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Abstract - The shift of data analytics from centralized clouds to the network edge enhances latency and bandwidth
efficiency, but it also raises significant privacy concerns. As sensitive biometric, behavioral, and operational data are
gathered on resource-limited IoT devices, traditional security measures become outdated. This paper explores the
main challenges in securing edge analytics, emphasizing the "Privacy-Utility Paradox" and the risks of inference
attacks. It provides a detailed analysis of distributed learning architectures—Federated Learning (FL), Split Learning
(SL), and Swarm Learning—and assesses cryptographic techniques such as Differential Privacy (DP), Homomorphic
Encryption (HE), and Secure Multi-Party Computation (SMPC). Based on recent quantitative research, we propose
mitigation strategies that balance accuracy, latency, and energy use, guiding the development of compliant and

trustworthy edge intelligence systems.
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1. Introduction

The digital ecosystem is shifting from centralized cloud
data silos to decentralized edge processing. This change is
driven by the surge in Internet of Things (IoT) devices,
including autonomous vehicles, industrial sensors, and
wearable health tech, which generate vast amounts of data.
These large data volumes render traditional "store-and-send"
approaches obsolete due to bandwidth limits, latency issues,
and high transmission costs. As analytics approaches data
sources, security risks grow, particularly when sensitive user
information is stored on devices that are physically
accessible and resource-constrained, posing significant
privacy and security challenges.

In this context, Privacy-Preserving Technologies (PPTs)
in edge analytics have become fundamental architectural
elements rather than optional security features. The
collection of biometric data, location histories, and
behavioral insights at the network edge poses significant
risks, as data leaks could lead to severe personal
consequences and breach strict global regulations like the
General Data Protection Regulation (GDPR) and the
California Consumer Privacy Act (CCPA). These laws
emphasize principles such as data minimization and purpose
limitation, prompting system designers to adopt a "Privacy
by Design" strategy that integrates protection mechanisms
into learning algorithms and communication protocols from
the outset.

Securing edge analytics involves addressing the
"Privacy-Utility Paradox,” where enhancing data protection,
such as noise injection or encryption, often diminishes data
utility for machine learning or causes delays during real-time

tasks. Techniques such as Federated Learning (FL) mitigate
this by exchanging model updates rather than raw data.
Nonetheless, recent research indicates that gradients can still
expose sensitive information through reconstruction attacks,
necessitating additional safeguards like Differential Privacy
(DP), Homomorphic Encryption (HE), and Secure Multi-
Party Computation (SMPC).

2. Key Research Challenges

To enable secure and effective edge analytics, three key
challenges must be addressed. These arise from the inherent
traits of edge environments and the characteristics of
distributed learning.

2.1. Challenge I: Statistical Data Heterogeneity (Non-IID

Data)

Unlike centralized data centers, where data can be
shuffled to be Independent and Identically Distributed (IID),
edge data is inherently Non-IID. Data distributions differ
considerably across devices because of diverse user
behaviors, geographic locations, and device usage patterns.

e Impact: This statistical heterogeneity leads to
differences between clients' local optimization goals
and the overall global objective. Standard
aggregation methods such as FedAvg often struggle
to converge or exhibit "client drift," hindering the
global model's ability to generalize well for
individual users.

e Hierarchical Complexity: In complex networks,
"hierarchical non-IIDness" emerges, with devices
connected to the same edge server sharing
contextual similarities distinct from those in other
clusters, making model aggregation more difficult.
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2.2.  Challenge 1II: and Reconstruction

Vulnerabilities

While distributed architectures like FL prevent sharing
raw data, transferring model updates (gradients) can serve as
a secondary channel for potential information leaks.

e Gradient Leakage: Adversaries with access to the
central server can analyze shared gradients to
reconstruct the original training data. Methods such
as Deep Leakage from Gradients (DLG) can
recover detailed images or readable text from
private inputs by repeatedly optimizing dummy data
to match the received gradients.

Membership Inference: Attackers can determine
whether a specific person's data was used to train a
model, potentially revealing sensitive information
such as medical diagnoses.

Property Inference: Beyond targeting individual
records, adversaries can perform property inference
attacks to uncover overall traits of the training
dataset, such as the percentage of a specific
demographic or the presence of a certain device
class. This type of "meta-privacy" breach is
especially problematic in regulated industries such
as finance or healthcare, where disclosing
population-level information can breach
confidentiality agreements or regulatory
requirements, even if individual data points stay
private and secure.

Inference

2.3. Challenge I1I: Resource Constraints at the Edge

Edge nodes and IoT devices face strict limitations in
computation, storage, energy, and network bandwidth.
Computational Bottlenecks: Advanced privacy
mechanisms such as Homomorphic Encryption
(HE) and Secure Multi-Party Computation (SMPC)
require significant computational power. Using
them on battery-powered devices can deplete
resources and cause unacceptable delays in real-
time processing applications.

Communication  Overhead:  High-dimensional
models require transmitting millions of parameters.
In cellular or Long Range Wide Area Network
(LoRaWAN) networks with limited bandwidth, the
cost of frequent model updates, especially with
encrypted payloads, can overload the network and
delay convergence.

3. Distributed Learning Architectures

The core principle of privacy-preserving edge analytics is
shifting computation closer to where the data resides.

3.1. Federated Learning (FL)

Federated Learning (FL) is the prevailing standard for
privacy-preserving edge intelligence. In FL, a central server
sends out a global model to edge clients, who train it using
their local private data and send back model updates
(gradients). The server then combines these updates, usually
through FedAvg, to improve the global model.
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Fig 1: Federated Learning Architecture for Distributed
IoT Clients

3.2. Split Learning (SL) and Federated Split Learning

(SFL)

Split Learning (SL) divides the neural network between
the client and server. The client runs the initial layers and
sends the intermediate activations, known as "smashed data,"
to the server, which then completes the forward pass.

o Trade-offs: SL decreases the computational burden
on clients, making it suitable for low-power loT
devices. Nonetheless, it causes significant
communication overhead due to frequent activation
sharing  across data  batches, potentially
overwhelming bandwidth in standard cellular
networks. Federated Split Learning (SFL) merges
the parallel training approach of FL with the model
splitting technique of SL to better balance these
challenge factors.
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Fig 2: Split Learning Architecture with Client—Server
Model Partitioning

3.3. Swarm Learning (SL)

Swarm Learning removes the need for a central
aggregator by employing blockchain smart contracts to
coordinate peer-to-peer model sharing.

Advantages: It eliminates the single point of failure and the
risk posed by "honest-but-curious" servers. The blockchain
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ensures an immutable audit trail, safeguarding data
sovereignty and preventing model poisoning. This is
especially useful in consortia such as banking or genomics,
where participants are competitors and do not have a trusted
third party.

4. Cryptographic and Statistical
Mechanisms

4.1. Differential Privacy (DP)

DP introduces controlled noise into data or model

updates to mask individual information contributions.

e Local DP (LDP): Noise is added at the edge device,
providing maximum privacy but significantly
reducing model accuracy because of the high noise
variance required.

e Central DP (CDP): The server adds noise after
aggregation, improving utility but requiring trust in
the server.

Privacy

4.2. Homomorphic Encryption (HE)

HE enables calculations on encrypted data. In federated
learning (FL), Paillier encryption allows a server to sum
encrypted weight updates without decrypting them. Although
theoretically secure, HE incurs significant computational
overhead and data expansion, often greatly increasing
training time and hindering real-time edge applications.

4.3. Secure Multi-Party Computation (SMPC)

SMPC protocols, such as Secure Aggregation, enable
users to collaborate on computing updates while ensuring
that the server accesses only the final aggregate. Common
techniques include pairwise masking, where random masks
cancel each other out when summed. Recent protocols, such
as e-SeaFL, have improved this process for edge computing,
enabling secure aggregation in a single communication
round and reducing overhead compared to traditional
methods and schemes.

4.3. Lightweight Cryptography (LWC)

LWC bridges the gap between strict security needs and
the limited resources of edge sensors. NIST-standardized
Lightweight Cryptography (LWC) is crucial here.
Algorithms like ASCON offer authenticated encryption with
low computational demands, tailored for environments
where primitives like AES or SHA-3 are too energy-
consuming. Incorporating LWC ensures sensitive data
remains secure on the sensor before entering a distributed
learning process, without depleting the battery or causing
delays or bottlenecks.

S. Handling Data and

Personalization
To tackle the Non-IID challenge, Personalized Federated
Learning (pFL) customizes models for individual users or

edge devices nodes.
e PHE-FL (Personalized Hierarchical Edge-enabled
FL) specifically tackles "hierarchical non-IIDness"
— variations across edge servers. Experiments
demonstrate that PHE-FL can reach up to 83%

Heterogeneity
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higher accuracy than standard FL in complex
hierarchical networks by tailoring aggregation to
each edge's unique data clusters.

e PPFL: In medical settings, PPFL has shown higher
accuracy than local training (0.941 versus 0.875),
enabling hospitals to collaborate on mortality
prediction models while maintaining site-specific
data features.

6. Quantitative Analysis: Performance and

Trade-offs
Table 1: Comparative Analysis of Distributed Privacy-
Preserving Learning Paradigms (Federated, Split, and
Swarm Learning)

Metric Federated Split Swarm
Learning (FL) | Learning Learning
(SL)
Privacy High (with Moderate Very High
DP/SMPC) (activations | (Blockchain +
can leak) no central
server)
Comm. [Medium (Updates High Medium (Peer-
Overhead per round) (Activations | to-peer sync)
per batch)
Comp. High (Full Low (Partial | High (Training
Load backward pass) model) + Blockchain
(Client) consensus)
Accuracy | Degrades (needs Stable High (Robust to
(Non-IID)| personalization) poisoning)
Key Findings:

e Latency: Using HE for secure aggregation can raise
training latency by 23x to 93x compared to plaintext
training.

e Accuracy: Personalized algorithms, such as Top-k
Shuffled Differential Privacy Federated Learning
(TopkSDP-FL), achieve approximately 3.6% higher
accuracy on CIFAR-10 (Canadian Institute For
Advanced Research) than standard Federated
Averaging (FedAvg) in heterogeneous settings.

7. Strategic Mitigations and Validation Case
Studies

Addressing the key challenges necessitates targeted
mitigation strategies. Below, we link each strategy to a
specific challenge and validate it with recent case studies.

7.1. Mitigation for Data Heterogeneity: Hierarchical
Personalization
e The Strategy: Implement Personalized Hierarchical
Edge-enabled Federated Learning (PHE-FL).
Rather than applying a single global model to all
users, this method develops intermediate "edge
models" tailored to the data distribution of each
local cluster (e.g., a specific hospital or city
district).
e How It Works: The architecture recognizes
"hierarchical non-IIDness' and conducts partial
aggregation at the edge server to capture local
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details before transmitting a more generalized
update to the cloud. This approach helps prevent
"client drift,” where local models deviate
significantly from the global model average.

Case Study Validation:

e PHE-FL Experiments: In scenarios with complex
hierarchical non-IID data, PHE-FL reached
accuracy levels up to 83% higher than traditional
FedAvg. It also significantly reduced fluctuations in
accuracy, demonstrating greater stability across
conditions.

e Medical Mortality Prediction (PPFL): In a study
forecasting in-hospital mortality across various
hospitals, the PPFL framework attained an accuracy
of 0.941, exceeding both local training results
(0.875) and conventional Federated Learning. This
demonstrates that personalization is crucial for
high-stakes decision-making in heterogeneous
environments.

7.2. Mitigation for Inference Attacks: Verifiable Secure

Aggregation & Decentralization

e The Strategy: Implement
Aggregation protocols and
environments lacking trust.

e How It Works: Secure aggregation employs
cryptographic masking by adding random noise that
cancels out when summed, preventing the server
from viewing individual updates. Swarm Learning
obliterates the central server and relies on
blockchain smart contracts to manage the model,
removing the single point of failure and the "honest-
but-curious' threat aggregator.

Verifiable
use Swarm

Secure
in

7.2.1. Case Study Validation:

e e-SeaFL Protocol: Traditional secure aggregation
can be slow. The e-SeaFL protocol was designed to
perform  secure aggregation in just one
communication round. Experiments demonstrated
that it delivers a tenfold efficiency boost compared
to leading protocols when handling large gradient
vectors, making high-security federated learning
(FL) practical even on regular cellular networks.

e HPE Swarm Learning: In fields like financial fraud
detection and genomics, HPE's Swarm Learning
framework enables organizations to collaborate
without exchanging raw data. By eliminating the
central aggregator, it prevents any one entity from
dominating the model, encouraging cooperation
even among competitors, such as banks, who
typically refrain from sharing data due to regulatory
and competitive concerns.

7.3. Mitigation for Resource Constraints: Federated Split

Learning (SFL)
e The Strategy: Implement Federated Split Learning
(SFL) for devices with constrained battery life or
computational capacity, such as drone wearables.
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e How It Works: The significant computational load
of training a deep neural network is divided. The
edge device handles only the initial layers (feature
extraction), while a more powerful edge server
manages the remaining layers. SFL integrates this
approach with parallel training to accelerate the
process convergence.

7.3.1. Case Study Validation:

e Human Activity Recognition (HAR): A study on
Human Activity Recognition with wearables found
that the FSL-DP (Federated Split Learning with
Differential Privacy) framework outperformed
traditional federated learning across both accuracy
and loss metrics. Importantly, it also provided faster
communication times per training round,
demonstrating that dividing the model is a practical
approach for resource-limited IoT devices requiring
real-time processing responsiveness.

e Edge Video Analytics (FedEVA): To manage high-
bandwidth video data on limited devices, FedEVA
employs a simple perturbation method (noise
addition) rather than complex encryption. This
approach enables privacy protection while avoiding
the significant latency typically caused by
cryptographic processes on video streams.

8. Conclusion

Privacy-preserving edge analytics has evolved from a

theoretical idea to an essential part of infrastructure.
Although Federated Learning remains the primary approach,
the "one-size-fits-all" method struggles with Non-IID data
and limited resources. The future points to adaptive,
hierarchical systems that combine lightweight cryptography
(SMPC) with customized learning models. By leveraging
architectures such as Swarm Learning for trust and Split
Learning for efficiency, organizations can harness the
potential of edge data while ensuring strict adherence to
global privacy standards.
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