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Abstract - The shift of data analytics from centralized clouds to the network edge enhances latency and bandwidth 

efficiency, but it also raises significant privacy concerns. As sensitive biometric, behavioral, and operational data are 

gathered on resource-limited IoT devices, traditional security measures become outdated. This paper explores the 

main challenges in securing edge analytics, emphasizing the "Privacy-Utility Paradox" and the risks of inference 

attacks. It provides a detailed analysis of distributed learning architectures—Federated Learning (FL), Split Learning 

(SL), and Swarm Learning—and assesses cryptographic techniques such as Differential Privacy (DP), Homomorphic 

Encryption (HE), and Secure Multi-Party Computation (SMPC). Based on recent quantitative research, we propose 

mitigation strategies that balance accuracy, latency, and energy use, guiding the development of compliant and 

trustworthy edge intelligence systems. 
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1. Introduction 
The digital ecosystem is shifting from centralized cloud 

data silos to decentralized edge processing. This change is 

driven by the surge in Internet of Things (IoT) devices, 

including autonomous vehicles, industrial sensors, and 

wearable health tech, which generate vast amounts of data. 

These large data volumes render traditional "store-and-send" 

approaches obsolete due to bandwidth limits, latency issues, 

and high transmission costs. As analytics approaches data 

sources, security risks grow, particularly when sensitive user 

information is stored on devices that are physically 

accessible and resource-constrained, posing significant 

privacy and security challenges. 

 

In this context, Privacy-Preserving Technologies (PPTs) 

in edge analytics have become fundamental architectural 

elements rather than optional security features. The 

collection of biometric data, location histories, and 

behavioral insights at the network edge poses significant 

risks, as data leaks could lead to severe personal 

consequences and breach strict global regulations like the 

General Data Protection Regulation (GDPR) and the 

California Consumer Privacy Act (CCPA). These laws 

emphasize principles such as data minimization and purpose 

limitation, prompting system designers to adopt a "Privacy 

by Design" strategy that integrates protection mechanisms 

into learning algorithms and communication protocols from 

the outset. 

 

Securing edge analytics involves addressing the 

"Privacy-Utility Paradox,” where enhancing data protection, 

such as noise injection or encryption, often diminishes data 

utility for machine learning or causes delays during real-time 

tasks. Techniques such as Federated Learning (FL) mitigate 

this by exchanging model updates rather than raw data. 

Nonetheless, recent research indicates that gradients can still 

expose sensitive information through reconstruction attacks, 

necessitating additional safeguards like Differential Privacy 

(DP), Homomorphic Encryption (HE), and Secure Multi-

Party Computation (SMPC).  

 

2. Key Research Challenges 
To enable secure and effective edge analytics, three key 

challenges must be addressed. These arise from the inherent 

traits of edge environments and the characteristics of 

distributed learning.  

 

2.1. Challenge I: Statistical Data Heterogeneity (Non-IID 

Data) 

Unlike centralized data centers, where data can be 

shuffled to be Independent and Identically Distributed (IID), 

edge data is inherently Non-IID. Data distributions differ 

considerably across devices because of diverse user 

behaviors, geographic locations, and device usage patterns.  

• Impact: This statistical heterogeneity leads to 

differences between clients' local optimization goals 

and the overall global objective. Standard 

aggregation methods such as FedAvg often struggle 

to converge or exhibit "client drift," hindering the 

global model's ability to generalize well for 

individual users. 

• Hierarchical Complexity: In complex networks, 

"hierarchical non-IIDness" emerges, with devices 

connected to the same edge server sharing 

contextual similarities distinct from those in other 

clusters, making model aggregation more difficult. 
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2.2. Challenge II: Inference and Reconstruction 

Vulnerabilities 

While distributed architectures like FL prevent sharing 

raw data, transferring model updates (gradients) can serve as 

a secondary channel for potential information leaks.  

• Gradient Leakage: Adversaries with access to the 

central server can analyze shared gradients to 

reconstruct the original training data. Methods such 

as Deep Leakage from Gradients (DLG) can 

recover detailed images or readable text from 

private inputs by repeatedly optimizing dummy data 

to match the received gradients.  

• Membership Inference: Attackers can determine 

whether a specific person's data was used to train a 

model, potentially revealing sensitive information 

such as medical diagnoses. 

• Property Inference: Beyond targeting individual 

records, adversaries can perform property inference 

attacks to uncover overall traits of the training 

dataset, such as the percentage of a specific 

demographic or the presence of a certain device 

class. This type of "meta-privacy" breach is 

especially problematic in regulated industries such 

as finance or healthcare, where disclosing 

population-level information can breach 

confidentiality agreements or regulatory 

requirements, even if individual data points stay 

private and secure. 

 

2.3. Challenge III: Resource Constraints at the Edge 

Edge nodes and IoT devices face strict limitations in 

computation, storage, energy, and network bandwidth.  

• Computational Bottlenecks: Advanced privacy 

mechanisms such as Homomorphic Encryption 

(HE) and Secure Multi-Party Computation (SMPC) 

require significant computational power. Using 

them on battery-powered devices can deplete 

resources and cause unacceptable delays in real-

time processing applications. 

• Communication Overhead: High-dimensional 

models require transmitting millions of parameters. 

In cellular or Long Range Wide Area Network 

(LoRaWAN) networks with limited bandwidth, the 

cost of frequent model updates, especially with 

encrypted payloads, can overload the network and 

delay convergence. 

 

3. Distributed Learning Architectures 
The core principle of privacy-preserving edge analytics is 

shifting computation closer to where the data resides.  

3.1. Federated Learning (FL) 

Federated Learning (FL) is the prevailing standard for 

privacy-preserving edge intelligence. In FL, a central server 

sends out a global model to edge clients, who train it using 

their local private data and send back model updates 

(gradients). The server then combines these updates, usually 

through FedAvg, to improve the global model. 

 

 
Fig 1: Federated Learning Architecture for Distributed 

IoT Clients 

 

3.2. Split Learning (SL) and Federated Split Learning 

(SFL) 

Split Learning (SL) divides the neural network between 

the client and server. The client runs the initial layers and 

sends the intermediate activations, known as "smashed data," 

to the server, which then completes the forward pass. 

• Trade-offs: SL decreases the computational burden 

on clients, making it suitable for low-power IoT 

devices. Nonetheless, it causes significant 

communication overhead due to frequent activation 

sharing across data batches, potentially 

overwhelming bandwidth in standard cellular 

networks. Federated Split Learning (SFL) merges 

the parallel training approach of FL with the model 

splitting technique of SL to better balance these 

challenge factors. 

 

 
Fig 2: Split Learning Architecture with Client–Server 

Model Partitioning 

 

3.3. Swarm Learning (SL) 

Swarm Learning removes the need for a central 

aggregator by employing blockchain smart contracts to 

coordinate peer-to-peer model sharing. 

Advantages: It eliminates the single point of failure and the 

risk posed by "honest-but-curious" servers. The blockchain 
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ensures an immutable audit trail, safeguarding data 

sovereignty and preventing model poisoning. This is 

especially useful in consortia such as banking or genomics, 

where participants are competitors and do not have a trusted 

third party. 

 

4. Cryptographic and Statistical Privacy 

Mechanisms 
4.1. Differential Privacy (DP) 

DP introduces controlled noise into data or model 

updates to mask individual information contributions. 

• Local DP (LDP): Noise is added at the edge device, 

providing maximum privacy but significantly 

reducing model accuracy because of the high noise 

variance required. 

• Central DP (CDP): The server adds noise after 

aggregation, improving utility but requiring trust in 

the server. 

 

4.2. Homomorphic Encryption (HE) 

HE enables calculations on encrypted data. In federated 

learning (FL), Paillier encryption allows a server to sum 

encrypted weight updates without decrypting them. Although 

theoretically secure, HE incurs significant computational 

overhead and data expansion, often greatly increasing 

training time and hindering real-time edge applications. 

 

4.3. Secure Multi-Party Computation (SMPC) 

SMPC protocols, such as Secure Aggregation, enable 

users to collaborate on computing updates while ensuring 

that the server accesses only the final aggregate. Common 

techniques include pairwise masking, where random masks 

cancel each other out when summed. Recent protocols, such 

as e-SeaFL, have improved this process for edge computing, 

enabling secure aggregation in a single communication 

round and reducing overhead compared to traditional 

methods and schemes. 

 

4.3. Lightweight Cryptography (LWC)  

LWC bridges the gap between strict security needs and 

the limited resources of edge sensors. NIST-standardized 

Lightweight Cryptography (LWC) is crucial here. 

Algorithms like ASCON offer authenticated encryption with 

low computational demands, tailored for environments 

where primitives like AES or SHA-3 are too energy-

consuming. Incorporating LWC ensures sensitive data 

remains secure on the sensor before entering a distributed 

learning process, without depleting the battery or causing 

delays or bottlenecks. 

 

5. Handling Data Heterogeneity and 

Personalization 
To tackle the Non-IID challenge, Personalized Federated 

Learning (pFL) customizes models for individual users or 

edge devices nodes. 

• PHE-FL (Personalized Hierarchical Edge-enabled 

FL) specifically tackles "hierarchical non-IIDness" 

— variations across edge servers. Experiments 

demonstrate that PHE-FL can reach up to 83% 

higher accuracy than standard FL in complex 

hierarchical networks by tailoring aggregation to 

each edge's unique data clusters. 

• PPFL: In medical settings, PPFL has shown higher 

accuracy than local training (0.941 versus 0.875), 

enabling hospitals to collaborate on mortality 

prediction models while maintaining site-specific 

data features. 

 

6. Quantitative Analysis: Performance and 

Trade-offs 
Table 1: Comparative Analysis of Distributed Privacy-

Preserving Learning Paradigms (Federated, Split, and 

Swarm Learning) 
Metric Federated 

Learning (FL) 

Split 

Learning 

(SL) 

Swarm 

Learning 

Privacy High (with 

DP/SMPC) 

Moderate 

(activations 

can leak) 

Very High 

(Blockchain + 

no central 

server) 

Comm. 

Overhead 

Medium (Updates 

per round) 

High 

(Activations 

per batch) 

Medium (Peer-

to-peer sync) 

Comp. 

Load 

(Client) 

High (Full 

backward pass) 

Low (Partial 

model) 

High (Training 

+ Blockchain 

consensus) 

Accuracy 

(Non-IID) 

Degrades (needs 

personalization) 

Stable High (Robust to 

poisoning) 

 

Key Findings: 

• Latency: Using HE for secure aggregation can raise 

training latency by 23x to 93x compared to plaintext 

training. 

• Accuracy: Personalized algorithms, such as Top-k 

Shuffled Differential Privacy Federated Learning 

(TopkSDP-FL), achieve approximately 3.6% higher 

accuracy on CIFAR-10 (Canadian Institute For 

Advanced Research) than standard Federated 

Averaging (FedAvg) in heterogeneous settings. 

 

7. Strategic Mitigations and Validation Case 

Studies 
Addressing the key challenges necessitates targeted 

mitigation strategies. Below, we link each strategy to a 

specific challenge and validate it with recent case studies. 

 

7.1. Mitigation for Data Heterogeneity: Hierarchical 

Personalization 

• The Strategy: Implement Personalized Hierarchical 

Edge-enabled Federated Learning (PHE-FL). 

Rather than applying a single global model to all 

users, this method develops intermediate "edge 

models" tailored to the data distribution of each 

local cluster (e.g., a specific hospital or city 

district). 

• How It Works: The architecture recognizes 

"hierarchical non-IIDness' and conducts partial 

aggregation at the edge server to capture local 
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details before transmitting a more generalized 

update to the cloud. This approach helps prevent 

"client drift," where local models deviate 

significantly from the global model average. 

 

Case Study Validation: 

• PHE-FL Experiments: In scenarios with complex 

hierarchical non-IID data, PHE-FL reached 

accuracy levels up to 83% higher than traditional 

FedAvg. It also significantly reduced fluctuations in 

accuracy, demonstrating greater stability across 

conditions. 

• Medical Mortality Prediction (PPFL): In a study 

forecasting in-hospital mortality across various 

hospitals, the PPFL framework attained an accuracy 

of 0.941, exceeding both local training results 

(0.875) and conventional Federated Learning. This 

demonstrates that personalization is crucial for 

high-stakes decision-making in heterogeneous 

environments. 

 

7.2. Mitigation for Inference Attacks: Verifiable Secure 

Aggregation & Decentralization 

• The Strategy: Implement Verifiable Secure 

Aggregation protocols and use Swarm in 

environments lacking trust. 

• How It Works: Secure aggregation employs 

cryptographic masking by adding random noise that 

cancels out when summed, preventing the server 

from viewing individual updates. Swarm Learning 

obliterates the central server and relies on 

blockchain smart contracts to manage the model, 

removing the single point of failure and the "honest-

but-curious' threat aggregator. 

 

7.2.1. Case Study Validation: 

• e-SeaFL Protocol: Traditional secure aggregation 

can be slow. The e-SeaFL protocol was designed to 

perform secure aggregation in just one 

communication round. Experiments demonstrated 

that it delivers a tenfold efficiency boost compared 

to leading protocols when handling large gradient 

vectors, making high-security federated learning 

(FL) practical even on regular cellular networks. 

• HPE Swarm Learning: In fields like financial fraud 

detection and genomics, HPE's Swarm Learning 

framework enables organizations to collaborate 

without exchanging raw data. By eliminating the 

central aggregator, it prevents any one entity from 

dominating the model, encouraging cooperation 

even among competitors, such as banks, who 

typically refrain from sharing data due to regulatory 

and competitive concerns. 

 

7.3. Mitigation for Resource Constraints: Federated Split 

Learning (SFL) 

• The Strategy: Implement Federated Split Learning 

(SFL) for devices with constrained battery life or 

computational capacity, such as drone wearables. 

• How It Works: The significant computational load 

of training a deep neural network is divided. The 

edge device handles only the initial layers (feature 

extraction), while a more powerful edge server 

manages the remaining layers. SFL integrates this 

approach with parallel training to accelerate the 

process convergence. 

 

7.3.1. Case Study Validation: 

• Human Activity Recognition (HAR): A study on 

Human Activity Recognition with wearables found 

that the FSL-DP (Federated Split Learning with 

Differential Privacy) framework outperformed 

traditional federated learning across both accuracy 

and loss metrics. Importantly, it also provided faster 

communication times per training round, 

demonstrating that dividing the model is a practical 

approach for resource-limited IoT devices requiring 

real-time processing responsiveness. 

• Edge Video Analytics (FedEVA): To manage high-

bandwidth video data on limited devices, FedEVA 

employs a simple perturbation method (noise 

addition) rather than complex encryption. This 

approach enables privacy protection while avoiding 

the significant latency typically caused by 

cryptographic processes on video streams. 

 

8. Conclusion 
Privacy-preserving edge analytics has evolved from a 

theoretical idea to an essential part of infrastructure. 

Although Federated Learning remains the primary approach, 

the "one-size-fits-all" method struggles with Non-IID data 

and limited resources. The future points to adaptive, 

hierarchical systems that combine lightweight cryptography 

(SMPC) with customized learning models. By leveraging 

architectures such as Swarm Learning for trust and Split 

Learning for efficiency, organizations can harness the 

potential of edge data while ensuring strict adherence to 

global privacy standards. 
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