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Abstract - The rapid adoption of distributed cloud databases across multi-cloud and hybrid environments has exposed 

significant inefficiencies in traditional query optimization techniques, primarily due to data heterogeneity, dynamic 

workloads, and strict data privacy constraints that limit centralized analysis. Conventional cost-based and machine-

learning–driven optimizers struggle to scale effectively in such environments, as they rely on static statistics or require 
access to globally aggregated query execution data. To address these challenges, this paper proposes a federated AI-

driven query optimization framework that enables intelligent and privacy-preserving optimization across distributed 

cloud databases without sharing raw data. The proposed approach employs federated learning to collaboratively train 

local cost estimation models using query workload characteristics and execution feedback at each database node, while a 

global model is iteratively refined through secure aggregation of model updates. An AI-based cost modeling mechanism is 

integrated with adaptive query plan selection to dynamically optimize execution strategies under varying workload and 

resource conditions. Extensive experimental evaluations conducted on distributed cloud testbeds using benchmark 

workloads demonstrate that the proposed framework achieves significant reductions in query latency, improved resource 

utilization, and enhanced scalability compared to centralized and traditional optimization approaches. The results 

confirm that federated AI-driven query optimization offers a practical and effective solution for next-generation 

distributed cloud database systems, balancing performance optimization with data privacy and system autonomy. 

 
Keywords - Federated Learning, Query Optimization, Distributed Databases, Cloud Computing, AI-Driven Systems, Data 

Privacy. 

 

1. Introduction 
The rapid evolution of cloud computing has led to the 

widespread adoption of distributed cloud databases deployed 
across multi-cloud, hybrid-cloud, and geographically dispersed 

environments. [1,2] Modern data-intensive applications such as 

real-time analytics, large-scale transaction processing, and AI-

driven services increasingly rely on these distributed database 

systems to ensure scalability, availability, and fault tolerance. 

However, the decentralized nature of data storage and query 

execution introduces significant complexity in achieving 

efficient query optimization, particularly under dynamic 

workloads and heterogeneous infrastructure conditions. 

Traditional query optimization techniques are largely designed 

for centralized or tightly coupled database systems, where 

global statistics and execution plans can be readily accessed. In 
distributed cloud environments, centralized query optimization 

becomes inefficient due to high communication overhead, 

network latency, and limited visibility into remote execution 

contexts. Moreover, stringent data privacy regulations, 

organizational policies, and cross-cloud boundaries restrict the 

sharing of raw query logs and execution statistics, making 

centralized learning-based optimization impractical.  

 

Existing cost-based optimizers rely on static statistics and 

simplified cost models that fail to adapt to workload variability 

and resource heterogeneity, while recent machine learning–

based optimizers often assume centralized access to training 

data. These assumptions limit their applicability in distributed 

cloud databases, where scalability, autonomy of database 

nodes, and privacy preservation are critical requirements. 

Consequently, there is a clear need for a query optimization 
approach that can learn from distributed execution 

environments without violating data locality constraints or 

incurring excessive coordination costs. The primary objective 

of this research is to design a federated AI-based query 

optimization framework that enables collaborative learning 

across distributed database nodes while preserving data 

privacy. By leveraging federated learning, the proposed 

approach aims to train accurate cost estimation and 

optimization models using local query workloads and 

execution feedback, without transferring sensitive data. The 

framework seeks to improve query performance, scalability, 

and adaptability in distributed cloud database systems. 
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2. Related Work 
2.1. Query Optimization in Distributed Databases 

Query optimization in distributed database systems has 

traditionally relied on rule-based and cost-based approaches. 

Rule-based optimizers apply predefined heuristics, [3-5] such 

as join reordering and predicate pushdown, to reduce query 

execution cost, while cost-based optimizers evaluate 

alternative execution plans using statistical estimates and 

analytical cost models. In distributed environments, these 

methods are extended to account for data placement, network 

latency, and inter-node communication overhead. Although 

effective in relatively stable systems, their performance 

strongly depends on the accuracy of global statistics and static 
assumptions about system behavior. As distributed cloud 

databases become more dynamic and heterogeneous, 

maintaining up-to-date statistics and accurate cost models 

becomes increasingly difficult. Frequent workload variations, 

elastic resource provisioning, and cross-cloud execution 

introduce uncertainty that traditional optimizers are not 

designed to handle efficiently. Consequently, these approaches 

often result in suboptimal query plans and limited scalability in 

modern cloud-based deployments. 

 

2.2. Machine Learning for Query Optimization 
To overcome the limitations of traditional optimizers, 

recent studies have explored machine learning–based query 

optimization techniques. Supervised learning models, 

including regression and deep neural networks, have been 

proposed for tasks such as cardinality estimation and cost 

prediction, while reinforcement learning approaches aim to 

learn optimal query plans by interacting with the query 

execution environment. These methods have demonstrated 

improved accuracy and adaptability compared to handcrafted 

cost models, particularly in complex query workloads. Despite 

their promise, most ML-based query optimization approaches 

rely on centralized training using aggregated query logs and 
execution metrics. This centralized assumption introduces 

scalability bottlenecks and raises concerns regarding data 

privacy and compliance, especially in multi-tenant and cross-

organizational cloud environments. As a result, their 

applicability to distributed cloud databases remains limited. 

 

2.3. Federated Learning in Database Systems 

Federated learning has gained attention as a privacy-

preserving distributed learning paradigm, allowing multiple 

participants to collaboratively train models without sharing raw 

data. In the context of database systems, federated learning has 
been applied to distributed analytics, workload prediction, and 

performance monitoring, enabling decentralized data 

processing while capturing global patterns. These approaches 

typically involve local model training at each node followed by 

secure aggregation of model updates.However, the application 

of federated learning to query optimization is still in its early 

stages. Existing federated database solutions primarily focus on 

analytical tasks rather than core query planning and execution. 

Furthermore, challenges such as system heterogeneity, 

communication overhead, and integration with database 

optimizers are not fully addressed in current federated 

approaches. 

 

2.4. Research Gaps 

Although prior work has made progress in distributed 
query optimization, machine learning–based optimization, and 

federated database systems, there is a notable lack of federated 

AI-driven frameworks specifically designed for query 

optimization in distributed cloud databases. Current solutions 

either assume centralized data access or do not effectively 

integrate federated learning with query planning mechanisms. 

This gap highlights the need for a unified approach that 

combines AI-driven optimization with federated learning to 

achieve scalability, adaptability, and privacy preservation.This 

paper aims to address these limitations by proposing a 

federated AI-based query optimization framework that enables 

collaborative learning across distributed database nodes 
without sharing sensitive data, thereby advancing the state of 

the art in distributed cloud database optimization. 

 

3. System Model and Problem Formulation 
3.1. Distributed Cloud Database Architecture 

The system considered in this study consists of a 
distributed cloud database architecture deployed across multi-

cloud and hybrid-cloud environments, [6-8] where multiple 

database nodes operate under different administrative domains. 

Each node maintains its own data partitions and executes 

queries locally or cooperatively with other nodes depending on 

data placement and query requirements. The architecture 

supports both intra-cloud and cross-cloud query execution, 

enabling scalability and fault tolerance while introducing 

challenges related to coordination and performance 

optimization. Data is horizontally or vertically partitioned 

across database nodes, and queries may require accessing data 

from multiple locations. A distributed query execution engine 
decomposes incoming queries into sub-queries, which are 

executed in parallel across relevant nodes. Intermediate results 

are exchanged over the network and combined to produce final 

query results. Due to differences in hardware resources, 

network conditions, and database configurations, query 

execution performance can vary significantly across nodes. 

 

3.2. Query Optimization Problem Definition 

The objective of query optimization in this distributed 

setting is to select an execution plan that minimizes overall 

query cost while satisfying system and application 
requirements. The cost of a query plan is modeled using 

multiple metrics, including query latency, system throughput, 

and resource utilization such as CPU, memory, and network 

bandwidth. These metrics often exhibit trade-offs, requiring the 

optimizer to balance performance and resource efficiency. 

Formally, given a query workload and a set of possible 

execution plans, the optimization problem involves estimating 

the cost of each plan under dynamic runtime conditions and 

selecting the plan that yields the best expected performance. In 
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distributed cloud databases, this problem is further complicated 

by uncertainties in network latency, workload interference, and 

elastic resource provisioning, making accurate cost estimation 

a challenging task. 

 

3.3. Assumptions and Constraints 
The proposed system operates under several practical 

assumptions and constraints inherent to distributed cloud 

environments. First, data privacy constraints prevent the 

sharing of raw query data, execution logs, or sensitive statistics 

across database nodes, necessitating decentralized learning and 

optimization. Second, network latency and bandwidth 

variability introduce communication overhead that limits 

frequent synchronization and centralized coordination among 

nodes. Additionally, the system assumes heterogeneity across 

database nodes in terms of hardware capabilities, storage 

systems, and database engines. This heterogeneity affects 

query execution behavior and complicates the construction of a 
unified optimization model. The proposed framework is 

designed to operate within these constraints by enabling local 

learning and federated model aggregation, ensuring scalability 

and adaptability without violating data locality or privacy 

requirements. 

 

4. Federated AI-Driven Query Optimization 

Framework 
4.1. Extracted Features Used for Local AI-Based Query 

Performance Modeling 

Table1: Feature Set for Local Query Performance 

Modeling 

Feature 

Category 
Feature Name Description 

Query Structure Join Count 
Number of joins in 

query 

Query Structure 
Predicate 

Complexity 
Filter conditions 

Data Statistics Table Cardinality 
Size of referenced 

tables 

Runtime 

Metrics 
Execution Time Operator-level latency 

Resource 

Metrics 
CPU Utilization Processor usage 

Network 

Metrics 
Data Transfer Size 

Inter-node 

communication 

 

The table summarizes the key features extracted for local 

query performance modeling in the proposed federated AI-

driven query optimization framework. [9,10] Each feature 

captures specific aspects of query behavior, data 
characteristics, or system resource usage that influence 

execution performance. Under the Query Structure category, 

Join Count measures the number of joins in a query, while 

Predicate Complexity quantifies the filtering conditions, both 

of which impact query execution cost and plan selection. Data 

Statistics, represented by Table Cardinality, provides 

information about the size of the tables involved, which is 

critical for estimating intermediate result sizes and operator 

costs. Runtime Metrics, such as Execution Time, record 

operator-level latency observed during query execution, 

offering direct feedback on plan efficiency. Resource Metrics, 

including CPU Utilization, capture the processing load on each 
node, helping the AI models account for contention and 

hardware limitations. Finally, Network Metrics, exemplified by 

Data Transfer Size, quantify the volume of inter-node 

communication, which is particularly important in distributed 

cloud environments where network latency can significantly 

affect query performance. Collectively, these features provide 

a comprehensive and privacy-preserving representation of local 

query workloads, enabling the federated AI models to learn 

accurate cost estimations without sharing raw data across 

nodes. 

 

4.2. Overview of the Proposed Framework 
The proposed federated AI-driven query optimization 

framework is designed to enable intelligent and scalable 

optimization across distributed cloud database systems while 

preserving data privacy. The framework follows a 

decentralized architecture in which each database node 

independently observes local query workloads and execution 

behavior. Instead of transferring raw data to a centralized 

optimizer, each node trains a local AI model that captures 

query performance characteristics specific to its environment. 

A federated coordination layer aggregates model updates to 

construct a global optimization model that reflects system-wide 
execution patterns. The overall workflow consists of iterative 

rounds of local model training, secure model update exchange, 

and global model aggregation. The aggregated model is then 

redistributed to participating nodes to guide query plan 

selection and cost estimation. This collaborative learning 

process allows the system to continuously adapt to workload 

changes and infrastructure dynamics while minimizing 

communication overhead and maintaining node autonomy. 

 

4.3. Local Query Performance Modeling 

At each database node, local query performance modeling 

begins with feature extraction from query workloads and 
execution traces. Relevant features include query structure 

characteristics, such as join types and predicate complexity, as 

well as runtime metrics, including execution time, resource 

consumption, and data access patterns. These features provide 

a compact representation of local query behavior without 

exposing sensitive data. Using the extracted features, each 

node trains a local AI model to estimate query execution costs 

and predict performance under different execution plans. The 

model is periodically updated using newly observed 

workloads, enabling continuous learning and adaptation to 

changing conditions. By keeping training localized, the 
framework ensures that sensitive execution data remains within 

the originating database environment. 
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4.4. Federated Learning Mechanism 

The federated learning mechanism coordinates the 

collaborative training process across distributed database 

nodes. In each training round, nodes compute model updates 

based on locally trained parameters and transmit only these 

updates to a federated aggregator. The aggregator employs a 
model aggregation strategy, such as weighted averaging, to 

combine local updates into a global model that captures cross-

node performance trends while accounting for data and 

workload heterogeneity.To reduce communication overhead 

and support scalability, the framework adopts an efficient 

communication protocol that limits the frequency and size of 

model exchanges. Model synchronization can be performed 

asynchronously to accommodate network variability and node 

availability. The updated global model is then disseminated 

back to participating nodes, where it is used to improve local 

query optimization decisions. 

 

4.5. Federated Learning Model Architecture 

 
Fig 1: Federated Learning Model Architecture 

 

The figure illustrates the federated learning architecture 

used for collaborative AI-driven optimization in distributed 

environments. At the bottom layer, [11,12] multiple unique 

healthcare centers represent decentralized nodes, each 

possessing sensitive local data. The next layer shows 

standardized health record data, indicating that although the 

underlying data is heterogeneous, it is formatted into a uniform 

schema to facilitate learning without sharing raw records. Each 
node trains a local AI model using its own data, depicted in the 

middle layer, capturing local query execution patterns and 

workload characteristics. These local models periodically 

transmit model updates to the global model at the top layer, 

where updates are aggregated using secure techniques to create 

a shared global representation. The global model is then 

redistributed to all nodes, enabling continuous improvement in 

query optimization performance while preserving data privacy 

and complying with regulatory constraints. This layered 

architecture effectively demonstrates how federated learning 

enables collaborative intelligence across distributed nodes 

without exposing sensitive raw data. 
 

 

4.6. Privacy and Security Considerations 

Privacy preservation is a core design principle of the 

proposed framework. Data locality is strictly maintained by 

ensuring that raw query data, execution logs, and sensitive 

statistics never leave their respective database nodes. Only 

model parameters or gradients are shared during the federated 
learning process, significantly reducing the risk of data 

leakage. To further enhance security, model update protection 

mechanisms are incorporated to prevent inference attacks and 

unauthorized access. These include secure aggregation 

techniques and controlled access to the federated coordination 

layer. Together, these measures enable collaborative query 

optimization while complying with data protection regulations 

and organizational privacy policies in distributed cloud 

environments. 

 

5. AI Models and Optimization Techniques 
5.1. Learning Models for Cost Estimation 

Accurate cost estimation is a critical component of 

effective query optimization in distributed cloud databases. 

The proposed framework employs machine learning–based 

cost models, [13,14] including regression techniques and 

neural networks, to predict query execution costs under 

varying execution plans and system conditions. These models 
learn complex, non-linear relationships between query features, 

data characteristics, and resource utilization that are difficult to 

capture using traditional analytical cost models. Lightweight 

regression models are used for scenarios requiring low training 

overhead, while deeper neural network architectures are 

employed to model more complex query workloads and 

execution patterns. The models are trained using historical 

query execution data and continuously refined through 

federated learning, enabling them to adapt to workload changes 

and infrastructure dynamics without relying on static statistics 

or centralized data collection. 

 

5.2. Reinforcement Learning for Plan Selection 

To complement cost estimation, the framework integrates 

reinforcement learning (RL) techniques for query plan 

selection. In this formulation, the query optimization process is 

modeled as a sequential decision-making problem. The state 

represents the current query and system context, including 

query structure, data distribution, and resource availability. The 

action corresponds to selecting or modifying an execution plan, 

such as join ordering or operator placement across nodes. The 

reward function is designed to capture execution performance 

objectives, such as minimizing query latency or resource 
consumption. Through repeated interactions with the execution 

environment, the RL agent learns policies that balance short-

term execution efficiency with long-term system performance. 

This adaptive learning process allows the optimizer to explore 

alternative plans and converge toward optimal strategies under 

dynamic conditions. 
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5.3. Adaptive Query Plan Generation 

The proposed framework supports adaptive query plan 

generation by incorporating runtime feedback into the 

optimization process. During query execution, performance 

metrics such as operator latency and resource utilization are 

monitored and compared against predicted costs. Significant 
deviations trigger re-evaluation of execution plans, allowing 

the system to adjust optimization decisions in response to 

unforeseen runtime conditions. This feedback-driven re-

optimization mechanism enables the framework to handle 

workload variability, data skew, and resource contention more 

effectively than static optimization approaches. By combining 

predictive cost modeling, reinforcement learning–based 

decision making, and continuous runtime adaptation, the 

proposed system achieves robust and efficient query 

optimization in distributed cloud database environments. 

 

6. Experimental Setup 
6.1. End-to-End AI Workflow for Monitoring, Training, and 

Decision Support 

Fig 2: End-to-End AI Workflow for Monitoring, Training, 

and Decision Support 

 

The figure illustrates an end-to-end AI workflow that 

begins with multiple data sources, including network activity, 

database activity, application activity, and user activity. [15,16] 
These heterogeneous data streams are collected and processed 

during the training phase, where data collection, data 

preparation, and model training are performed to build an 

effective analytical model. The trained model is subsequently 

evaluated during the testing phase, which follows a similar 

pipeline of data collection and preparation to validate model 

performance under unseen conditions. The output of both 

phases feeds into a central detection or decision model, which 

represents the system’s intelligence layer. The results 

generated by this model are presented through a visualization 

layer, including dashboards, reports, and email notifications, 

enabling users to take informed and timely actions. Overall, the 
figure highlights how raw operational data is transformed into 

actionable insights through structured AI pipelines, 

emphasizing automation, continuous learning, and user-centric 

decision support. 

 

 

6.2. Testbed Configuration 

The experimental evaluation was conducted on a 

distributed cloud testbed deployed across multi-cloud and 

hybrid-cloud environments to reflect real-world deployment 

scenarios. The testbed consists of multiple database nodes 

hosted on heterogeneous cloud platforms, each configured with 
varying compute, memory, and storage resources. This setup 

enables the assessment of query optimization performance 

under diverse infrastructure conditions, including differences 

in network latency and resource availability. Industry-standard 

relational database engines were used at each node, configured 

to support distributed query execution and parallel processing. 

The federated coordination component was deployed as a 

lightweight service responsible for model aggregation and 

synchronization. All experiments were performed under 

controlled network conditions while allowing dynamic 

workload variations to evaluate the adaptability and scalability 

of the proposed framework. 
 

6.3. Datasets and Workloads 

To ensure reproducibility and comparability, the 

evaluation employed widely used benchmark datasets, 

including TPC-H and TPC-DS, which represent decision-

support and analytical workloads. [17,18] These benchmarks 

provide a diverse set of complex SQL queries involving joins, 

aggregations, and nested subqueries, making them suitable for 

evaluating distributed query optimization techniques. The 

datasets were partitioned across database nodes using 

horizontal and hybrid partitioning strategies to simulate 
realistic data distribution scenarios. Query workloads were 

generated at varying scales and arrival rates to assess system 

behavior under both steady-state and dynamic workload 

conditions. 

 

6.4. Baseline Methods 

The performance of the proposed federated AI-driven 

query optimization framework was compared against multiple 

baseline approaches. Traditional optimizers, based on rule-

based and cost-based techniques provided by the underlying 

database engines, were used as the primary baseline. These 

optimizers rely on static statistics and analytical cost models 
without adaptive learning capabilities. In addition, centralized 

machine learning–based optimizers were implemented as 

advanced baselines, where query execution data from all nodes 

is aggregated to train a global cost model. This comparison 

highlights the trade-offs between centralized learning and the 

proposed federated approach in terms of performance, 

scalability, and privacy preservation. 

 

6.5. Evaluation Metrics 

The evaluation focused on multiple performance metrics 

to comprehensively assess the effectiveness of the proposed 
framework. Query latency was measured as the end-to-end 

execution time of queries, while system throughput was 

evaluated in terms of the number of queries successfully 

processed per unit time. These metrics capture the impact of 
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optimization decisions on user-perceived performance. 

Additionally, optimization overhead was measured to quantify 

the computational and communication costs introduced by the 

federated learning process. This includes model training time, 

aggregation latency, and communication overhead. Together, 

these metrics provide a balanced assessment of performance 
gains relative to the cost of optimization. 

 

7. Results and Discussion 
7.1. Performance Comparison Results 

Table 2: Performance Comparison of Query Optimization 

Methods 

Method Avg. 

Latency 

(ms) 

Throughput 

(q/s) 

Improvement 

(%) 

Rule-Based 

Optimizer 

1450 18 – 

Cost-Based 

Optimizer 

1280 22 11.7 

Centralized 

ML Optimizer 

980 29 32.4 

Federated AI 

Optimizer 

820 34 43.4 

 

The results presented in this table compare the 

performance of different query optimization methods in terms 

of average query latency, system throughput, and overall 
performance improvement. The rule-based optimizer serves as 

the baseline and exhibits the highest average latency (1450 ms) 

and the lowest throughput (18 queries per second), reflecting 

the limitations of static heuristic-based optimization in 

dynamic distributed cloud environments. The cost-based 

optimizer shows moderate improvement, reducing latency to 

1280 ms and increasing throughput to 22 q/s, which 

corresponds to an 11.7% performance gain; however, its 

reliance on static statistics restricts further optimization. The 

centralized machine learning–based optimizer achieves 

significantly better performance, with average latency reduced 
to 980 ms and throughput increased to 29 q/s, demonstrating 

the effectiveness of data-driven cost estimation. Nevertheless, 

this approach requires centralized access to execution data, 

which introduces scalability and privacy concerns. In contrast, 

the proposed federated AI optimizer delivers the best overall 

performance, achieving the lowest latency (820 ms) and 

highest throughput (34 q/s), resulting in a 43.4% improvement 

over the baseline. These results highlight that federated 

learning can achieve performance comparable to or better than 

centralized ML approaches while preserving data locality and 

scalability in distributed cloud database environments. 

 

7.2. Performance Comparison 

The performance of the proposed federated AI-driven 

query optimization framework was evaluated against 

traditional and centralized machine learning–based 

optimization approaches. Experimental results show that the 

federated approach consistently achieves lower query latency 

and higher throughput compared to traditional cost-based 

optimizers. This improvement is primarily attributed to the 

adaptive learning of execution costs that more accurately 

reflects dynamic workload and system conditions. When 

compared with centralized ML-based optimizers, the federated 
framework demonstrates comparable or improved query 

performance while avoiding the overhead and privacy risks 

associated with centralized data aggregation. The results 

indicate that federated learning effectively captures global 

optimization patterns through collaborative model training, 

enabling efficient query plan selection without direct access to 

distributed execution data. 

 

7.3. Scalability Analysis 

Scalability was evaluated by increasing both the number 

of participating database nodes and the size of the query 

workload. The federated framework maintains stable 
performance as the system scales, with query latency 

increasing sub-linearly relative to the number of nodes. This 

behavior highlights the framework’s ability to adapt to larger 

distributed environments without incurring significant 

coordination overhead. As workload intensity increases, the 

proposed approach continues to outperform baseline methods 

by dynamically adjusting query plans based on updated cost 

estimates. These results demonstrate that federated AI-driven 

optimization is well-suited for large-scale cloud deployments 

where workload and resource conditions vary over time. 

 

7.4. Communication and Training Overhead 

The communication and training overhead introduced by 

federated learning was carefully analyzed to assess its practical 

feasibility. Results indicate that the overhead associated with 

model aggregation and synchronization remains modest 

compared to overall query execution time. By limiting the 

frequency and size of model updates, the framework 

effectively balances learning accuracy and communication 

efficiency. Training overhead at individual nodes is also 

manageable, as local model updates are lightweight and can be 

performed asynchronously. This design ensures that 

optimization processes do not interfere with normal query 
execution, making the approach suitable for production 

environments. 

 

7.5. Privacy and Robustness Evaluation 

The proposed framework was evaluated for privacy 

preservation and robustness under data isolation constraints. 

Since raw query data and execution logs remain localized at 

each database node, the federated approach inherently prevents 

sensitive information from being exposed during the 

optimization process. Experimental results confirm that this 

data isolation does not negatively impact optimization 
effectiveness. Furthermore, the framework demonstrates 

robustness to heterogeneous data distributions and partial node 

participation. Even when some nodes contribute limited 

updates, the global model continues to converge and support 
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effective query optimization. These findings validate the 

practicality of federated AI-driven optimization in privacy-

sensitive and heterogeneous cloud database environments. 

 

8. Challenges and Limitations 
8.1. Model Convergence Issues 

One of the primary challenges in federated AI-driven 

query optimization is ensuring reliable model convergence 

across distributed database nodes. Variations in local data 

distributions, query workloads, and execution environments 

can lead to non-independent and non-identically distributed 

(non-IID) training data, which may slow convergence or result 

in suboptimal global models. Additionally, asynchronous 
updates and partial node participation can further complicate 

the learning process. Although the proposed framework 

mitigates these effects through iterative aggregation and 

adaptive learning strategies, convergence guarantees remain 

limited under highly skewed workloads. Further investigation 

is required to develop convergence-aware aggregation 

techniques that can better handle extreme heterogeneity and 

dynamic participation. 

 

8.2. Network Overhead 

Federated learning introduces additional network overhead 
due to periodic exchange of model updates between database 

nodes and the aggregation service. In geographically 

distributed cloud environments, variable network latency and 

bandwidth constraints can affect the timeliness of model 

synchronization. Excessive communication may also compete 

with query execution traffic, potentially impacting overall 

system performance. While the framework minimizes 

overhead by transmitting compact model updates at controlled 

intervals, network costs cannot be entirely eliminated. In 

environments with strict latency requirements or limited 

connectivity, communication-efficient federated learning 

strategies are necessary to further reduce overhead. 
 

8.3. Heterogeneous Database Engines 

Another significant limitation arises from the presence of 

heterogeneous database engines across distributed cloud 

deployments. Differences in query planners, execution 

operators, and internal cost metrics make it challenging to 

develop a unified optimization model that generalizes 

effectively across systems. Execution behavior may vary even 

for identical queries, reducing the accuracy of shared models. 

Although the proposed framework accommodates 

heterogeneity through local model training, cross-engine 
generalization remains an open challenge. Future extensions 

should explore engine-aware feature representations and 

modular optimization strategies to better support diverse 

database technologies. 

 

 

 

 

9. Future Research Directions 
9.1. Cross-Engine Optimization 

Future research should explore cross-engine query 

optimization to enable federated AI models to operate 

effectively across heterogeneous database systems. Different 

database engines employ distinct query planners, execution 

operators, and optimization strategies, which complicates the 

development of generalized cost models. Advancing engine-

agnostic feature representations and abstraction layers would 

allow federated models to better capture common execution 

patterns while preserving engine-specific optimizations. 

Additionally, incorporating transfer learning techniques could 

help leverage knowledge learned from one database engine to 
improve optimization performance on others. Such approaches 

would enhance the applicability of federated query 

optimization frameworks in multi-engine cloud environments. 

 

9.2. Online Federated Learning 

Another promising direction is the adoption of online 

federated learning, where models are continuously updated in 

near real time as new query workloads and execution feedback 

become available. Unlike batch-based federated learning, 

online learning enables faster adaptation to workload shifts, 

data skew, and resource fluctuations commonly observed in 
cloud databases. However, online federated learning introduces 

challenges related to model stability, communication 

frequency, and convergence guarantees. Future work should 

investigate adaptive synchronization strategies and incremental 

learning algorithms that balance responsiveness with system 

overhead. 

 

9.3. Integration with Serverless Databases 

The growing adoption of serverless and cloud-native 

database architectures presents new opportunities and 

challenges for federated AI-driven query optimization. 

Serverless databases offer elastic scaling and fine-grained 
resource management but introduce highly dynamic execution 

environments with ephemeral compute resources. Integrating 

federated optimization frameworks with serverless databases 

requires rethinking model training, state management, and cost 

estimation under transient execution contexts. Future research 

should focus on lightweight, stateless learning mechanisms and 

adaptive optimization techniques that align with the principles 

of serverless computing.  

 

10. Conclusion 
This paper investigated the problem of inefficient query 

optimization in distributed cloud databases and proposed a 

federated AI-driven framework to address the limitations of 

traditional and centralized optimization approaches. By 

combining machine learning–based cost estimation, 

reinforcement learning–based plan selection, and federated 

learning, the proposed system enables collaborative 

optimization across distributed database nodes without sharing 
raw query execution data. Experimental results demonstrated 
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that the framework effectively reduces query latency, improves 

throughput, and maintains stable performance under dynamic 

workloads and scalable cloud deployments. The key 

contributions of this work include the design of a novel 

federated query optimization architecture tailored for multi-

cloud and hybrid-cloud environments, the integration of AI-
driven cost modeling with privacy-preserving federated 

learning, and a comprehensive experimental evaluation using 

benchmark workloads. Unlike existing solutions, the proposed 

approach achieves competitive or superior performance 

compared to centralized machine learning–based optimizers 

while preserving data locality and system autonomy. These 

contributions advance the state of the art in intelligent query 

optimization for distributed database systems. From a practical 

perspective, the proposed framework offers a viable solution 

for organizations operating privacy-sensitive and 

geographically distributed cloud databases. By eliminating the 

need for centralized data aggregation, the approach aligns with 
regulatory requirements and cross-organizational constraints 

while delivering performance benefits. The framework can be 

integrated into modern cloud database platforms to support 

adaptive, scalable, and secure query optimization, paving the 

way for next-generation intelligent database management 

systems. 
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