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Abstract - The rapid adoption of distributed cloud databases across multi-cloud and hybrid environments has exposed
significant inefficiencies in traditional query optimization techniques, primarily due to data heterogeneity, dynamic
workloads, and strict data privacy constraints that limit centralized analysis. Conventional cost-based and machine-
learning—driven optimizers struggle to scale effectively in such environments, as they rely on static statistics or require
access to globally aggregated query execution data. To address these challenges, this paper proposes a federated Al-
driven query optimization framework that enables intelligent and privacy-preserving optimization across distributed
cloud databases without sharing raw data. The proposed approach employs federated learning to collaboratively train
local cost estimation models using query workload characteristics and execution feedback at each database node, while a
global model is iteratively refined through secure aggregation of model updates. An Al-based cost modeling mechanism is
integrated with adaptive query plan selection to dynamically optimize execution strategies under varying workload and
resource conditions. Extensive experimental evaluations conducted on distributed cloud testbeds using benchmark
workloads demonstrate that the proposed framework achieves significant reductions in query latency, improved resource
utilization, and enhanced scalability compared to centralized and traditional optimization approaches. The results
confirm that federated Al-driven query optimization offers a practical and effective solution for next-generation
distributed cloud database systems, balancing performance optimization with data privacy and system autonomy.

Keywords - Federated Learning, Query Optimization, Distributed Databases, Cloud Computing, Al-Driven Systems, Data
Privacy.

1. Introduction

The rapid evolution of cloud computing has led to the
widespread adoption of distributed cloud databases deployed
across multi-cloud, hybrid-cloud, and geographically dispersed
environments. [1,2] Modern data-intensive applications such as
real-time analytics, large-scale transaction processing, and Al-
driven services increasingly rely on these distributed database
systems to ensure scalability, availability, and fault tolerance.
However, the decentralized nature of data storage and query
execution introduces significant complexity in achieving
efficient query optimization, particularly under dynamic
workloads and heterogeneous infrastructure conditions.
Traditional query optimization techniques are largely designed
for centralized or tightly coupled database systems, where
global statistics and execution plans can be readily accessed. In
distributed cloud environments, centralized query optimization
becomes inefficient due to high communication overhead,
network latency, and limited visibility into remote execution
contexts. Moreover, stringent data privacy regulations,
organizational policies, and cross-cloud boundaries restrict the
sharing of raw query logs and execution statistics, making
centralized learning-based optimization impractical.

Existing cost-based optimizers rely on static statistics and
simplified cost models that fail to adapt to workload variability
and resource heterogeneity, while recent machine learning—
based optimizers often assume centralized access to training
data. These assumptions limit their applicability in distributed
cloud databases, where scalability, autonomy of database
nodes, and privacy preservation are critical requirements.
Consequently, there is a clear need for a query optimization
approach that can learn from distributed execution
environments without violating data locality constraints or
incurring excessive coordination costs. The primary objective
of this research is to design a federated Al-based query
optimization framework that enables collaborative learning
across distributed database nodes while preserving data
privacy. By leveraging federated learning, the proposed
approach aims to train accurate cost estimation and
optimization models using local query workloads and
execution feedback, without transferring sensitive data. The
framework seeks to improve query performance, scalability,
and adaptability in distributed cloud database systems.
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2. Related Work
2.1. Query Optimization in Distributed Databases

Query optimization in distributed database systems has
traditionally relied on rule-based and cost-based approaches.
Rule-based optimizers apply predefined heuristics, [3-5] such
as join reordering and predicate pushdown, to reduce query
execution cost, while cost-based optimizers evaluate
alternative execution plans using statistical estimates and
analytical cost models. In distributed environments, these
methods are extended to account for data placement, network
latency, and inter-node communication overhead. Although
effective in relatively stable systems, their performance
strongly depends on the accuracy of global statistics and static
assumptions about system behavior. As distributed cloud
databases become more dynamic and heterogeneous,
maintaining up-to-date statistics and accurate cost models
becomes increasingly difficult. Frequent workload variations,
elastic resource provisioning, and cross-cloud execution
introduce uncertainty that traditional optimizers are not
designed to handle efficiently. Consequently, these approaches
often result in suboptimal query plans and limited scalability in
modern cloud-based deployments.

2.2. Machine Learning for Query Optimization

To overcome the limitations of traditional optimizers,
recent studies have explored machine learning—based query
optimization techniques. Supervised learning models,
including regression and deep neural networks, have been
proposed for tasks such as cardinality estimation and cost
prediction, while reinforcement learning approaches aim to
learn optimal query plans by interacting with the query
execution environment. These methods have demonstrated
improved accuracy and adaptability compared to handcrafted
cost models, particularly in complex query workloads. Despite
their promise, most ML-based query optimization approaches
rely on centralized training using aggregated query logs and
execution metrics. This centralized assumption introduces
scalability bottlenecks and raises concerns regarding data
privacy and compliance, especially in multi-tenant and cross-
organizational cloud environments. As a result, their
applicability to distributed cloud databases remains limited.

2.3. Federated Learning in Database Systems

Federated learning has gained attention as a privacy-
preserving distributed learning paradigm, allowing multiple
participants to collaboratively train models without sharing raw
data. In the context of database systems, federated learning has
been applied to distributed analytics, workload prediction, and
performance monitoring, enabling  decentralized data
processing while capturing global patterns. These approaches
typically involve local model training at each node followed by
secure aggregation of model updates.However, the application
of federated learning to query optimization is still in its early
stages. Existing federated database solutions primarily focus on
analytical tasks rather than core query planning and execution.
Furthermore, challenges such as system heterogeneity,
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communication overhead, and integration with database
optimizers are not fully addressed in current federated
approaches.

2.4. Research Gaps

Although prior work has made progress in distributed
query optimization, machine learning—based optimization, and
federated database systems, there is a notable lack of federated
Al-driven frameworks specifically designed for query
optimization in distributed cloud databases. Current solutions
either assume centralized data access or do not effectively
integrate federated learning with query planning mechanisms.
This gap highlights the need for a unified approach that
combines Al-driven optimization with federated learning to
achieve scalability, adaptability, and privacy preservation.This
paper aims to address these limitations by proposing a
federated Al-based query optimization framework that enables
collaborative learning across distributed database nodes
without sharing sensitive data, thereby advancing the state of
the art in distributed cloud database optimization.

3. System Model and Problem Formulation
3.1. Distributed Cloud Database Architecture

The system considered in this study consists of a
distributed cloud database architecture deployed across multi-
cloud and hybrid-cloud environments, [6-8] where multiple
database nodes operate under different administrative domains.
Each node maintains its own data partitions and executes
queries locally or cooperatively with other nodes depending on
data placement and query requirements. The architecture
supports both intra-cloud and cross-cloud query execution,
enabling scalability and fault tolerance while introducing
challenges related to coordination and performance
optimization. Data is horizontally or vertically partitioned
across database nodes, and queries may require accessing data
from multiple locations. A distributed query execution engine
decomposes incoming queries into sub-queries, which are
executed in parallel across relevant nodes. Intermediate results
are exchanged over the network and combined to produce final
query results. Due to differences in hardware resources,
network conditions, and database configurations, query
execution performance can vary significantly across nodes.

3.2. Query Optimization Problem Definition

The objective of query optimization in this distributed
setting is to select an execution plan that minimizes overall
query cost while satisfying system and application
requirements. The cost of a query plan is modeled using
multiple metrics, including query latency, system throughput,
and resource utilization such as CPU, memory, and network
bandwidth. These metrics often exhibit trade-offs, requiring the
optimizer to balance performance and resource efficiency.
Formally, given a query workload and a set of possible
execution plans, the optimization problem involves estimating
the cost of each plan under dynamic runtime conditions and
selecting the plan that yields the best expected performance. In
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distributed cloud databases, this problem is further complicated
by uncertainties in network latency, workload interference, and
elastic resource provisioning, making accurate cost estimation
a challenging task.

3.3. Assumptions and Constraints

The proposed system operates under several practical
assumptions and constraints inherent to distributed cloud
environments. First, data privacy constraints prevent the
sharing of raw query data, execution logs, or sensitive statistics
across database nodes, necessitating decentralized learning and
optimization. Second, network latency and bandwidth
variability introduce communication overhead that limits
frequent synchronization and centralized coordination among
nodes. Additionally, the system assumes heterogeneity across
database nodes in terms of hardware capabilities, storage
systems, and database engines. This heterogeneity affects
query execution behavior and complicates the construction of a
unified optimization model. The proposed framework is
designed to operate within these constraints by enabling local
learning and federated model aggregation, ensuring scalability
and adaptability without violating data locality or privacy
requirements.

4. Federated AIl-Driven Query Optimization
Framework
4.1. Extracted Features Used for Local Al-Based Query
Performance Modeling

Tablel: Feature Set for Local Query Performance

Modeling
(I:::tae ;uorfy Feature Name Description
Query Structure Join Count NS0 E1F JOTS [
query
Query Structure CZﬁgllzitiiy Filter conditions

Size of referenced

Data Statistics | Table Cardinality

tables
Runtime . .
Metrics Execution Time | Operator-level latency
LS CPU Utilization Processor usage
Metrics
Network Data Transfer Size Inter-node
Metrics communication

The table summarizes the key features extracted for local
query performance modeling in the proposed federated Al-
driven query optimization framework. [9,10] Each feature
captures specific aspects of query behavior, data
characteristics, or system resource usage that influence
execution performance. Under the Query Structure category,
Join Count measures the number of joins in a query, while
Predicate Complexity quantifies the filtering conditions, both
of which impact query execution cost and plan selection. Data
Statistics, represented by Table Cardinality, provides
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information about the size of the tables involved, which is
critical for estimating intermediate result sizes and operator
costs. Runtime Metrics, such as Execution Time, record
operator-level latency observed during query execution,
offering direct feedback on plan efficiency. Resource Metrics,
including CPU Utilization, capture the processing load on each
node, helping the Al models account for contention and
hardware limitations. Finally, Network Metrics, exemplified by
Data Transfer Size, quantify the wvolume of inter-node
communication, which is particularly important in distributed
cloud environments where network latency can significantly
affect query performance. Collectively, these features provide
a comprehensive and privacy-preserving representation of local
query workloads, enabling the federated Al models to learn
accurate cost estimations without sharing raw data across
nodes.

4.2. Overview of the Proposed Framework

The proposed federated Al-driven query optimization
framework is designed to enable intelligent and scalable
optimization across distributed cloud database systems while
preserving data privacy. The framework follows a
decentralized architecture in which each database node
independently observes local query workloads and execution
behavior. Instead of transferring raw data to a centralized
optimizer, each node trains a local Al model that captures
query performance characteristics specific to its environment.
A federated coordination layer aggregates model updates to
construct a global optimization model that reflects system-wide
execution patterns. The overall workflow consists of iterative
rounds of local model training, secure model update exchange,
and global model aggregation. The aggregated model is then
redistributed to participating nodes to guide query plan
selection and cost estimation. This collaborative learning
process allows the system to continuously adapt to workload
changes and infrastructure dynamics while minimizing
communication overhead and maintaining node autonomy.

4.3. Local Query Performance Modeling

At each database node, local query performance modeling
begins with feature extraction from query workloads and
execution traces. Relevant features include query structure
characteristics, such as join types and predicate complexity, as
well as runtime metrics, including execution time, resource
consumption, and data access patterns. These features provide
a compact representation of local query behavior without
exposing sensitive data. Using the extracted features, each
node trains a local Al model to estimate query execution costs
and predict performance under different execution plans. The
model is periodically updated using newly observed
workloads, enabling continuous learning and adaptation to
changing conditions. By keeping training localized, the
framework ensures that sensitive execution data remains within
the originating database environment.
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4.4. Federated Learning Mechanism

The federated learning mechanism coordinates the
collaborative training process across distributed database
nodes. In each training round, nodes compute model updates
based on locally trained parameters and transmit only these
updates to a federated aggregator. The aggregator employs a
model aggregation strategy, such as weighted averaging, to
combine local updates into a global model that captures cross-
node performance trends while accounting for data and
workload heterogeneity.To reduce communication overhead
and support scalability, the framework adopts an efficient
communication protocol that limits the frequency and size of
model exchanges. Model synchronization can be performed
asynchronously to accommodate network variability and node
availability. The updated global model is then disseminated
back to participating nodes, where it is used to improve local
query optimization decisions.

4.5. Federated Learning Model Architecture

Global
model

Local
models

Standardized
health

record data

o

Fig 1: Federate

Learning Model Architecture

The figure illustrates the federated learning architecture
used for collaborative Al-driven optimization in distributed
environments. At the bottom layer, [11,12] multiple unique
healthcare centers represent decentralized nodes, each
possessing sensitive local data. The next layer shows
standardized health record data, indicating that although the
underlying data is heterogeneous, it is formatted into a uniform
schema to facilitate learning without sharing raw records. Each
node trains a local Al model using its own data, depicted in the
middle layer, capturing local query execution patterns and
workload characteristics. These local models periodically
transmit model updates to the global model at the top layer,
where updates are aggregated using secure techniques to create
a shared global representation. The global model is then
redistributed to all nodes, enabling continuous improvement in
query optimization performance while preserving data privacy
and complying with regulatory constraints. This layered
architecture effectively demonstrates how federated learning
enables collaborative intelligence across distributed nodes
without exposing sensitive raw data.
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4.6. Privacy and Security Considerations

Privacy preservation is a core design principle of the
proposed framework. Data locality is strictly maintained by
ensuring that raw query data, execution logs, and sensitive
statistics never leave their respective database nodes. Only
model parameters or gradients are shared during the federated
learning process, significantly reducing the risk of data
leakage. To further enhance security, model update protection
mechanisms are incorporated to prevent inference attacks and
unauthorized access. These include secure aggregation
techniques and controlled access to the federated coordination
layer. Together, these measures enable collaborative query
optimization while complying with data protection regulations
and organizational privacy policies in distributed cloud
environments.

5. Al Models and Optimization Techniques
5.1. Learning Models for Cost Estimation

Accurate cost estimation is a critical component of
effective query optimization in distributed cloud databases.
The proposed framework employs machine learning—based
cost models, [13,14] including regression techniques and
neural networks, to predict query execution costs under
varying execution plans and system conditions. These models
learn complex, non-linear relationships between query features,
data characteristics, and resource utilization that are difficult to
capture using traditional analytical cost models. Lightweight
regression models are used for scenarios requiring low training
overhead, while deeper neural network architectures are
employed to model more complex query workloads and
execution patterns. The models are trained using historical
query execution data and continuously refined through
federated learning, enabling them to adapt to workload changes
and infrastructure dynamics without relying on static statistics
or centralized data collection.

5.2. Reinforcement Learning for Plan Selection

To complement cost estimation, the framework integrates
reinforcement learning (RL) techniques for query plan
selection. In this formulation, the query optimization process is
modeled as a sequential decision-making problem. The state
represents the current query and system context, including
query structure, data distribution, and resource availability. The
action corresponds to selecting or modifying an execution plan,
such as join ordering or operator placement across nodes. The
reward function is designed to capture execution performance
objectives, such as minimizing query latency or resource
consumption. Through repeated interactions with the execution
environment, the RL agent learns policies that balance short-
term execution efficiency with long-term system performance.
This adaptive learning process allows the optimizer to explore
alternative plans and converge toward optimal strategies under
dynamic conditions.
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5.3. Adaptive Query Plan Generation

The proposed framework supports adaptive query plan
generation by incorporating runtime feedback into the
optimization process. During query execution, performance
metrics such as operator latency and resource utilization are
monitored and compared against predicted costs. Significant
deviations trigger re-evaluation of execution plans, allowing
the system to adjust optimization decisions in response to
unforeseen runtime conditions. This feedback-driven re-
optimization mechanism enables the framework to handle
workload variability, data skew, and resource contention more
effectively than static optimization approaches. By combining
predictive cost modeling, reinforcement learning—based
decision making, and continuous runtime adaptation, the
proposed system achieves robust and efficient query
optimization in distributed cloud database environments.

6. Experimental Setup
6.1. End-to-End Al Workflow for Monitoring, Training, and
Decision Support

Data Sources Training Phase Visualization
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Fig 2: End-to-End Al Workflow for Monitoring, Training,
and Decision Support

The figure illustrates an end-to-end Al workflow that
begins with multiple data sources, including network activity,
database activity, application activity, and user activity. [15,16]
These heterogeneous data streams are collected and processed
during the training phase, where data collection, data
preparation, and model training are performed to build an
effective analytical model. The trained model is subsequently
evaluated during the testing phase, which follows a similar
pipeline of data collection and preparation to validate model
performance under unseen conditions. The output of both
phases feeds into a central detection or decision model, which
represents the system’s intelligence layer. The results
generated by this model are presented through a visualization
layer, including dashboards, reports, and email notifications,
enabling users to take informed and timely actions. Overall, the
figure highlights how raw operational data is transformed into
actionable insights through structured Al pipelines,
emphasizing automation, continuous learning, and user-centric
decision support.
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6.2. Testbed Configuration

The experimental evaluation was conducted on a
distributed cloud testbed deployed across multi-cloud and
hybrid-cloud environments to reflect real-world deployment
scenarios. The testbed consists of multiple database nodes
hosted on heterogeneous cloud platforms, each configured with
varying compute, memory, and storage resources. This setup
enables the assessment of query optimization performance
under diverse infrastructure conditions, including differences
in network latency and resource availability. Industry-standard
relational database engines were used at each node, configured
to support distributed query execution and parallel processing.
The federated coordination component was deployed as a
lightweight service responsible for model aggregation and
synchronization. All experiments were performed under
controlled network conditions while allowing dynamic
workload variations to evaluate the adaptability and scalability
of the proposed framework.

6.3. Datasets and Workloads

To ensure reproducibility and comparability, the
evaluation employed widely used benchmark datasets,
including TPC-H and TPC-DS, which represent decision-
support and analytical workloads. [17,18] These benchmarks
provide a diverse set of complex SQL queries involving joins,
aggregations, and nested subqueries, making them suitable for
evaluating distributed query optimization techniques. The
datasets were partitioned across database nodes using
horizontal and hybrid partitioning strategies to simulate
realistic data distribution scenarios. Query workloads were
generated at varying scales and arrival rates to assess system
behavior under both steady-state and dynamic workload
conditions.

6.4. Baseline Methods

The performance of the proposed federated Al-driven
query optimization framework was compared against multiple
baseline approaches. Traditional optimizers, based on rule-
based and cost-based techniques provided by the underlying
database engines, were used as the primary baseline. These
optimizers rely on static statistics and analytical cost models
without adaptive learning capabilities. In addition, centralized
machine learning—based optimizers were implemented as
advanced baselines, where query execution data from all nodes
is aggregated to train a global cost model. This comparison
highlights the trade-offs between centralized learning and the
proposed federated approach in terms of performance,
scalability, and privacy preservation.

6.5. Evaluation Metrics

The evaluation focused on multiple performance metrics
to comprehensively assess the effectiveness of the proposed
framework. Query latency was measured as the end-to-end
execution time of queries, while system throughput was
evaluated in terms of the number of queries successfully
processed per unit time. These metrics capture the impact of
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optimization decisions on user-perceived performance.
Additionally, optimization overhead was measured to quantify
the computational and communication costs introduced by the
federated learning process. This includes model training time,
aggregation latency, and communication overhead. Together,
these metrics provide a balanced assessment of performance
gains relative to the cost of optimization.

7. Results and Discussion
7.1. Performance Comparison Results
Table 2: Performance Comparison of Query Optimization

Methods
Method Avg. Throughput | Improvement
Latency (afs) (%)
(ms)
Rule-Based 1450 18 —
Optimizer
Cost-Based 1280 22 11.7
Optimizer
Centralized 980 29 324
ML Optimizer
Federated Al 820 34 43.4
Optimizer
The results presented in this table compare the

performance of different query optimization methods in terms
of average query latency, system throughput, and overall
performance improvement. The rule-based optimizer serves as
the baseline and exhibits the highest average latency (1450 ms)
and the lowest throughput (18 queries per second), reflecting
the limitations of static heuristic-based optimization in
dynamic distributed cloud environments. The cost-based
optimizer shows moderate improvement, reducing latency to
1280 ms and increasing throughput to 22 g/s, which
corresponds to an 11.7% performance gain; however, its
reliance on static statistics restricts further optimization. The
centralized machine learning—based optimizer achieves
significantly better performance, with average latency reduced
to 980 ms and throughput increased to 29 g/s, demonstrating
the effectiveness of data-driven cost estimation. Nevertheless,
this approach requires centralized access to execution data,
which introduces scalability and privacy concerns. In contrast,
the proposed federated Al optimizer delivers the best overall
performance, achieving the lowest latency (820 ms) and
highest throughput (34 g/s), resulting in a 43.4% improvement
over the baseline. These results highlight that federated
learning can achieve performance comparable to or better than
centralized ML approaches while preserving data locality and
scalability in distributed cloud database environments.

7.2. Performance Comparison

The performance of the proposed federated Al-driven
query optimization framework was evaluated against
traditional and centralized machine learning—based
optimization approaches. Experimental results show that the
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federated approach consistently achieves lower query latency
and higher throughput compared to traditional cost-based
optimizers. This improvement is primarily attributed to the
adaptive learning of execution costs that more accurately
reflects dynamic workload and system conditions. When
compared with centralized ML-based optimizers, the federated
framework demonstrates comparable or improved query
performance while avoiding the overhead and privacy risks
associated with centralized data aggregation. The results
indicate that federated learning effectively captures global
optimization patterns through collaborative model training,
enabling efficient query plan selection without direct access to
distributed execution data.

7.3. Scalability Analysis

Scalability was evaluated by increasing both the number
of participating database nodes and the size of the query
workload. The federated framework maintains stable
performance as the system scales, with query latency
increasing sub-linearly relative to the number of nodes. This
behavior highlights the framework’s ability to adapt to larger
distributed environments without incurring significant
coordination overhead. As workload intensity increases, the
proposed approach continues to outperform baseline methods
by dynamically adjusting query plans based on updated cost
estimates. These results demonstrate that federated Al-driven
optimization is well-suited for large-scale cloud deployments
where workload and resource conditions vary over time.

7.4. Communication and Training Overhead

The communication and training overhead introduced by
federated learning was carefully analyzed to assess its practical
feasibility. Results indicate that the overhead associated with
model aggregation and synchronization remains modest
compared to overall query execution time. By limiting the
frequency and size of model updates, the framework
effectively balances learning accuracy and communication
efficiency. Training overhead at individual nodes is also
manageable, as local model updates are lightweight and can be
performed asynchronously. This design ensures that
optimization processes do not interfere with normal query
execution, making the approach suitable for production
environments.

7.5. Privacy and Robustness Evaluation

The proposed framework was evaluated for privacy
preservation and robustness under data isolation constraints.
Since raw query data and execution logs remain localized at
each database node, the federated approach inherently prevents
sensitive information from being exposed during the
optimization process. Experimental results confirm that this
data isolation does not negatively impact optimization
effectiveness. Furthermore, the framework demonstrates
robustness to heterogeneous data distributions and partial node
participation. Even when some nodes contribute limited
updates, the global model continues to converge and support
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effective query optimization. These findings validate the
practicality of federated Al-driven optimization in privacy-
sensitive and heterogeneous cloud database environments.

8. Challenges and Limitations
8.1. Model Convergence Issues

One of the primary challenges in federated Al-driven
query optimization is ensuring reliable model convergence
across distributed database nodes. Variations in local data
distributions, query workloads, and execution environments
can lead to non-independent and non-identically distributed
(non-11D) training data, which may slow convergence or result
in suboptimal global models. Additionally, asynchronous
updates and partial node participation can further complicate
the learning process. Although the proposed framework
mitigates these effects through iterative aggregation and
adaptive learning strategies, convergence guarantees remain
limited under highly skewed workloads. Further investigation
is required to develop convergence-aware aggregation
techniques that can better handle extreme heterogeneity and
dynamic participation.

8.2. Network Overhead

Federated learning introduces additional network overhead
due to periodic exchange of model updates between database
nodes and the aggregation service. In geographically
distributed cloud environments, variable network latency and
bandwidth constraints can affect the timeliness of model
synchronization. Excessive communication may also compete
with query execution traffic, potentially impacting overall
system performance. While the framework minimizes
overhead by transmitting compact model updates at controlled
intervals, network costs cannot be entirely eliminated. In
environments with strict latency requirements or limited
connectivity, communication-efficient federated learning
strategies are necessary to further reduce overhead.

8.3. Heterogeneous Database Engines

Another significant limitation arises from the presence of
heterogeneous database engines across distributed cloud
deployments. Differences in query planners, execution
operators, and internal cost metrics make it challenging to
develop a unified optimization model that generalizes
effectively across systems. Execution behavior may vary even
for identical queries, reducing the accuracy of shared models.
Although  the  proposed framework  accommodates
heterogeneity through local model training, cross-engine
generalization remains an open challenge. Future extensions
should explore engine-aware feature representations and
modular optimization strategies to better support diverse
database technologies.
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9. Future Research Directions
9.1. Cross-Engine Optimization

Future research should explore cross-engine query
optimization to enable federated Al models to operate
effectively across heterogeneous database systems. Different
database engines employ distinct query planners, execution
operators, and optimization strategies, which complicates the
development of generalized cost models. Advancing engine-
agnostic feature representations and abstraction layers would
allow federated models to better capture common execution
patterns while preserving engine-specific optimizations.
Additionally, incorporating transfer learning techniques could
help leverage knowledge learned from one database engine to
improve optimization performance on others. Such approaches
would enhance the applicability of federated query
optimization frameworks in multi-engine cloud environments.

9.2. Online Federated Learning

Another promising direction is the adoption of online
federated learning, where models are continuously updated in
near real time as new query workloads and execution feedback
become available. Unlike batch-based federated learning,
online learning enables faster adaptation to workload shifts,
data skew, and resource fluctuations commonly observed in
cloud databases. However, online federated learning introduces
challenges related to model stability, communication
frequency, and convergence guarantees. Future work should
investigate adaptive synchronization strategies and incremental
learning algorithms that balance responsiveness with system
overhead.

9.3. Integration with Serverless Databases

The growing adoption of serverless and cloud-native
database architectures presents new opportunities and
challenges for federated Al-driven query optimization.
Serverless databases offer elastic scaling and fine-grained
resource management but introduce highly dynamic execution
environments with ephemeral compute resources. Integrating
federated optimization frameworks with serverless databases
requires rethinking model training, state management, and cost
estimation under transient execution contexts. Future research
should focus on lightweight, stateless learning mechanisms and
adaptive optimization techniques that align with the principles
of serverless computing.

10. Conclusion

This paper investigated the problem of inefficient query
optimization in distributed cloud databases and proposed a
federated Al-driven framework to address the limitations of
traditional and centralized optimization approaches. By
combining  machine learning-based cost estimation,
reinforcement learning—based plan selection, and federated
learning, the proposed system enables collaborative
optimization across distributed database nodes without sharing
raw query execution data. Experimental results demonstrated
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that the framework effectively reduces query latency, improves
throughput, and maintains stable performance under dynamic
workloads and scalable cloud deployments. The key
contributions of this work include the design of a novel
federated query optimization architecture tailored for multi-
cloud and hybrid-cloud environments, the integration of Al-
driven cost modeling with privacy-preserving federated
learning, and a comprehensive experimental evaluation using
benchmark workloads. Unlike existing solutions, the proposed
approach achieves competitive or superior performance
compared to centralized machine learning—based optimizers
while preserving data locality and system autonomy. These
contributions advance the state of the art in intelligent query
optimization for distributed database systems. From a practical
perspective, the proposed framework offers a viable solution
for  organizations  operating  privacy-sensitive  and
geographically distributed cloud databases. By eliminating the
need for centralized data aggregation, the approach aligns with
regulatory requirements and cross-organizational constraints
while delivering performance benefits. The framework can be
integrated into modern cloud database platforms to support
adaptive, scalable, and secure query optimization, paving the
way for next-generation intelligent database management
systems.
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