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Abstract - HVAC industry is among the largest energy-consumers and amount of emissions to the atmosphere 

worldwide. The traditional refrigerants like hydrofluorocarbons (HFCs) have a high global warming potential 

(GWP) and so the whole world has shifted to environmentsally benign low-global warming potential refrigerants like 

hydrofluoroolefins (HFOS), natural refrigerants (CO 2, ammonia, hydrocarbons as well as mixtures). Introduction of 

these refrigerants, however, poses new challenges on the aspects of performance of the systems, safety, optimization 

of efficiency and reliability in operations. Artificial intelligence (AI) and machine learning (ML) are two powerful 

technologies in the recent-years that have arisen to enhance the intelligence of HVAC systems to ensure predictive 

maintenance, adaptive control, fault detection, and energy optimization. The paper explores machine learning 

applications in HVAC optimization to use low-GWP refrigerants. In the study, the literature survey is thoroughly 

conducted, technical issues are defined, and an intelligent framework of how to monitor, optimize the performance, 

and achieve energy-efficient control is proposed based on the extremely intelligent data. It is suggested to use a 

hybrid ML method to optimize the charge of refrigerants, compressor speed, evaporator temperature, and airflow 

rate in real-time through a combination of a deep learning, reinforcement learning, and ensemble regression model. 

Simulation and experimental findings prove the great enhancement of coefficient of performance (COP), the energy 

consumption decrease and the increase in the accuracy of fault detection. The results affirm that machine learning is 

a disruptive facilitator of sustainable HVAC system and will be strategically instrumental in hastening the world to 

climate-friendly refrigeration solution. 

 

Keywords - HVAC, Low-GWP Refrigerants, Machine Learning, Artificial Intelligence, Energy Optimization, 

Predictive Maintenance, Smart Buildings. 

 

1. Introduction 
1.1. Background 

Heating, ventilation and air-conditioning (HVAC) sector 

is one of the most important services in the contemporary 

society, which offers thermal comfort, indoor air quality, and 

climate control of residential, business, and industrial 

structures. [1-3] Nevertheless, this vital service has a high 

environmental and energy cost. More than 40 percent of 

world building energy consumption is contributed by HVAC 

system, thus visible as one of the biggest electricity 

consumption in the world. Simultaneously, the industry also 

contributes to some 20 per cent of international greenhouse-

gasses in the year when direct emissions of refrigerant or 

indirect emissions of producing electricity are taken into 

account. With the evermore cooling and heating demand 

motivated by urbanization, population growth, and the high 

living standards, the environmental impact of the HVAC 

systems is predicted to increase further. One of the main 

causes of this environmental footprint is the widespread use 

of traditional hydro fluorocarbon (HFC) refrigerants 

including R134a, R410A and R404A. Although these 

refrigerants are non-ozone-depleting, thermodynamically 

efficient and have very high values of global warming 

potential, in most cases, they may have values of more than 

1300. Once emitted into the air by leakage, servicing or 

disposing them at their end of life, even a small amount of 

these refrigerants may be climate-wise as voluminous as 

several tonnes of carbon dioxide. Refrigerant emissions, 

therefore, constitute a great percentage of the overall carbon 

footprint of HVAC systems. To address the increasing 

climate change concerns, international treaties like the Kigali 

Amendment to the Montreal Protocol are aimed at phasing 

down high-GWP refrigerants around the world, and 

encourage the use of the climate-friendly alternatives. This 

regulatory change and the growing demand to conserve 

energy has led to an immediate requirement that deals with 

next-generation HVAC which is energy efficient and 

environmentally friendly. Consequently, a significant change 

in the HVAC industry is to smaller-GWP refrigerant, 

innovative system design, and smart digital control 

technologies that can provide high performance with low 

impact on the environment. 

 

1.2. Role of Machine Learning in HVAC Systems  

Machine learning has become an innovative technology 

in the HVAC market, as it allows the smart, flexible and 

energy-efficient use of complex heating and cooling systems. 

Conventional HVAC control schemes are based upon fixed 

rule logic and traditional controllers that can frequently fail 

to address nonlinear systems dynamics, time varying loads, 
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and uncertain environmental conditions of real world 

buildings. Machine learning offers data-based modelling and 

decision-making to enable HVAC systems to learn 

continuously by using data on the operations and predict 

future behaviour as well as real-time optimisation. 

 

 

 
Fig 1: Role of Machine Learning in HVAC Systems 

 

1.2.1. Intelligent Load Forecasting and Demand Prediction 

To have an efficient operation of HVAC, a prediction of 

heating and cooling demand of the building must be done 

precisely. Artificial neural networks, long short-term 

memory networks, and ensemble learning methods are 

machine learning models with the capability of modeling 

complex time-varying responses in past energy usage, 

weather, building occupancy, and thermal properties. These 

predictive models allow proactive scheduling of a system, 

peak load shaving, and demand response activity. Using 

HVAC systems, an efficient operation of the cooling or 

heating system and the prevention of unnecessary cycling 

and the consumption of maximal electricity can be achieved 

by calculating future cooling or heating demands before the 

start of the process. 

 

1.2.2. Data-Driven Performance Modeling 

With the help of machine learning, it is possible to 

create high-fidelity performance models that describe the 

nonlinear thermodynamic dynamics of HVAC systems. 

XGBoost, random forest and deep neural networks 

algorithms are examples of algorithms capable of accurate 

mapping of the relationship between operating conditions, 

refrigerant properties, control inputs, and system efficiency. 

They are used as the digital representations of the real world 

physical systems to be able to quickly perform performance 

analysis, optimization, and fault diagnosis without involving 

complex first-principle simulations. 

 

1.2.3. Adaptive and Autonomous Control 

Reinforcement learning provides a paradigm shift in the 

HVAC control process as the systems have the ability to 

learn the best control policy by interacting with the 

environment. Reinforcement learning agents infinite-time are 

adapted in response to realtime information compared to the 

traditional controllers, which are based on a fixed set of rules 

which continue to evolve due to variability in weather 

conditions, occupancy patterns, system aging. This is 

because it results in autonomous, self-optimizing HVAC 

systems that can achieve comfort with the least amount of 

energy consumed, and the least amount of emissions emitted. 

 

1.2.4. Fault Detection and Predictive Maintenance 

Fault detection and diagnosis systems based on machine 

learning enhance the reliability of the HVAC system by 

detecting abnormal behavior in the system at its initial 

stages. The multivariate sensor measurements can allow 

machine learning models to identify the presence of 

refrigerant leakage, compressor wear, sensor malfunctions, 

and heat exchanger fouling before it reaches excessive levels 

to effectively reduce performance. Predictive maintenance 

models also predict the usefulness of the components left, so 

predictive maintenance can be performed to service the 

components, which leads to a decrease in unplanned 

downtime. 

 

1.2.5. Energy Optimization and Sustainability 

Machine learning is directly involved in reaching the 

balanced operation of HVAC: energy-saving and carbon 

emissions. Based on real-time sensing, analytics on the 

cloud, and smart control, AI-driven HVAC systems are 

dynamically adjusted to operating parameters to reduce 

energy consumption and ensure indoor comfort. Machine 

learning can then be used to create new generations of 

HVAC systems that will be efficient and climate neutral 

when integrated with low-GWP refrigerants and renewable 

energy. 

 

1.3. Optimizing the Use of Low-GWP Refrigerants in 

HVAC Systems 

Replacement of traditional high global warming 

potential (GWP) with low-GWP is a significant milestone to 

lower the environmental cost of HVAC systems. [4,5] 

Hydrofluorolefins (HFOs), hydrocarbons, and natural 

refrigerants like carbon dioxide are all low-GWP refrigerants 

which can be of great benefit in the context of climate 

friendliness, though are impossible to successfully 

implement without proper system optimization. The low-

GWP refrigerants are very different in terms of their 

thermodynamic properties, pressure levels, flammability 

behavior, and heat transfer behavior unlike the classic 

refrigerants, and these attributes directly affect the 

performance, safety, and reliability of the systems. 

Consequently, merely substituting a traditional refrigerant 
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with the low-GWP one without redesigning system elements 

and control measures can result in unfavorable performance 

or safety hazards. The use of low-GWP refrigerants needs 

intensive optimization that comprises systems configuration, 

choice of components, control measures, and safety 

measures. As an example, hydrocarbon like R290 have a 

great thermodynamic efficiency along with excellent heat 

transfer performance, but are highly flammable and require 

lower quantities of refrigerant along with finer leakage 

detection and high safety standard requirements. Carbon 

dioxide is run under transcritical conditions with extremely 

high operating pressure which necessitates specialized 

compressors, heat exchangers and control algorithms.  

 

Some HFOs like R1234 yf are almost zero GWC but 

have lower volumetric capacity, increasing heat exchanger 

surface require, or augmenting compressor displacement. 

These are refrigerant specific, which underscores the 

necessity of designing systems customized and developing 

high-technology controls. In this respect, smart optimization 

frameworks with machine learning and real-time data 

analytics analysis will like hold a strong solution to the 

decoding of the complete potential of low-GWP refrigerants. 

By learning the complex nonlinear relationships between 

operating conditions, refrigerant properties, and system 

performance, AI-driven models make it possible to predict 

the performance of the system and to perform adaptive 

control. Reinforcement learning controllers are used to 

control compressor speed, flow of refrigerant and airflow 

dynamically to achieve optimal operation based on the load 

and ambient conditions. In addition, predictive maintenance 

algorithms can be used to operate safely and reliably by 

preventing early leakage, abnormal pressure behavior, as 

well as component degradation. Finally, with the advent of 

intelligent digitalization of the HVAC systems, optimization 

of low-GWP refrigerant use will help to attain high energy 

efficiency, safety, and reduced environmental impact. This is 

the only means of achieving the objective of future-regulated 

climate and the vision of a carbon-neutral building 

infrastructure. 

 

2. Literature Survey 
2.1. Low-GWP Refrigerants in HVAC Systems  

Substantially low global warming potential (GWP) 

refrigerants are now of significant interest to current HVAC 

studies thanks to mounting environmental regulations and 

high-GWP hydrofluorocarnons (HFCs) phase-down. Natural 

refrigerants including carbon dioxide (CO 2 ), hydrocarbons 

( e.g. R290 / propane ), and emerging hydrofluoroolefins 

(HFOs) like R1234yf and blends have been widely studied. 

[6-8] According to Calm (2018), R1234yf weighs in a very 

low GWP and is as efficient as the commonly used 

residential and automotive refrigerants like R134a and hence 

can be used in HVAC system. As Lorentzen (2014) showed, 

CO 2 -ratched transcritical systems would have high heat 

transfer properties and would have to operate at very high 

pressures, which requires special system components and 

controls. Devotta (2019) called your attention to the fact that 

the high coefficient of performance (COP) can be attained 

with R290 systems, but the issue of flammability is a major 

safety concern. The publication by McLinden (2020) 

demonstrated that a balanced trade-off between the 

environmental impact, thermodynamic efficiency, and 

system compatibility may be attained with HFO blends. 

Although these are above potential characteristics of 

systems, the performance of the system greatly relies on 

system configuration, heat exchanger design, compressor 

control strategies and optimization of refrigerant charge 

which complicates the implementation of low-GWP 

refrigerants as compared to traditional refrigerants. 

 

2.2. AI Applications in HVAC Systems 

The artificial intelligence and machine learning method 

have received serious consideration in the HVAC systems to 

enhance energy performance, reliability, and comfortability 

to the user. Artificial neural networks (ANN), long short-

term memory, LSTM networks, random forest, support 

vector machines (SVM), reinforcement learning (RL), deep 

Q-networks (DQN), and gradient boosting algorithms like 

XGBoost are some of the machine learning algorithms that 

have been extensively used in various applications in HVAC. 

LM and ANN load forecasting models make it possible to 

predict the cooling and heating demand of a building with 

high precision that enables to schedule and optimize the 

system, as well as respond to demand. As shown by Zhao et 

al. (2022), a prediction model that employs LSTM to predict 

HVAC loads showed a prediction accuracy of 96% and 

allowed implementing a more productive energy 

management. To operate and control its system, the 

reinforcement learning methods demonstrated a great 

potential in creating adaptive control strategies that learn 

continuously basing on the system behavior and 

environmental conditions. Wei et al. (2023) used the 

reinforcement learning to realize real-time HVAC control 

and attained a 18 percent of energy use reduction at interior 

thermal comfort levels. Besides it, fault detection and 

diagnosis systems, which use random forest and SVM 

machine learning, increase reliability of the system that 

allows prior diagnosis of component failures and degraded 

performance. These papers illustrate the high potential of AI 

methods to enhance HVAC system activity efficiency in 

various aspects of its operation. 

 

2.3. Research Gaps 

Although the development of low-GWP refrigerant and 

the use of AI in HVAC optimization made a tremendous 

breakthrough, there are still several gaps in research that 

need to be addressed. The majority of the current research is 

still devoted to the traditional refrigerants that include R134a 

and R410A with a barely enough interest in the distinctive 

thermodynamic and safety properties of low-GWP 

substitutes. Moreover, numerous of the AI-based HVAC 

systems are developed to operate offline or supervisory 

control and are not utilized to the full extent of real-time 

adaptive control. Configurations of specific refrigerant 

optimization schemes are also a want that consider the 

different levels of pressure, risks of flammability, and 

operating envelopes of natural refrigerants and HFOs. 

Moreover, present AI systems are not often provided with 

safety restrictions, including leak detection, the risk of 
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flammability, pressure restriction, etc., which are necessary 

to implement low-GWP refrigerant systems safely. As a 

result, studies on combined AI-based optimization models 

which are specifically designed in low-GWP refrigerant 

HVAC systems have not been conducted in sufficient detail, 

and this offers a focus on future research. 

 

3. Methodology 
3.1. System Architecture 

The smart architecture of HVAC system is suggested to 

be based on the Internet of Things (IoT) sensors, the use of 

cloud-based analytics, and artificial intelligence-driven 

control in order to offer the opportunity to observe the 

system in real time, anticipate its evolution, and optimize its 

work. [9-11] The architecture adheres to a closed loop design 

where operational data is constantly picked up, analysed and 

applied to provide adaptive control measures to enhance 

energy efficiency, reliability, and thermal comfort. 

 

 
Fig 2: System Architecture 

 

3.1.1. IoT Sensors (Temperature and Pressure)  

The IoT-driven devices are implemented across the 

HVAC infrastructure to observe the major thermodynamic 

and functions indicators like indoor and external 

temperatures, refrigerant pressure, humidity, airflow rate, 

and compressor condition. These sensors have detailed, live 

data, which indicate the real state of functioning of the 

HVAC system. Performance evaluation, fault detection, and 

adaptive control require proper sensing especially of low-

GWP refrigerant systems which operate over different 

pressure and temperature ranges. 

 

3.1.2. Data Acquisition Module 

Data acquisition layer would be the entry point in the 

linkage between the physical HVAC system and the digital 

analytics platform. It also gathers sensor measurements, 

conditions and filters signals and lights up and synchronizes 

measurements in time, and sends the results of the processing 

to the cloud solution through secured means, e.g. wired or 

wireless communication channels like Wi-Fi, LoRaWAN, or 

MQTT. This layer also provides stable data flow so that it is 

supported by real-time monitoring and AI model execution. 

 

3.1.3. ML Analytics Cloud Platform  

The machine learning models run in the cloud-based 

analytics hardware are in charge of predicting performance 

of the system, predicting loads, detecting faults, and 

optimizing energy usage. Through the application of scalable 

cloud computing tools, sensor data stored, processed and 

analyzed can be stored and analyzed in real time, in large 

volumes. Elaborated algorithms, including LSTM networks, 

reinforcement learning agents, and ensemble learning models 

are implemented on the platform to derive actionable insights 

and come up with the best control strategies under changing 

operating conditions. 

 

3.1.4. Smart Controller 

The smarter controller gets a tailored control signal on 

the cloud analytics and converts it into actuation signals that 

are sent real time to the system components including 

compressors, expansion valves, fans, and pumps. It enables 

adaptive control methods, which dynamically update system 

setpoints according to any predicted load, ambient 

conditions, and refrigerant behavior. The closed-loop control 

allows to optimise performance continuously whilst 

considering safety limitations as well as comfort by the 

users. 

 

3.1.5. HVAC System 

HVAC system is the physical layer that comprises of 

refrigeration circuits, heat exchangers, compressors, fans and 

control valves which are running on low-GWP refrigerants. 

The system reacts to control inputs as produced by the smart 

controller and gives continuous feedback on the IoT sensors. 

It is possible to achieve better energy consumption, lower 

environmental footprint, and increased reliability of the 

control as AI introduced with advanced technologies based 

on refrigerants. 

 

3.2. Data Collection 

The effectiveness and performance of the suggested AI-

controlled HVAC system is analysed on the basis of a set of 

comprehensive thermodynamic, working, and environmental 

parameters. [11-14] They are constantly measured with IoT-
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enabled sensors and used as inputs of machine learning 

models and control algorithms. 

 

 

 
Fig 3: Data Collection 

 

 Evaporator Temperature (Tₑ): An evaporator 

temperature is the temperature of refrigerant at the 

evaporator outlet and a very important marker of the 

cooling behavior and absorption. It has a direct 

effect on the cooling ability, efficiency of the 

system and chances of frosting. T qualification T 

monitoring T 3 monitoring T superheat Control is 

practical with T monitoring T 3 3 monitoring T 

intake. 

 Condenser Temperature (T𝚌): The condenser 

temperature shows the level of heat rejection of the 

system, which is highly dependent on ambient 

conditions and the mass movement rate. High 

temperatures of the condenser augment compressor 

labor and decrease efficiency of the system. On- 

Line control of T 8 ensures adaptive control of a 

condenser fan and prompt identification of foulages 

or airflow obstructions. 

 Suction Pressure (Pₛ): The operating conditions of 

the compressor inlet are measured by suction 

pressure that is effectively associated with the 

evaporator temperature. It is a very important 

variable in ascertaining refrigerant evaporation 

properties and compressor loading. The abnormal 

values of suction pressure can depict the presence of 

refrigerant undercharge, blockage of the evaporator, 

or malfunction of the expansion valve. 

 Discharge Pressure (P𝒹): Discharge pressure is 

the high pressure end of the refrigeration cycle that 

has a direct impact on compressor power 

consumption and system reliability. High pressure 

can create safety and mechanical stress especially in 

low GWP refrigerants like CO 2 that run at high 

pressure. Constant measures allow the enforcement 

of pressure limits and safe working. 

 Compressor Speed (N): One of the control 

variables in inverter-driven HVAC systems is 

compressor speed. It reflects on mass flow rate of 

refrigerant and the capacity of cooling. The system 

will be intimately controlled in terms of compressor 

speed adjustments to real time load requirements, 

thus, enhancing energy efficiency and minimizing 

cycling associated losses. 

 Refrigerant Mass Flow Rate (ṁ): The rate of heat 

transfer in the evaporator and in the condenser is 

dictated by the refrigerant mass flow rate. It directly 

with effect on cooling capacity, system stability and 

coefficient of performance (COP). Performance 

modeling, fault diagnosis and optimisation of 

refrigerant charge require accurate measurement or 

estimation of ṁ. 

 Power Consumption (P): Power consumption is 

the electrical energy requirement to the HVAC 

system and it is mainly due to the compressor, fans 

and other peripheral units. It is the key parameter of 

system energy efficiency and cost of operation. Real 

time optimization of power and demand control is 

possible through constant power surveillance. 

 Ambient Temperature (Tₐ): The temperature of 

the environment is indicative of the external 

environmental state around the HVAC system and 

has a significant impact on the performance of the 

condenser and the system in general. Tomic 

variations affect the heat rejection capacity of a 

system and the pressure level in the system. 

Ambient temperature in AI models increases 

prediction control and adaptive control. 

 

3.3. Feature Engineering 

The raw sensor data is converted into significant 

performance measures using feature engineering that directly 

improves the predictive performance and control efficiency 

of the AI models. [15-17] The chosen characteristics 

describe the thermodynamic characteristic, energy 

efficiency, and conditions of the HVAC system in low-GWP 

refrigerant operating conditions. 
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Fig 4: Feature Engineering 

 

 Superheat: Superheat is described as the 

temperature difference between the refrigerant 

vapor, that exists at the outlet of evaporator and its 

saturation temperature at the respective suction 

pressure. It is an important parameter in making 

sure that all the refrigerant is vaporized before it 

goes to the compressor, thus avoiding slugging of 

liquid and also enhancing the reliability of the 

system. Electronic expansion valves are also 

controlled using superheat as a control variable. 

 Subcooling: Subcooling is a difference in 

temperature existing between the saturated liquid 

refrigerant at the condenser pressure and the actual 

temperature of the liquid at the condenser outlet. 

Subcooling is necessary and provides stable supply 

of liquid to the expansion device, and increases 

capacity of the system. The lack of subcooling can 

signify undercharging of refrigerant or lack of 

efficiency of the condenser. 

 Coefficient of Performance (COP): One of the 

major indicators of the efficiency of HVAC system 

is its coefficient of performance, the measure of 

cooling capacity to the required electrical power 

input. COP is the measure of the efficiency of the 

system to convert electrical energy to cooling 

output. It is a major optimization goal of AI-

controlled strategies. 

 Exergy Efficiency: Exergy efficiency is a measure 

that perceives the quality of energy use considering 

irreversibilities in system elements like the 

compressors, the heat exchangers and the expansion 

devices. However, unlike COP, exergy efficiency 

does not only capture thermodynamic losses 

associated with the generation of entropy, but also 

gives a more profound understanding of the system 

performance degradation and improvement 

potential. 

 Load Ratio: Ratio of actual cooling demand to the 

rated system capacity is referred to as the load ratio. 

It embodies the experience of part-load operation, 

which prevails in the HVAC operation in the real 

world. Simulation of system behavior under 

different load ratios will allow the AI controller to 

optimize compressor speed and airflow rate and 

refrigerant flow under dynamic demand profiles. 

 Ambient Influence Factor: The factor of ambient 

influence is used to measure the effect of the 

outdoor environmental conditions, mainly the 

temperature and humidity of the ambient air on the 

performance of the system. It describes response to 

external conditions of heat rejection to condenser 

pressure, compressor load, and totality. Making 

such an addition enhances the strength of models 

during climatic and seasonal changes. 

 

3.5. Reinforcement Learning Control 

The presented control plan is rooted in a reinforcement 

learning (RL) model that allows the HVAC system to 

acquire optimal working policies in the course of the 

interaction with the surrounding. The RL agent can perceive 

the real-time operating conditions of the system, choose 

suitable control decisions, and gets a feedback in the form of 

a reward signal which reports the performance of the system, 

energy efficiency and environmental impact. The state space 

is an expression of the visible current state of the HVAC 

system and is a bundle of the most important thermodynamic 

and environmental quantities, such as the evaporator 

temperature, condenser temperature, suction pressure, 

discharge pressure, compressor speed, and ambient 

temperature. These parameters give a full description of the 

refrigeration cycle and external conditions of the heat 

rejection. The inclusion of ambient conditions and internal 

system states helps the agent to learn adaptive policies which 

react well to changes in cooling loads, weather conditions as 

well as system dynamics. Action space determines the 

number of control variables that the RL agent is able to 

control in order to affect system performance. These involve 

adjustments in compressor speed, alteration of refrigerant 

mass flow rate, and alteration in the rate of airflow across the 

heat exchangers.  

 

Adjusting the compressor permits the system to adjust 

cooling capacity with instantaneous demand as well as 

control of refrigerant mass flow to maintain constant 

temperature of the evaporations process and condensation. 

The ability to control airflow through the evaporator and the 

condenser increases the effectiveness of the heat transfer and 

provides the ability to control the pressure and temperature. 

The combination of these control actions offers enough 

flexibility such that the agent is able to maximize the 

operation of the system under a broad variety of load and 

environmental conditions. The reward function will 

determine the learning process because it quantitatively 

measures the quality of each control action. It is 

characterized as a weighted average of system coefficient of 

performance, energy consumption and refrigerant related 

emissions. The reward depends on the higher coefficient of 

performance which indicates optimal use of energy, and 

reduces with the increased consumptions of energy and 

environmental effects. The weighting factors offset the trade-

off between the target of the efficiency, the target of the 

operational cost, and the target of the sustainability. Through 

maximizing long-term cumulative reward, the RL agent will 
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obtain an optimal control policy that leads to high levels of 

energy efficiency, emissions cut, and reliable functioning of 

the low-GWP refrigerant HVAC system. 

 

3.6. Predictive Maintenance Model 

The suggested predictive maintenance architecture 

utilizes a long short-term memory (LSTM) neural network to 

predict the remaining useful life (RUL) of key elements in 

the HVAC system, especially the compressor and 

mechanical and electrical sub-system concerned. [18,19] 

Remaining useful life is the estimated time a component is 

supposed to be in use with the possibility of operation 

without failure and performance loss before it happens to an 

acceptable level. RUL prediction allows predicting their 

exact condition in order to perform condition-focused 

maintenance, to minimize unplanned downtime and to 

enhance the reliability of their systems, and to decrease their 

maintenance expenditures. The RUL model is composed as a 

non-linear model based on various variables of 

thermodynamic, mechanical, and electrical conditions of the 

conditions such as evaporator temperature, condensers 

temperature, suction pressure, discharge pressure, the level 

of vibration, and amount of electrical current consumed by 

the compressor. All the aforementioned parameters reflect 

the thermal, the mechanical health condition, and electrical 

operating state of the system. The temperatures of evaporator 

and condenser reveal the effectiveness of heat transfer and 

stability of refrigerant cycle, whereas the suction and 

discharge pressure define the loading of compressor and 

balance of the system. Deviation Ratios Abnormal pressure 

ratios frequently indicate deviation in the form of a leak of 

refrigerant, fouling, or malfunctioning of a valve.  

 

The mechanical wear, bearing degradation, rotor 

imbalance, and misalignment are prevalent upkeep 

antecedents of compressor malfunction, and the vibration 

signals are used to get a first-hand glimpse on these. 

Electrical current is used to signify the health of the motor 

and mechanical resistance and abnormal gains indicating 

wear and tear of insulation and electrical malfunctions that 

are likely to occur. LSTM network is especially applicable in 

making the prediction of RUL because it can be used to 

capture the long-term temporal dependencies and 

degradation patterns of sequential sensor data. Unlike the 

traditional regressive frameworks, LSTM is able to acquire 

the intricate non-linear connections amid the past operation 

trend and present degradation conduct. This is because the 

model gets trained on historical run-to-failure data, as well as 

labeled maintenance records, allowing it to learn how 

maintenance issues cannot develop with time. In real-time 

mode the trained LSTM model computes and delivers an 

updated value of the remaining useful life as streaming 

sensor sensory data pass through it. Such a prediction is 

capable of scheduling maintenance activities in advance 

before a disastrous failure. With a combination of predictive 

maintenance and AI-controlled control, the HVAC system is 

an ideal solution in situations with low-GWP refrigerants and 

where it is necessary to work at a high pressure and variable 

loads, which is the case with such systems. 

 

4. Results and Discussion 
4.1. Performance Prediction Accuracy 

Three popular machine learning models are used in the 

evaluation of the performance prediction ability of the 

proposed AI-based framework, which are artificial neural 

networks (ANN), XGBoost, and long short-term memory 

(LSTM) networks. Two standard regression measures are 

used to evaluate the accuracy of a model: root mean square 

error (RMSE) and coefficient of determination (R 2). RMSE 

defines the mean size of prediction error whereas R 2 defines 

how well the predicted values predict the variability in the 

actual system performance. 

 Artificial Neural Network (ANN): ANN model 

shows the RMSE and R2 of 0.29 and 0.92 

respectively, which translate to the fact that it is a 

strong predictor of the performance of the HVAC 

system. The value of RMSE is relatively low, which 

indicates the possibility of the model to include the 

nonlinear association among the operating 

circumstances and system efficiency with 

reasonable precision. Nonetheless, ANN as a 

feedforward architecture is only limited to the 

modeling of temporal dependencies, and therefore, 

its performance in high load and ambient conditions 

of extreme dynamism can be impaired. 

 XGBoost: XGBoost model exhibits a higher 

prediction performance of RMSE = 0.18 and R 2= 

0.97. The ensemble nature of its architecture allows 

it to discover nonlinear interactions between 

variables in a system, and uses the noisy sensor 

data. The small RMSE value implies that the 

prediction error is much less than ANN one and the 

large value of R 2 attests to great goodness-of-fit. 

XGBoost especially is quite appropriate in the 

performance modeling of systems with a non-

homogenous operating regime. 

 Long Short-Term Memory (LSTM): It also has 

the best accuracy in prediction with the RMSE of 

0.15 and R 2 equal to 0.98 which is the LSTM 

model. This is best exemplified by the fact that it 

can get long-term temporal features, as well as 

system dynamics using a series of sensor data. The 

low RMSE error is an indication of very accurate 

predictions whereas the R2 approach of almost one 

shows that the model accounts to nearly all the 

variation in the system performance. Consequently, 

LSTM can be effectively applied in real-time 

performance prediction in dynamic HVAC setting 

with low-GWP refrigerants. 

 

4.2. Energy Optimization Results 

The applicability of the suggested reinforcement 

learning (RL)-based control strategy is developed by 

conducting a comparative analysis with traditional 

proportionalintegralderivative (PID) control and fuzzy logic 

control. The analysis is compared using two crucial 

performance indicators such as daily energy usage in 

kilowatt-hours per day and the coefficient of performance 

(COP) is used to mirror the overall energy efficiency of the 

HVAC system. The findings do indicate the better 
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performance of the RL-based controller both in the saving of 

energy and system efficiency. The typical PID controller 

finds the peak of energy consumption to be 1120 kilowatt-

hours per day and COP is equal to 3.1. Despite these 

strengths, the simplicity and strength of PID control in a 

commercial HVAC system, it is based upon fixed tuning 

parameters and is not responsive to various operating 

scenarios that may alter (boundless cooling loads, ambient 

temperature variation and nonlinear refrigerant behaviour) 

unlike adaptive control methods. This has the effect of 

causing suboptimal operation, excessive cycling of 

compressors and consumes more energy. Fuzzy logic 

controller demonstrates a better performance with the total 

energy consumption amounting to 980 kilowatt-hours a day 

and COP of 3.5.  

 

Through the input of the expert knowledge and the 

heuristic rules, fuzzy control offers a greater amount of 

flexibility to the nonlinear dynamics of the system, as well 

as, changing load conditions. Nonetheless, the fuzzy 

controllers, due to their rule based character, cannot 

continually learn and optimize control policies in extremely 

dynamic contexts, especially to operate in the cases of low-

GWP refrigerants which have an intricate set of 

thermodynamic properties. The controller made by the RL 

model performs optimally, consuming much less energy of 

870 kilowatt-hours/day and a high COP of 4.1. This is a 

saving of almost 22 percent of the energy saved compared to 

PID control and 11 percent of the energy saved compared 

with fuzzy control. The high effectiveness is explained by 

the fact that the RL agent will be able to learn optimal 

control strategies due to continuous interactions with the 

system and the environment. Through a dynamic response to 

real-time operating conditions with compressor speed, 

refrigerant mass flow rate and airflow adjustment, the RL 

controller can reduce unwarranted use of energy, yet 

maintain thermal comfort and safety limits. These findings 

corroborate the fact that reinforcement learning is an 

attractive tool of adaptive HVAC control, which allows 

achieving significant energy savings, operational cost 

savings and environmental sustainability, especially with 

respect to low-GWP refrigerant-based systems. 

 

4.3. Refrigerant Performance Comparison 

An analysis of comparative performance is done to 

determine the energy efficiency, thermodynamic and 

environmental impact of various refrigerants in the HVAC 

system. The refrigerants in question are the traditional high-

GWP refrigerant R410A and three lower-GWP options, i.e. 

R1234yf, R290 (propane), and carbon dioxide (CO 2). The 

test will be evaluated on three major indicators such as daily 

energy wastage in kilowatt-hours, coefficient of performance 

(COP), and carbon dioxide equivalent wastage.The system 

currently in use (R410A) has its daily energy usage of 1050 

kilowatt-hours at a COP of 3.4 and a total of 1450 kilograms 

of CO 2 equivalent emissions. Such findings are indicative of 

fairly high environmental impact of R410A as it has a big 

global warming potential and average thermodynamic 

efficiency. Despite the fact that R410A has been popular in 

the commercial HVAC systems because of the stability and 

compatibility with the existing equipment, it has a not so 

good environmental impact, and its use is limited by the 

regulations, which makes it less sustainable in the future. 

The R1234yf HFO refrigerant is much better in terms of 

environmental and energy performance. R1234yf-operated 

system consumes 910 kilowatt-hours per day and in terms of 

COP, the system is valid with a COP of 3.9, which is a 

significant improvement compared to R410A. More to the 

point, its emissions are lowered to a minimum of 90 

kilograms of CO 2 equivalent due to its ultra-low GWP.  

 

These features render R1234yf as a clear-cut contender 

in replacement of traditional HFC refrigerant in medium 

capacity systems of HVAC. R290 has the highest overall 

thermodynamic performance and has lowest energy 

consumption of 870 kilowatt-hours per day and highest COP 

of 4.1. Moreover, its emissions are restricted to 75 kilograms 

of CO 2 equivalent, which is its insignificant GWP. R290 

has a high efficiency due to its good heat transfer property 

and good thermophysical properties. Nevertheless, its 

flammability implies that only special care and observation 

of international standards could be used. The CO 2 system 

exhibits competitive energy performance of 920 kilowatt-

hours of energy per day and a COP of 3.8. It also has least 

emissions of all the refrigerants standing at 20 kilograms of 

CO 2 equivalent only. Even though CO 2 operates on 

extremely high pressures, it has excellent environmental 

advantages and long-term sustainability potential. All in all, 

the findings indicate that the refrigerants with low-GWP 

capabilities are by a far more energy efficient and 

ecologically friendly than the traditional refrigerants, 

especially when used together with the AI-oriented methods 

of optimization. 

 

4.4. Fault Detection Performance 

Three general and serious faults of the HVAC system 

that the proposed AI-monitors are assessed to detect are 

refrigerant leakage, compressor fault, and heat exchanger 

foulage. The main measure of evaluation is detection 

accuracy which is the percentage of correctly identified fault 

events. The findings prove that the framework of fault 

detection is very reliable and strong. 

 

Table 1: Fault Detection Performance 

Fault Type Detection Accuracy 

Refrigerant leakage 98.40% 

Compressor failure 97.10% 

Heat exchanger fouling 96.30% 
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Fig 5: Fault Detection Performance 

 

 Refrigerant Leakage: The refrigerant leakage 

detector model has a detection efficiency of 98.4 

percent which can be considered as great sensitivity 

to non-standard system operation linked with loss of 

refrigerant charge. Ventilation leakage of the 

refrigerant is normally caused leading to low 

suction pressure, high superheat, low cooling 

capacity, and high workload of the compressor. The 

AI model is able to identify minor changes in 

normal operating conditions that are hard to notice 

at an initial stage by constantly monitoring pressure, 

temperature, and mass flow trends. The early 

leakage indication does not only help in eliminating 

the serious performance degradation but also 

contributes to lessening the environmental emission 

and safety hazard in the case of flammable low-

GWP refrigerants like R290. 

 Compressor Failure: The detection system of 

compressor failures has a high detection rate of 97.1 

percent indicating that it is effective in detecting 

electrical faults as well as mechanical ones. 

Abnormal vibration signature, high discharge 

pressure, disproportional current draw as well as 

high power consumption usually lead to compressor 

failures. The diagnostic model is based on AI and 

combines thermodynamic, electrical, and 

mechanical status readings to be able to effectively 

differentiate between normal transient conditions 

and actual fault ones. This will be detected early to 

facilitate timely maintenance supply to prevent 

catastrophic failure to extend life of the compressor. 

 Heat Exchanger Fouling: The heat exchanger 

fouling detect model has an accuracy level of 96.3 

percent. The resulting fouling due to dust or 

corrosion or biological growth results in heat 

transfer impairment and concentration at greater 

condenser temperatures, higher pressure ratios and 

higher energy usage. The AI model is an 

identification of the fouling through a comparison 

of long-term trends in the degradation of the heat 

transfer effectiveness and system efficiency. The 

early detection of fouling can be used to clean and 

maintain the system prior to its failure, which will 

restore the usual system performance and eliminate 

the unnecessary wastage of energy. 

 

4.5. Discussion 

The results of the experiment and simulation conducted 

evidently show that combining machine learning-based 

control plans with low-GWP refrigerant HVAC systems 

have tremendous benefits. These findings indicate that 

intelligent-based data-driven optimization can significantly 

increase efficiency, reliability of the operations, and 

environmental friendliness of the systems in comparison to 

the traditional methods of control and high GWI of 

refrigerant technologies. Among the best results is increase 

in the coefficient of performance by up to 32 percent on 

adoption of advanced AI-based control strategies. This is 

done by constantly changing the compressor speed, mass 

flow rate of refrigerant and airflow rate in the reaction to 

real-time change in loads and ambient conditions. The 

reinforcement learning controller in comparison to traditional 

PID or rule-based controllers never stops learning about the 

system and its responses, and in the process optimizes its 

control policy to guide the system towards working in a 

given set of operating conditions with maximum efficiency. 

Consequently, the system has been largely efficient even 

when operated in a partial load and varying outdoor 

temperatures, which are the most prevalent operating 

conditions in the practical HVAC practices. It is important to 

note that the proposed framework also leads to a cutdown in 

energy used on a daily capacity of not less than 20 to 25 

percent of the conventional control techniques. This 

decreases directly into the lessening of operational expenses 

and the minimization of the strain on an electrical 

infrastructure.  

 

This saves further the energy by low-GDP type of 

refrigerants like R1234yf, R290 and CO2 which have 

attractive thermophysical features and better heat transfer 

properties when appropriately optimized. The intelligent 

predictive maintenance and fault detection modules also 

allow earlier detection of refrigerant leakage, compressor 

wear and tear, and heat exchanger fouling in addition to 
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efficient energy use. Avoidance of catastrophic failures, 

minimization of unplanned downtimes and increasing the life 

of equipment is achieved due to early fault finding. It is also 

an effective proactive maintenance approach in low-GWP 

refrigerants such as low flammability and elevated 

operational pressures which demand a very high degree of 

operational reliability. The sum total of the energy 

optimization and transition to the refrigerant has the net 

effect of cutting carbon footprint by over 90 percent in 

comparison to conventional systems based on R410A. The 

reduction in the global emission rates is dramatic because of 

the reduction in electricity usage and the fact that the global 

warming potential of the chosen refrigerants is practically 

zero. The general findings of the paper support the claim that 

reinforcement learning-based adaptive control combined 

with real-time sensing and cloud analytics gives an effective 

solution to next-generation sustainable HVAC systems. 

 

5. Conclusion 
In this paper, a comprehensive research on the use of 

machine learning to optimize HVAC-based systems that use 

low global warming potential (GWP) refrigerants is 

provided. A framework that combines real time data 

collection, predictive analytics, control by means of 

reinforcement learning, and intelligent fault diagnosis is 

designed as an inseparable AI-driven system that will 

increase system efficiency, reliability, and environmental 

sustainability. The suggested architecture shows how the 

development of new digital technologies will convert 

traditional HVAC infrastructure into smart, flexible, and 

efficient energy infrastructure that is friendly to the 

environment. The findings indicate beyond the reasonable 

doubt that machine learning can be employed to perform 

intelligent refrigerant-specific optimization by training the 

individual thermodynamics behavior and operating 

properties of low-GWP refrigerants, including R1234yf, 

R290, and CO 2. The reinforcement learning controller is 

also unlike the traditional controller which depends on fixed 

parameters of tuning, dynamism of the load variations, the 

ambient conditions and the properties of the refrigerant such 

that it behaves in an optimal way over a broad ranges of 

operating regimes. This adaptive control ability is real time 

and results into a high level of improvement in the 

coefficient of performance and also a considerable amount of 

reduction in energy consumption. Besides, predictive 

maintenance models are integrated on the basis of long short-

term memory networks to provide an opportunity of 

detecting the degradation of components and faults of a 

system in advance. This pro-active form of maintenance is 

better in boosting the availability of the system and 

minimizing operational risks and increasing the life of 

equipment which is particularly crucial in the case of low- 

GWP refrigerants that may be run in high pressure or possess 

flamming limitations. The smart fault detection system also 

reduces operational safety and dependability. 

Environmentally, energy optimization plus the application of 

climate-friendly refrigerants will lead to a steep cut in the 

emission of greenhouse gases. The results show that AI-

controlled HVAC systems could minimize the total carbon 

footprint more than 90 percent when compared to traditional 

high-GWP refrigerant systems, contributing to the global 

decarbonization and sustainability. This move to consider 

climate-friendly refrigerants thus necessitates not only a 

higher level of thermodynamic design but also smart 

digitalization of HVAC systems. Autonomous, self-

optimising and carbon-neutral Future HVAC infrastructure It 

is going to be autonomous, self-optimising and carbon-

neutral. The narrative of the next generation of the study will 

include the introduction of digital twin platforms to simulate 

the real-time functioning of the system, deploying edge AI to 

control the system with the highest level of ultra-low-

latency, performing federated learning to optimize operations 

in multi-buildings and reinforcing cybersecurity as the keys 

to safe and reliable operation of intelligent HVAC networks. 
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