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Abstract - HVAC industry is among the largest energy-consumers and amount of emissions to the atmosphere
worldwide. The traditional refrigerants like hydrofluorocarbons (HFCs) have a high global warming potential
(GWP) and so the whole world has shifted to environmentsally benign low-global warming potential refrigerants like
hydrofluoroolefins (HFOS), natural refrigerants (CO 2, ammonia, hydrocarbons as well as mixtures). Introduction of
these refrigerants, however, poses new challenges on the aspects of performance of the systems, safety, optimization
of efficiency and reliability in operations. Artificial intelligence (Al) and machine learning (ML) are two powerful
technologies in the recent-years that have arisen to enhance the intelligence of HVAC systems to ensure predictive
maintenance, adaptive control, fault detection, and energy optimization. The paper explores machine learning
applications in HVAC optimization to use low-GWP refrigerants. In the study, the literature survey is thoroughly
conducted, technical issues are defined, and an intelligent framework of how to monitor, optimize the performance,
and achieve energy-efficient control is proposed based on the extremely intelligent data. It is suggested to use a
hybrid ML method to optimize the charge of refrigerants, compressor speed, evaporator temperature, and airflow
rate in real-time through a combination of a deep learning, reinforcement learning, and ensemble regression model.
Simulation and experimental findings prove the great enhancement of coefficient of performance (COP), the energy
consumption decrease and the increase in the accuracy of fault detection. The results affirm that machine learning is
a disruptive facilitator of sustainable HVAC system and will be strategically instrumental in hastening the world to
climate-friendly refrigeration solution.

Keywords - HVAC, Low-GWP Refrigerants, Machine Learning, Artificial Intelligence, Energy Optimization,
Predictive Maintenance, Smart Buildings.

1. Introduction
1.1. Background

Heating, ventilation and air-conditioning (HVAC) sector
is one of the most important services in the contemporary
society, which offers thermal comfort, indoor air quality, and
climate control of residential, business, and industrial
structures. [1-3] Nevertheless, this vital service has a high
environmental and energy cost. More than 40 percent of
world building energy consumption is contributed by HVAC
system, thus visible as one of the biggest electricity
consumption in the world. Simultaneously, the industry also
contributes to some 20 per cent of international greenhouse-
gasses in the year when direct emissions of refrigerant or
indirect emissions of producing electricity are taken into
account. With the evermore cooling and heating demand
motivated by urbanization, population growth, and the high
living standards, the environmental impact of the HVAC
systems is predicted to increase further. One of the main
causes of this environmental footprint is the widespread use
of traditional hydro fluorocarbon (HFC) refrigerants
including R134a, R410A and R404A. Although these
refrigerants are non-ozone-depleting, thermodynamically
efficient and have very high values of global warming
potential, in most cases, they may have values of more than
1300. Once emitted into the air by leakage, servicing or

disposing them at their end of life, even a small amount of
these refrigerants may be climate-wise as voluminous as
several tonnes of carbon dioxide. Refrigerant emissions,
therefore, constitute a great percentage of the overall carbon
footprint of HVAC systems. To address the increasing
climate change concerns, international treaties like the Kigali
Amendment to the Montreal Protocol are aimed at phasing
down high-GWP refrigerants around the world, and
encourage the use of the climate-friendly alternatives. This
regulatory change and the growing demand to conserve
energy has led to an immediate requirement that deals with
next-generation HVAC which is energy efficient and
environmentally friendly. Consequently, a significant change
in the HVAC industry is to smaller-GWP refrigerant,
innovative system design, and smart digital control
technologies that can provide high performance with low
impact on the environment.

1.2. Role of Machine Learning in HVAC Systems

Machine learning has become an innovative technology
in the HVAC market, as it allows the smart, flexible and
energy-efficient use of complex heating and cooling systems.
Conventional HVAC control schemes are based upon fixed
rule logic and traditional controllers that can frequently fail
to address nonlinear systems dynamics, time varying loads,
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and uncertain environmental conditions of real world
buildings. Machine learning offers data-based modelling and
decision-making to enable HVAC systems to learn

continuously by using data on the operations and predict
future behaviour as well as real-time optimisation.

ROLE OF MACHINE LEARNING IN
HVAC SYSTEMS
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Fig 1: Role of Machine Learnlng in HVAC Systems

1.2.1. Intelligent Load Forecasting and Demand Prediction

To have an efficient operation of HVAC, a prediction of
heating and cooling demand of the building must be done
precisely. Artificial neural networks, long short-term
memory networks, and ensemble learning methods are
machine learning models with the capability of modeling
complex time-varying responses in past energy usage,
weather, building occupancy, and thermal properties. These
predictive models allow proactive scheduling of a system,
peak load shaving, and demand response activity. Using
HVAC systems, an efficient operation of the cooling or
heating system and the prevention of unnecessary cycling
and the consumption of maximal electricity can be achieved
by calculating future cooling or heating demands before the
start of the process.

1.2.2. Data-Driven Performance Modeling

With the help of machine learning, it is possible to
create high-fidelity performance models that describe the
nonlinear thermodynamic dynamics of HVAC systems.
XGBoost, random forest and deep neural networks
algorithms are examples of algorithms capable of accurate
mapping of the relationship between operating conditions,
refrigerant properties, control inputs, and system efficiency.
They are used as the digital representations of the real world
physical systems to be able to quickly perform performance
analysis, optimization, and fault diagnosis without involving
complex first-principle simulations.

1.2.3. Adaptive and Autonomous Control

Reinforcement learning provides a paradigm shift in the
HVAC control process as the systems have the ability to
learn the best control policy by interacting with the
environment. Reinforcement learning agents infinite-time are
adapted in response to realtime information compared to the
traditional controllers, which are based on a fixed set of rules
which continue to evolve due to variability in weather
conditions, occupancy patterns, system aging. This is
because it results in autonomous, self-optimizing HVAC
systems that can achieve comfort with the least amount of
energy consumed, and the least amount of emissions emitted.
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1.2.4. Fault Detection and Predictive Maintenance

Fault detection and diagnosis systems based on machine
learning enhance the reliability of the HVAC system by
detecting abnormal behavior in the system at its initial
stages. The multivariate sensor measurements can allow
machine learning models to identify the presence of
refrigerant leakage, compressor wear, sensor malfunctions,
and heat exchanger fouling before it reaches excessive levels
to effectively reduce performance. Predictive maintenance
models also predict the usefulness of the components left, so
predictive maintenance can be performed to service the
components, which leads to a decrease in unplanned
downtime.

1.2.5. Energy Optimization and Sustainability

Machine learning is directly involved in reaching the
balanced operation of HVAC: energy-saving and carbon
emissions. Based on real-time sensing, analytics on the
cloud, and smart control, Al-driven HVAC systems are
dynamically adjusted to operating parameters to reduce
energy consumption and ensure indoor comfort. Machine
learning can then be used to create new generations of
HVAC systems that will be efficient and climate neutral
when integrated with low-GWP refrigerants and renewable
energy.

1.3. Optimizing the Use of Low-GWP Refrigerants in
HVAC Systems

Replacement of traditional high global warming
potential (GWP) with low-GWP is a significant milestone to
lower the environmental cost of HVAC systems. [4,5]
Hydrofluorolefins  (HFQOs), hydrocarbons, and natural
refrigerants like carbon dioxide are all low-GWP refrigerants
which can be of great benefit in the context of climate
friendliness, though are impossible to successfully
implement without proper system optimization. The low-
GWP refrigerants are very different in terms of their
thermodynamic properties, pressure levels, flammability

behavior, and heat transfer behavior unlike the classic
refrigerants, and these attributes directly affect the
performance, safety, and reliability of the systems.

Consequently, merely substituting a traditional refrigerant
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with the low-GWP one without redesigning system elements
and control measures can result in unfavorable performance
or safety hazards. The use of low-GWP refrigerants needs
intensive optimization that comprises systems configuration,
choice of components, control measures, and safety
measures. As an example, hydrocarbon like R290 have a
great thermodynamic efficiency along with excellent heat
transfer performance, but are highly flammable and require
lower quantities of refrigerant along with finer leakage
detection and high safety standard requirements. Carbon
dioxide is run under transcritical conditions with extremely
high operating pressure which necessitates specialized
compressors, heat exchangers and control algorithms.

Some HFOs like R1234 yf are almost zero GWC but
have lower volumetric capacity, increasing heat exchanger
surface require, or augmenting compressor displacement.
These are refrigerant specific, which underscores the
necessity of designing systems customized and developing
high-technology controls. In this respect, smart optimization
frameworks with machine learning and real-time data
analytics analysis will like hold a strong solution to the
decoding of the complete potential of low-GWP refrigerants.
By learning the complex nonlinear relationships between
operating conditions, refrigerant properties, and system
performance, Al-driven models make it possible to predict
the performance of the system and to perform adaptive
control. Reinforcement learning controllers are used to
control compressor speed, flow of refrigerant and airflow
dynamically to achieve optimal operation based on the load
and ambient conditions. In addition, predictive maintenance
algorithms can be used to operate safely and reliably by
preventing early leakage, abnormal pressure behavior, as
well as component degradation. Finally, with the advent of
intelligent digitalization of the HVAC systems, optimization
of low-GWP refrigerant use will help to attain high energy
efficiency, safety, and reduced environmental impact. This is
the only means of achieving the objective of future-regulated
climate and the vision of a carbon-neutral building
infrastructure.

2. Literature Survey
2.1. Low-GWP Refrigerants in HVAC Systems
Substantially low global warming potential (GWP)
refrigerants are now of significant interest to current HVAC
studies thanks to mounting environmental regulations and
high-GWP hydrofluorocarnons (HFCs) phase-down. Natural
refrigerants including carbon dioxide (CO 2 ), hydrocarbons
( e.g. R290 / propane ), and emerging hydrofluoroolefins
(HFOs) like R1234yf and blends have been widely studied.
[6-8] According to Calm (2018), R1234yf weighs in a very
low GWP and is as efficient as the commonly used
residential and automotive refrigerants like R134a and hence
can be used in HVAC system. As Lorentzen (2014) showed,
CO 2 -ratched transcritical systems would have high heat
transfer properties and would have to operate at very high
pressures, which requires special system components and
controls. Devotta (2019) called your attention to the fact that
the high coefficient of performance (COP) can be attained
with R290 systems, but the issue of flammability is a major
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safety concern. The publication by MecLinden (2020)
demonstrated that a balanced trade-off between the
environmental impact, thermodynamic efficiency, and
system compatibility may be attained with HFO blends.
Although these are above potential characteristics of
systems, the performance of the system greatly relies on
system configuration, heat exchanger design, compressor
control strategies and optimization of refrigerant charge
which complicates the implementation of low-GWP
refrigerants as compared to traditional refrigerants.

2.2. Al Applications in HVAC Systems

The artificial intelligence and machine learning method
have received serious consideration in the HVAC systems to
enhance energy performance, reliability, and comfortability
to the user. Artificial neural networks (ANN), long short-
term memory, LSTM networks, random forest, support
vector machines (SVM), reinforcement learning (RL), deep
Q-networks (DQN), and gradient boosting algorithms like
XGBoost are some of the machine learning algorithms that
have been extensively used in various applications in HVAC.
LM and ANN load forecasting models make it possible to
predict the cooling and heating demand of a building with
high precision that enables to schedule and optimize the
system, as well as respond to demand. As shown by Zhao et
al. (2022), a prediction model that employs LSTM to predict
HVAC loads showed a prediction accuracy of 96% and
allowed implementing a more productive energy
management. To operate and control its system, the
reinforcement learning methods demonstrated a great
potential in creating adaptive control strategies that learn
continuously basing on the system behavior and
environmental conditions. Wei et al. (2023) used the
reinforcement learning to realize real-time HVAC control
and attained a 18 percent of energy use reduction at interior
thermal comfort levels. Besides it, fault detection and
diagnosis systems, which use random forest and SVM
machine learning, increase reliability of the system that
allows prior diagnosis of component failures and degraded
performance. These papers illustrate the high potential of Al
methods to enhance HVAC system activity efficiency in
various aspects of its operation.

2.3. Research Gaps

Although the development of low-GWP refrigerant and
the use of Al in HVAC optimization made a tremendous
breakthrough, there are still several gaps in research that
need to be addressed. The majority of the current research is
still devoted to the traditional refrigerants that include R134a
and R410A with a barely enough interest in the distinctive
thermodynamic and safety properties of low-GWP
substitutes. Moreover, numerous of the Al-based HVAC
systems are developed to operate offline or supervisory
control and are not utilized to the full extent of real-time
adaptive control. Configurations of specific refrigerant
optimization schemes are also a want that consider the
different levels of pressure, risks of flammability, and
operating envelopes of natural refrigerants and HFOs.
Moreover, present Al systems are not often provided with
safety restrictions, including leak detection, the risk of
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flammability, pressure restriction, etc., which are necessary
to implement low-GWP refrigerant systems safely. As a
result, studies on combined Al-based optimization models
which are specifically designed in low-GWP refrigerant
HVAC systems have not been conducted in sufficient detail,
and this offers a focus on future research.

3. Methodology
3.1. System Architecture

The smart architecture of HVAC system is suggested to
be based on the Internet of Things (IoT) sensors, the use of
cloud-based analytics, and artificial intelligence-driven
control in order to offer the opportunity to observe the
system in real time, anticipate its evolution, and optimize its
work. [9-11] The architecture adheres to a closed loop design
where operational data is constantly picked up, analysed and
applied to provide adaptive control measures to enhance
energy efficiency, reliability, and thermal comfort.

SYSTEM ARCHITECTURE

T ~ 10T Sensors
i‘j £} (Temperature
and Pressure)

=

Data
Acquistion
Module

g

Cloud Platform *

~

ML Analytics 1 .H.r-\. \

|

T

Smart Controller

4
‘ HVAC System 4[24

=,

Fig 2: System Architecture

3.1.1. 10T Sensors (Temperature and Pressure)

The loT-driven devices are implemented across the
HVAC infrastructure to observe the major thermodynamic
and functions indicators like indoor and external
temperatures, refrigerant pressure, humidity, airflow rate,
and compressor condition. These sensors have detailed, live
data, which indicate the real state of functioning of the
HVAC system. Performance evaluation, fault detection, and
adaptive control require proper sensing especially of low-
GWP refrigerant systems which operate over different
pressure and temperature ranges.

3.1.2. Data Acquisition Module

Data acquisition layer would be the entry point in the
linkage between the physical HVAC system and the digital
analytics platform. It also gathers sensor measurements,
conditions and filters signals and lights up and synchronizes
measurements in time, and sends the results of the processing
to the cloud solution through secured means, e.g. wired or
wireless communication channels like Wi-Fi, LoRaWAN, or
MQTT. This layer also provides stable data flow so that it is
supported by real-time monitoring and Al model execution.

3.1.3. ML Analytics Cloud Platform

The machine learning models run in the cloud-based
analytics hardware are in charge of predicting performance
of the system, predicting loads, detecting faults, and
optimizing energy usage. Through the application of scalable
cloud computing tools, sensor data stored, processed and
analyzed can be stored and analyzed in real time, in large
volumes. Elaborated algorithms, including LSTM networks,
reinforcement learning agents, and ensemble learning models
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are implemented on the platform to derive actionable insights
and come up with the best control strategies under changing
operating conditions.

3.1.4. Smart Controller

The smarter controller gets a tailored control signal on
the cloud analytics and converts it into actuation signals that
are sent real time to the system components including
compressors, expansion valves, fans, and pumps. It enables
adaptive control methods, which dynamically update system
setpoints according to any predicted load, ambient
conditions, and refrigerant behavior. The closed-loop control
allows to optimise performance continuously whilst
considering safety limitations as well as comfort by the
users.

3.1.5. HVAC System

HVAC system is the physical layer that comprises of
refrigeration circuits, heat exchangers, compressors, fans and
control valves which are running on low-GWP refrigerants.
The system reacts to control inputs as produced by the smart
controller and gives continuous feedback on the 10T sensors.
It is possible to achieve better energy consumption, lower
environmental footprint, and increased reliability of the
control as Al introduced with advanced technologies based
on refrigerants.

3.2. Data Collection

The effectiveness and performance of the suggested Al-
controlled HVAC system is analysed on the basis of a set of
comprehensive thermodynamic, working, and environmental
parameters. [11-14] They are constantly measured with 10T-
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enabled sensors and used as inputs of machine learning
models and control algorithms.

DATA COLLECTION
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Fig 3: Data Collection

Evaporator Temperature (T.): An evaporator
temperature is the temperature of refrigerant at the
evaporator outlet and a very important marker of the
cooling behavior and absorption. It has a direct
effect on the cooling ability, efficiency of the
system and chances of frosting. T qualification T
monitoring T 3 monitoring T superheat Control is
practical with T monitoring T 3 3 monitoring T
intake.

Condenser Temperature (Tc): The condenser
temperature shows the level of heat rejection of the
system, which is highly dependent on ambient
conditions and the mass movement rate. High
temperatures of the condenser augment compressor
labor and decrease efficiency of the system. On-
Line control of T 8 ensures adaptive control of a
condenser fan and prompt identification of foulages
or airflow obstructions.

Suction Pressure (Ps): The operating conditions of
the compressor inlet are measured by suction
pressure that is effectively associated with the
evaporator temperature. It is a very important
variable in ascertaining refrigerant evaporation
properties and compressor loading. The abnormal
values of suction pressure can depict the presence of
refrigerant undercharge, blockage of the evaporator,
or malfunction of the expansion valve.

Discharge Pressure (Pd): Discharge pressure is
the high pressure end of the refrigeration cycle that
has a direct impact on compressor power
consumption and system reliability. High pressure
can create safety and mechanical stress especially in
low GWP refrigerants like CO 2 that run at high
pressure. Constant measures allow the enforcement
of pressure limits and safe working.

Compressor Speed (N): One of the control
variables in inverter-driven HVAC systems is
compressor speed. It reflects on mass flow rate of
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refrigerant and the capacity of cooling. The system
will be intimately controlled in terms of compressor
speed adjustments to real time load requirements,
thus, enhancing energy efficiency and minimizing
cycling associated losses.

Refrigerant Mass Flow Rate (rh): The rate of heat
transfer in the evaporator and in the condenser is
dictated by the refrigerant mass flow rate. It directly
with effect on cooling capacity, system stability and
coefficient of performance (COP). Performance
modeling, fault diagnosis and optimisation of
refrigerant charge require accurate measurement or
estimation of m.

Power Consumption (P): Power consumption is
the electrical energy requirement to the HVAC
system and it is mainly due to the compressor, fans
and other peripheral units. It is the key parameter of
system energy efficiency and cost of operation. Real
time optimization of power and demand control is
possible through constant power surveillance.
Ambient Temperature (T,): The temperature of
the environment is indicative of the external
environmental state around the HVAC system and
has a significant impact on the performance of the
condenser and the system in general. Tomic
variations affect the heat rejection capacity of a
system and the pressure level in the system.
Ambient temperature in Al models increases
prediction control and adaptive control.

3.3. Feature Engineering

The raw sensor data is converted into significant
performance measures using feature engineering that directly
improves the predictive performance and control efficiency
of the Al models. [15-17] The chosen characteristics
describe  the thermodynamic  characteristic, energy
efficiency, and conditions of the HVAC system in low-GWP
refrigerant operating conditions.
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Superheat: Superheat is described as the
temperature difference between the refrigerant
vapor, that exists at the outlet of evaporator and its
saturation temperature at the respective suction
pressure. It is an important parameter in making
sure that all the refrigerant is vaporized before it
goes to the compressor, thus avoiding slugging of
liqguid and also enhancing the reliability of the
system. Electronic expansion valves are also
controlled using superheat as a control variable.
Subcooling: Subcooling is a difference in
temperature existing between the saturated liquid
refrigerant at the condenser pressure and the actual
temperature of the liquid at the condenser outlet.
Subcooling is necessary and provides stable supply
of liquid to the expansion device, and increases
capacity of the system. The lack of subcooling can
signify undercharging of refrigerant or lack of
efficiency of the condenser.

Coefficient of Performance (COP): One of the
major indicators of the efficiency of HVAC system
is its coefficient of performance, the measure of
cooling capacity to the required electrical power
input. COP is the measure of the efficiency of the
system to convert electrical energy to cooling
output. It is a major optimization goal of Al-
controlled strategies.

Exergy Efficiency: Exergy efficiency is a measure
that perceives the quality of energy use considering
irreversibilities in  system elements like the
compressors, the heat exchangers and the expansion
devices. However, unlike COP, exergy efficiency
does not only capture thermodynamic losses
associated with the generation of entropy, but also
gives a more profound understanding of the system
performance  degradation and  improvement
potential.

Load Ratio: Ratio of actual cooling demand to the
rated system capacity is referred to as the load ratio.
It embodies the experience of part-load operation,
which prevails in the HVAC operation in the real
world. Simulation of system behavior under
different load ratios will allow the Al controller to
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optimize compressor speed and airflow rate and
refrigerant flow under dynamic demand profiles.
Ambient Influence Factor: The factor of ambient
influence is used to measure the effect of the
outdoor environmental conditions, mainly the
temperature and humidity of the ambient air on the
performance of the system. It describes response to
external conditions of heat rejection to condenser
pressure, compressor load, and totality. Making
such an addition enhances the strength of models
during climatic and seasonal changes.

3.5. Reinforcement Learning Control

The presented control plan is rooted in a reinforcement
learning (RL) model that allows the HVAC system to
acquire optimal working policies in the course of the
interaction with the surrounding. The RL agent can perceive
the real-time operating conditions of the system, choose
suitable control decisions, and gets a feedback in the form of
a reward signal which reports the performance of the system,
energy efficiency and environmental impact. The state space
is an expression of the visible current state of the HVAC
system and is a bundle of the most important thermodynamic
and environmental quantities, such as the evaporator
temperature, condenser temperature, suction pressure,
discharge pressure, compressor speed, and ambient
temperature. These parameters give a full description of the
refrigeration cycle and external conditions of the heat
rejection. The inclusion of ambient conditions and internal
system states helps the agent to learn adaptive policies which
react well to changes in cooling loads, weather conditions as
well as system dynamics. Action space determines the
number of control variables that the RL agent is able to
control in order to affect system performance. These involve
adjustments in compressor speed, alteration of refrigerant
mass flow rate, and alteration in the rate of airflow across the
heat exchangers.

Adjusting the compressor permits the system to adjust
cooling capacity with instantaneous demand as well as
control of refrigerant mass flow to maintain constant
temperature of the evaporations process and condensation.
The ability to control airflow through the evaporator and the
condenser increases the effectiveness of the heat transfer and
provides the ability to control the pressure and temperature.
The combination of these control actions offers enough
flexibility such that the agent is able to maximize the
operation of the system under a broad variety of load and
environmental conditions. The reward function will
determine the learning process because it quantitatively
measures the quality of each control action. It is
characterized as a weighted average of system coefficient of
performance, energy consumption and refrigerant related
emissions. The reward depends on the higher coefficient of
performance which indicates optimal use of energy, and
reduces with the increased consumptions of energy and
environmental effects. The weighting factors offset the trade-
off between the target of the efficiency, the target of the
operational cost, and the target of the sustainability. Through
maximizing long-term cumulative reward, the RL agent will
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obtain an optimal control policy that leads to high levels of
energy efficiency, emissions cut, and reliable functioning of
the low-GWP refrigerant HVAC system.

3.6. Predictive Maintenance Model

The suggested predictive maintenance architecture
utilizes a long short-term memory (LSTM) neural network to
predict the remaining useful life (RUL) of key elements in
the HVAC system, especially the compressor and
mechanical and electrical sub-system concerned. [18,19]
Remaining useful life is the estimated time a component is
supposed to be in use with the possibility of operation
without failure and performance loss before it happens to an
acceptable level. RUL prediction allows predicting their
exact condition in order to perform condition-focused
maintenance, to minimize unplanned downtime and to
enhance the reliability of their systems, and to decrease their
maintenance expenditures. The RUL model is composed as a
non-linear model based on various variables of
thermodynamic, mechanical, and electrical conditions of the
conditions such as evaporator temperature, condensers
temperature, suction pressure, discharge pressure, the level
of vibration, and amount of electrical current consumed by
the compressor. All the aforementioned parameters reflect
the thermal, the mechanical health condition, and electrical
operating state of the system. The temperatures of evaporator
and condenser reveal the effectiveness of heat transfer and
stability of refrigerant cycle, whereas the suction and
discharge pressure define the loading of compressor and
balance of the system. Deviation Ratios Abnormal pressure
ratios frequently indicate deviation in the form of a leak of
refrigerant, fouling, or malfunctioning of a valve.

The mechanical wear, bearing degradation, rotor
imbalance, and misalignment are prevalent upkeep
antecedents of compressor malfunction, and the vibration
signals are used to get a first-hand glimpse on these.
Electrical current is used to signify the health of the motor
and mechanical resistance and abnormal gains indicating
wear and tear of insulation and electrical malfunctions that
are likely to occur. LSTM network is especially applicable in
making the prediction of RUL because it can be used to
capture the long-term temporal dependencies and
degradation patterns of sequential sensor data. Unlike the
traditional regressive frameworks, LSTM is able to acquire
the intricate non-linear connections amid the past operation
trend and present degradation conduct. This is because the
model gets trained on historical run-to-failure data, as well as
labeled maintenance records, allowing it to learn how
maintenance issues cannot develop with time. In real-time
mode the trained LSTM model computes and delivers an
updated value of the remaining useful life as streaming
sensor sensory data pass through it. Such a prediction is
capable of scheduling maintenance activities in advance
before a disastrous failure. With a combination of predictive
maintenance and Al-controlled control, the HVAC system is
an ideal solution in situations with low-GWP refrigerants and
where it is necessary to work at a high pressure and variable
loads, which is the case with such systems.
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4. Results and Discussion
4.1. Performance Prediction Accuracy

Three popular machine learning models are used in the
evaluation of the performance prediction ability of the
proposed Al-based framework, which are artificial neural
networks (ANN), XGBoost, and long short-term memory
(LSTM) networks. Two standard regression measures are
used to evaluate the accuracy of a model: root mean square
error (RMSE) and coefficient of determination (R 2). RMSE
defines the mean size of prediction error whereas R 2 defines
how well the predicted values predict the variability in the
actual system performance.
Artificial Neural Network (ANN): ANN model
shows the RMSE and R2 of 0.29 and 0.92
respectively, which translate to the fact that it is a
strong predictor of the performance of the HVAC
system. The value of RMSE is relatively low, which
indicates the possibility of the model to include the

nonlinear association among the operating
circumstances and system  efficiency  with
reasonable precision. Nonetheless, ANN as a

feedforward architecture is only limited to the
modeling of temporal dependencies, and therefore,
its performance in high load and ambient conditions
of extreme dynamism can be impaired.

XGBoost: XGBoost model exhibits a higher
prediction performance of RMSE = 0.18 and R 2=
0.97. The ensemble nature of its architecture allows
it to discover nonlinear interactions between
variables in a system, and uses the noisy sensor
data. The small RMSE value implies that the
prediction error is much less than ANN one and the
large value of R 2 attests to great goodness-of-fit.
XGBoost especially is quite appropriate in the
performance modeling of systems with a non-
homogenous operating regime.

Long Short-Term Memory (LSTM): It also has
the best accuracy in prediction with the RMSE of
0.15 and R 2 equal to 0.98 which is the LSTM
model. This is best exemplified by the fact that it
can get long-term temporal features, as well as
system dynamics using a series of sensor data. The
low RMSE error is an indication of very accurate
predictions whereas the R2 approach of almost one
shows that the model accounts to nearly all the
variation in the system performance. Consequently,
LSTM can be effectively applied in real-time
performance prediction in dynamic HVAC setting
with low-GWP refrigerants.

4.2. Energy Optimization Results

The applicability of the suggested reinforcement
learning (RL)-based control strategy is developed by
conducting a comparative analysis with traditional
proportionalintegralderivative (PID) control and fuzzy logic
control. The analysis is compared using two crucial
performance indicators such as daily energy usage in
kilowatt-hours per day and the coefficient of performance
(COP) is used to mirror the overall energy efficiency of the
HVAC system. The findings do indicate the better
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performance of the RL-based controller both in the saving of
energy and system efficiency. The typical PID controller
finds the peak of energy consumption to be 1120 kilowatt-
hours per day and COP is equal to 3.1. Despite these
strengths, the simplicity and strength of PID control in a
commercial HVAC system, it is based upon fixed tuning
parameters and is not responsive to various operating
scenarios that may alter (boundless cooling loads, ambient
temperature variation and nonlinear refrigerant behaviour)
unlike adaptive control methods. This has the effect of
causing suboptimal operation, excessive cycling of
compressors and consumes more energy. Fuzzy logic
controller demonstrates a better performance with the total
energy consumption amounting to 980 kilowatt-hours a day
and COP of 3.5.

Through the input of the expert knowledge and the
heuristic rules, fuzzy control offers a greater amount of
flexibility to the nonlinear dynamics of the system, as well
as, changing load conditions. Nonetheless, the fuzzy
controllers, due to their rule based character, cannot
continually learn and optimize control policies in extremely
dynamic contexts, especially to operate in the cases of low-
GWP refrigerants which have an intricate set of
thermodynamic properties. The controller made by the RL
model performs optimally, consuming much less energy of
870 kilowatt-hours/day and a high COP of 4.1. This is a
saving of almost 22 percent of the energy saved compared to
PID control and 11 percent of the energy saved compared
with fuzzy control. The high effectiveness is explained by
the fact that the RL agent will be able to learn optimal
control strategies due to continuous interactions with the
system and the environment. Through a dynamic response to
real-time operating conditions with compressor speed,
refrigerant mass flow rate and airflow adjustment, the RL
controller can reduce unwarranted use of energy, yet
maintain thermal comfort and safety limits. These findings
corroborate the fact that reinforcement learning is an
attractive tool of adaptive HVAC control, which allows
achieving significant energy savings, operational cost
savings and environmental sustainability, especially with
respect to low-GWP refrigerant-based systems.

4.3. Refrigerant Performance Comparison

An analysis of comparative performance is done to
determine the energy efficiency, thermodynamic and
environmental impact of various refrigerants in the HVAC
system. The refrigerants in question are the traditional high-
GWP refrigerant R410A and three lower-GWP options, i.e.
R1234yf, R290 (propane), and carbon dioxide (CO 2). The
test will be evaluated on three major indicators such as daily
energy wastage in kilowatt-hours, coefficient of performance
(COP), and carbon dioxide equivalent wastage.The system
currently in use (R410A) has its daily energy usage of 1050
kilowatt-hours at a COP of 3.4 and a total of 1450 kilograms
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of CO 2 equivalent emissions. Such findings are indicative of
fairly high environmental impact of R410A as it has a big
global warming potential and average thermodynamic
efficiency. Despite the fact that R410A has been popular in
the commercial HVAC systems because of the stability and
compatibility with the existing equipment, it has a not so
good environmental impact, and its use is limited by the
regulations, which makes it less sustainable in the future.
The R1234yf HFO refrigerant is much better in terms of
environmental and energy performance. R1234yf-operated
system consumes 910 kilowatt-hours per day and in terms of
COP, the system is valid with a COP of 3.9, which is a
significant improvement compared to R410A. More to the
point, its emissions are lowered to a minimum of 90
kilograms of CO 2 equivalent due to its ultra-low GWP.

These features render R1234yf as a clear-cut contender
in replacement of traditional HFC refrigerant in medium
capacity systems of HVAC. R290 has the highest overall
thermodynamic performance and has lowest energy
consumption of 870 kilowatt-hours per day and highest COP
of 4.1. Moreover, its emissions are restricted to 75 kilograms
of CO 2 equivalent, which is its insignificant GWP. R290
has a high efficiency due to its good heat transfer property
and good thermophysical properties. Nevertheless, its
flammability implies that only special care and observation
of international standards could be used. The CO 2 system
exhibits competitive energy performance of 920 kilowatt-
hours of energy per day and a COP of 3.8. It also has least
emissions of all the refrigerants standing at 20 kilograms of
CO 2 equivalent only. Even though CO 2 operates on
extremely high pressures, it has excellent environmental
advantages and long-term sustainability potential. All in all,
the findings indicate that the refrigerants with low-GWP
capabilities are by a far more energy efficient and
ecologically friendly than the traditional refrigerants,
especially when used together with the Al-oriented methods
of optimization.

4.4. Fault Detection Performance

Three general and serious faults of the HVAC system
that the proposed Al-monitors are assessed to detect are
refrigerant leakage, compressor fault, and heat exchanger
foulage. The main measure of evaluation is detection
accuracy which is the percentage of correctly identified fault
events. The findings prove that the framework of fault
detection is very reliable and strong.

Table 1: Fault Detection Performance

Fault Type Detection Accuracy
Refrigerant leakage 98.40%
Compressor failure 97.10%

Heat exchanger fouling 96.30%
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Fig 5: Fault Detection Performance

Refrigerant Leakage: The refrigerant leakage
detector model has a detection efficiency of 98.4
percent which can be considered as great sensitivity
to non-standard system operation linked with loss of
refrigerant charge. Ventilation leakage of the
refrigerant is normally caused leading to low
suction pressure, high superheat, low cooling
capacity, and high workload of the compressor. The
Al model is able to identify minor changes in
normal operating conditions that are hard to notice
at an initial stage by constantly monitoring pressure,
temperature, and mass flow trends. The early
leakage indication does not only help in eliminating
the serious performance degradation but also
contributes to lessening the environmental emission
and safety hazard in the case of flammable low-
GWP refrigerants like R290.

Compressor Failure: The detection system of
compressor failures has a high detection rate of 97.1
percent indicating that it is effective in detecting
electrical faults as well as mechanical ones.
Abnormal vibration signature, high discharge
pressure, disproportional current draw as well as
high power consumption usually lead to compressor
failures. The diagnostic model is based on Al and
combines  thermodynamic, electrical, and
mechanical status readings to be able to effectively
differentiate between normal transient conditions
and actual fault ones. This will be detected early to
facilitate timely maintenance supply to prevent
catastrophic failure to extend life of the compressor.
Heat Exchanger Fouling: The heat exchanger
fouling detect model has an accuracy level of 96.3
percent. The resulting fouling due to dust or
corrosion or biological growth results in heat
transfer impairment and concentration at greater
condenser temperatures, higher pressure ratios and
higher energy usage. The Al model is an
identification of the fouling through a comparison
of long-term trends in the degradation of the heat
transfer effectiveness and system efficiency. The
early detection of fouling can be used to clean and
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maintain the system prior to its failure, which will
restore the usual system performance and eliminate
the unnecessary wastage of energy.

4.5. Discussion

The results of the experiment and simulation conducted
evidently show that combining machine learning-based
control plans with low-GWP refrigerant HVAC systems
have tremendous benefits. These findings indicate that
intelligent-based data-driven optimization can significantly
increase efficiency, reliability of the operations, and
environmental friendliness of the systems in comparison to
the traditional methods of control and high GWI of
refrigerant technologies. Among the best results is increase
in the coefficient of performance by up to 32 percent on
adoption of advanced Al-based control strategies. This is
done by constantly changing the compressor speed, mass
flow rate of refrigerant and airflow rate in the reaction to
real-time change in loads and ambient conditions. The
reinforcement learning controller in comparison to traditional
PID or rule-based controllers never stops learning about the
system and its responses, and in the process optimizes its
control policy to guide the system towards working in a
given set of operating conditions with maximum efficiency.
Consequently, the system has been largely efficient even
when operated in a partial load and varying outdoor
temperatures, which are the most prevalent operating
conditions in the practical HVAC practices. It is important to
note that the proposed framework also leads to a cutdown in
energy used on a daily capacity of not less than 20 to 25
percent of the conventional control techniques. This
decreases directly into the lessening of operational expenses
and the minimization of the strain on an electrical
infrastructure.

This saves further the energy by low-GDP type of
refrigerants like R1234yf, R290 and CO2 which have
attractive thermophysical features and better heat transfer
properties when appropriately optimized. The intelligent
predictive maintenance and fault detection modules also
allow earlier detection of refrigerant leakage, compressor
wear and tear, and heat exchanger fouling in addition to
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efficient energy use. Avoidance of catastrophic failures,
minimization of unplanned downtimes and increasing the life
of equipment is achieved due to early fault finding. It is also
an effective proactive maintenance approach in low-GWP
refrigerants such as low flammability and elevated
operational pressures which demand a very high degree of
operational reliability. The sum total of the energy
optimization and transition to the refrigerant has the net
effect of cutting carbon footprint by over 90 percent in
comparison to conventional systems based on R410A. The
reduction in the global emission rates is dramatic because of
the reduction in electricity usage and the fact that the global
warming potential of the chosen refrigerants is practically
zero. The general findings of the paper support the claim that
reinforcement learning-based adaptive control combined
with real-time sensing and cloud analytics gives an effective
solution to next-generation sustainable HVAC systems.

5. Conclusion

In this paper, a comprehensive research on the use of
machine learning to optimize HVAC-based systems that use
low global warming potential (GWP) refrigerants is
provided. A framework that combines real time data
collection, predictive analytics, control by means of
reinforcement learning, and intelligent fault diagnosis is
designed as an inseparable Al-driven system that will
increase system efficiency, reliability, and environmental
sustainability. The suggested architecture shows how the
development of new digital technologies will convert
traditional HVAC infrastructure into smart, flexible, and
efficient energy infrastructure that is friendly to the
environment. The findings indicate beyond the reasonable
doubt that machine learning can be employed to perform
intelligent refrigerant-specific optimization by training the
individual  thermodynamics behavior and operating
properties of low-GWP refrigerants, including R1234yf,
R290, and CO 2. The reinforcement learning controller is
also unlike the traditional controller which depends on fixed
parameters of tuning, dynamism of the load variations, the
ambient conditions and the properties of the refrigerant such
that it behaves in an optimal way over a broad ranges of
operating regimes. This adaptive control ability is real time
and results into a high level of improvement in the
coefficient of performance and also a considerable amount of
reduction in energy consumption. Besides, predictive
maintenance models are integrated on the basis of long short-
term memory networks to provide an opportunity of
detecting the degradation of components and faults of a
system in advance. This pro-active form of maintenance is
better in boosting the availability of the system and
minimizing operational risks and increasing the life of
equipment which is particularly crucial in the case of low-
GWP refrigerants that may be run in high pressure or possess
flamming limitations. The smart fault detection system also
reduces operational safety and dependability.
Environmentally, energy optimization plus the application of
climate-friendly refrigerants will lead to a steep cut in the
emission of greenhouse gases. The results show that Al-
controlled HVAC systems could minimize the total carbon
footprint more than 90 percent when compared to traditional
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high-GWP refrigerant systems, contributing to the global
decarbonization and sustainability. This move to consider
climate-friendly refrigerants thus necessitates not only a
higher level of thermodynamic design but also smart
digitalization of HVAC systems. Autonomous, self-
optimising and carbon-neutral Future HVAC infrastructure It
is going to be autonomous, self-optimising and carbon-
neutral. The narrative of the next generation of the study will
include the introduction of digital twin platforms to simulate
the real-time functioning of the system, deploying edge Al to
control the system with the highest level of ultra-low-
latency, performing federated learning to optimize operations
in multi-buildings and reinforcing cybersecurity as the keys
to safe and reliable operation of intelligent HVAC networks.
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