in Increased
loss broadband vibration friction noise
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4.3. Data Acquisition

Signals were acquired at a 20 kHz sampling rate. Each
experiment run included 60 seconds of operation under normal
and faulty conditions.

5. Results

5.1. Feature Extraction
Time-domain features, such as RMS, increased under

motor bearing faults. Frequency-domain analysis revealed
additional peaks near the characteristic bearing frequencies at
300 Hz and 600 Hz. Time-frequency spectrograms showed
energy concentration shifts for imbalanced rotor conditions.
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Table 2: Extracted Signal Features

HEmielIE Feature Name Description
Category
Time domain RMS Measures signal energy
Time domain Kurtosis DEtECt:aLﬁqEUIS'Ve
Frequepcy Peak frequency Identifies fault
domain frequency
Frequency Spectral ener Indicates abnormal
domain P 9y vibration
Time-frequency cc}/«;/fafl;ﬁ:aer;[ts Tracks evolving faults

5.2. Classification Performance

A random forest classifier trained on combined time and
frequency features achieved 95 percent accuracy in fault
detection. An SVM achieved 92 percent accuracy. ANN
models showed slightly higher false positive rates.

Table 3: Classification Performance Comparison

Accuracy Precision Recall
Model (%) (%) (%)
Support \/ector 9 90 91
Machine
Random Forest 95 94 95
Atrtificial Neural
Network 93 a 92
Vibration +
Acoustic Fusion 98 97 9%

5.3. Sensor Fusion Benefits

The integration of vibration and acoustic signals resulted
in a measurable improvement in fault detection performance
compared to vibration-based analysis alone. Classification
accuracy increased by approximately 3 percent when acoustic
features were incorporated, indicating that the two sensing
modalities provide complementary information rather than
redundant measurements. Vibration sensors are highly
effective for detecting faults associated with rotating
components such as bearings and motors, where mechanical
defects generate periodic or harmonic vibration patterns.
However, certain fault types, particularly loose fasteners and
early-stage structural looseness, produce weak or irregular
vibration signatures that may not consistently exceed vibration-
based detection thresholds. In contrast, these faults generate
distinct acoustic emissions characterized by intermittent high-
frequency impulses caused by micro-impacts and frictional
interactions. The inclusion of microphone data enhanced
sensitivity to such transient events, reducing false negatives for
loose fastener faults. This improvement is reflected in the
confusion matrix and ROC analysis, where sensor fusion
significantly increased recall and AUC values for this fault
category. Additionally, acoustic features improved fault
separability under low-load operating conditions, where
vibration amplitudes were inherently small. Overall, sensor
fusion improved classification robustness and reliability by
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capturing both structure-borne and airborne manifestations of
mechanical faults. This multi-modal approach is particularly
advantageous in clean-room robotics, where early detection of
subtle faults is crucial for preventing contamination,
minimizing downtime, and maintaining high-precision
operation.

6. Discussion

The experimental results demonstrate that vibration and
acoustic signal analysis can detect early fault conditions in
clean-room robots. Frequency-domain and time-frequency
techniques reveal fault signatures that are not apparent in the
time domain alone. Machine learning classifiers trained on
extracted features show high accuracy. Sensor fusion is
effective for differentiating complex faults. Challenges persist
in real-time implementation due to high data volume, noise
interference, and the requirement for robust feature selection.
Clean-room environments impose restrictions on sensor
placement and require non-intrusive sensors.

7. Future Work

Future research should explore deep learning models that
learn features directly from raw signals. Techniques such as
convolutional neural networks and recurrent neural networks
may capture more subtle patterns. Adaptive thresholding and
real-time embedded monitoring systems should be developed
for industrial deployment. Long-term field testing in
operational clean rooms will validate these methods.

8. Conclusion

Vibration and acoustic signal analysis provides a powerful
approach for early fault detection in clean-room robotics.
Combining time, frequency, and time-frequency features with
machine learning models yields high detection accuracy. Early
fault detection enables planned maintenance, reduces
downtime, and supports high-precision operations required in
clean rooms.
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