International Journal of Artificial Intelligence, Data Science, and Machine Learning
Grace Horizon Publication | Volume 7, Issue 1, 111-115, 2026
ISSN: 3050-9262 | https://doi.org/10.63282/3050-9262.1JAIDSML-V711P120

Original Article

Al-Assisted Forecasting and Capacity Planning in Multi-
Tenant Environments

Nikhita Kataria
Manager, Software Engineering.
Received On: 28/12/2025 Revised On: 30/01/2026 Accepted On: 02/02/2026 Published On: 04/02/2026
Abstract - Capacity planning and infrastructure automation are still some of the hardest problems in modern
distributed systems, with a direct impact on overall costs. However, they are often underestimated, especially as
hardware keeps improving and each CPU core becomes faster over time. As infrastructure scales in size and
complexity, historical statistics and operational models based on historical data fail to provide reliable forecasting
metrics and cost projections. Building on prior research that examines operational ownership, infrastructure
reliability, and deployment correctness, this paper investigates the application of Artificial Intelligence (Al) to
capacity planning and Infrastructure as Code (laC). We demonstrate how learning-based optimization, predictive
analysis and automation can improve planning accuracy, reduce operational toil, and help achieving reliability and
efficiency objectives. The paper positions Al not as a replacement for capacity management systems but presents a
force multiplier to ensure the accuracy of such pieces of software is high ensuring forecasts and reality do not differ
by a large amount.

Keywords - Artificial Intelligence, Capacity Planning, Infrastructure as Code, Site Reliability Engineering, Machine

Learning, Reliability Engineering.

1. Introduction

Modern infrastructure management has shifted over time
where it no longer entails managing individual servers only,
it also requires positioning of the hardware according to the
services that are running in the system and is very much
aware of the software parameters as well. One of the most
modern orchestration engines that exemplifies this is
Kubernetes where large Al platforms, compute, storage,
GPUs, networking infrastructure are all pooled together with
some logical constraints however still shared across
organizations. In such setup, infrastructure being correct
and performance is not just about if resources were created
successfully, it mostly is focused on if systems is highly
available, capable of performing consistently and keeps
working the same as changes happen i.e. is reliable. This
requirement emerges from the fact that in modern distributed
systems, changes are constant with new workloads,
upgrades, scaling events, failures, downtimes happening all
the time and older mechanisms to predict capacity
requirements with buffers calculated on the basis of organic
growth are no longer applicable and any misses are slower as
capacity backfill is a long supply chain process. Modern
approaches to capacity require understanding of how
workloads pack together, configurations of GPU’s such as
shared or dedicated or split, isolation strategies, requirements
of confidentiality etc. With this approach to manging
infrastructure via code has also evolved as it does not only
look at provisioning machines and focusses on understanding
cluster layout, device parameters, stacking rules and how
platform evolves over time. Al helps by constantly learning
from these systems, simulating behaviors based on known

constraints, pro-actively take actions on predicted failures
and adjust ahead of time avoiding potential service
downtimes. The goal of this paper is not to replace human
judgement, but to understand the context and constraints
better and apply the same consistently at scale.

2. Background and Motivation

Often capacity planning is treated as a cost-optimization
strategy to improve overall efficiency. However, in practice
it ties closely to the reliability of services running on the
actual hardware. Insufficient capacity manifests itself as
latency regressions, deployment failures, on-call fatigue,
delayed scale ups and recover of applications during
unavoidable mass failures leading to cascading impact. Prior
research on on-call ownership highlights how poor capacity
planning also increases cognitive load during incidents.
Infrastructure as a code has now matured from just being a
provisioning mechanism to a primary control plane for
allocations of hardware in the right way. Current work on
infrastructure deployment workflows demonstrates that
misconfigurations on hardware level are a dominant cause of
outages in some cases. Static laC definitions lack situational
awareness and motivation of using Al into capacity planning
stems for the fact that we want it to be environment aware
and operate at scale. As infrastructure complexity grows,
operational intent must be encoded in systems capable of
learning, adaptation, and continuously improving.

3. Al-Driven Capacity Planning
In Kubernetes based platforms, capacity planning
extends beyond just aggregation of resource utilization and

Nikhita Kataria / IJAIDSML, 7(1), 111-115, 2026

capacity planning must consider pod placement constraints
which varies depending on the type of workloads and their
latency requirements. Some commonly known constraints
are GPU partitioning, NUMA locality, average utilization
threshold, locality concerns and core scheduler behavior.
Machine learning models trained on Kubernetes native
metrics such as pod churn, pending pods, allocation pressure,
node conditions, application classification provide
significantly higher prediction accuracy that just host level
utilization averages that are historically the only key
parameter that was fed into capacity planning. In GPU
centric deployments like enterprise Al factories forecasting
mechanism help anticipate fragmentation, MIG saturation,
cross tenant contention as well. This further exemplifies that
capacity planning aligns very closely with scheduler realities
rather than theoretical mathematics. Operational failures in
Kubernetes environments often get cascaded due to control
plane failures such as scheduling backlogs, admission
rejections, or degraded daemon sets which require special
capacity planning and disaster recovery strategy than just
application plane.

Learning based anomaly detection with these signals
enables early intervention before a workload is impacted and
hence Al driven optimizations must respect key Kubernetes
primitives of disruption budgets, maintenance windows, and
fault domains. Reinforcement learning approaches can learn
scaling actions that minimize disruption while preserving
service level objectives and reliability goals. Infrastructure as
code defines cloud resources as well as cluster composition
such as node pools, accelerators, CNI configurations, storage
classes, device plugins and security classifications. Al
assisted metadata generation helps express intent at a lower
level to represent isolation boundaries, disruption
requirements, upgrade strategies, security or ACL
dependencies rather than low level resource counts. Large
Kubernetes platforms evolve continuously, and Al models
trained on prior rollouts can estimate disruption risk, helping
operators stage changes through canaries and phased rollouts
which a must have for ephemeral infrastructure where drift
accumulation poses a major reliability risk. Learning based
drift detection transforms laC into a continuously reconciled
contract between desired and actual cluster state.

3. System Architecture

Figure 1 illustrates a proposed system architecture for
Al-driven capacity planning in hyperscale Kubernetes
environments integrating observability, forecasting,
predictive modeling, rules embedding, policy enforcement
and automated laC execution. At the lowest level,
observability layer collects real-time metrics, events and logs
from control plane, node pools, pods and hardware
utilization. Telemetry sources include Prometheus metrics,
event streams and any custom scheduler annotations specific
to the deployment setup. This layer provides the necessary
automation for real time understanding of cluster state,
resource utilization and workload behavior. Next, feature
engineering layer transforms raw telemetry into actionable
signals capturing pending pods, fragmentation, node health
and utilization, maintenance windows, workloads priorities

112

that feed into machine learning models that perform
predictive forecasting and possible optimizations by
simulating these signals.

This enables the system to anticipate resource demand
and recommend scaling actions across CPU, GPU, and
confidential workloads. Key innovation of this architecture is
the inclusion of a rules engine, which acts as a decision gate
between Al recommendations and execution controlled by
human intervention. While predictive model provides
proactive scaling suggestions the rules engine embeds
constraint requirements known to software engineers as well
as validates them while generating recommendations. These
constraints may include isolation requirements for
confidential workloads, GPU MIG partitioning limits,
disruption budgets during rolling upgrades, anti-affinity rules
and cost or budget thresholds.

Observability is built into rules engine as well to flag
any recommendations that violate these rules for human
review after any automated adjustments that can be done
thereby reducing the noise for humans as well. Once
recommendations pass all validations, the next layer of
policy and decision engine generates final instructions for
cluster scaling, pod migration or resource bin packing. These
decision pipe into actual 1aC and automation pipelines via
tools such as Helm, Terraform or any other CI/CD
workloads. This ensures that the desired Al predicted cluster
state is applied reliably to the infrastructure and maintains
consistency across all node pools and workloads The
architecture supports continuous closed-loop feedback and
enabled hyperscale clusters to operate efficiently while
respecting operational constraints which ensures efficient
utilization and strict isolation for sensitive workloads.
Additionally, the system is designed to support federated
learning across multiple clusters allowing predictive models
to generalize insights from one environment to another such
as learning from experiments in a control setup and then
replicating the same in production.

Building on these predictions, the Capacity Gap
Estimation Module computes the delta between forecasted
demand and available capacity. Rather than producing
abstract utilization forecasts this component quantifies
actionable capacity requirements, including the number of
additional CPU and GPU nodes (with MIG profile
awareness). This module incorporates suggested placements
and then makes informed decisions in real time on capacity
needs. Its output represents a precise capacity shortfall or
surplus to enable deterministic planning decisions based on
real time cluster snapshot. In summary, the architecture
provides a hybrid framework that combines Al-driven
foresight with rule-based safety, closed-loop automation, and
declarative enforcement, enabling Kubernetes-based
infrastructure at massive scale to operate predictively, safely,
and efficiently.

Nikhita Kataria / IJAIDSML, 7(1), 111-115, 2026

Observability Layer

« Cluster Metrics » Node Pools

+ Node Pools * Pod Logs & Events

Y

Feature Engineering

* Pod Churn
« Node Health Signals

+ Pending Pods
* GPU Fragmentation

L

Capacity / ML Models]

Rules Engine

=
Eb Policy Validation

i

e Policy & Decision Engine

Forecasting & Optimization

Validated Actions

v

i ” .
HELM laC & GitOps Automation
an]

[R?Terraform &HFH 9o

| Infrastructure Deployment

Fig 1: System Architecture

4. Al-Driven Kubernets Cluster Optimization
The motivation behind Al driven capacity planning is to
directly enable Kubernetes cluster optimization by strongly
aligning resource supply with scheduler behavior and
workload dynamics. This is a missing piece often known to
cause discrepancies between capacity planned and capacity
needed as schedulers are often not fed information on
hardware capabilities and vice versa achieving the following
goals:
1. Scheduler Aware Capacity Planning: historically
cluster sizing has often led to stranded capacity
either due to bin packing inefficiencies,
conservative disruption budgets or constraints that
cannot be avoided due to company policies. Al
based forecasting attempts to model scheduler
signals to recommend optimal node pool sizes and
shapes. This approach helps in reduced scale up
latency during demand spikes.
Predictive Right Sizing of Node Pools: By
combining Al forecasting for workload mix and
growth forecasting Al models enable proactive right
sizing of the node pools as well as get ability to
predict what happens when new capacity is added
and if the overall cluster efficiency is improved or
degraded. Instead of uniformly scaling the clusters,
this system can selectively scale specific pools and
target applications of same nature (memory bound,
latency bound or compute bound) accordingly
resulting in reduced cost while preserving isolation.
Maintenance Aware Optimization: Al driven
planning incorporates maintenance schedules,
disruption budgets, and fault domain constraints.
This allows specific clusters to maintain appropriate
headroom to sustain any maintenance operations
without causing service level degradation.

113

5. Confidential Workload Constraints

Not all workloads in a multi-tenant environment can be
considered fungible or safe to co-locate with other
workloads. Applications processing highly confidential
information require strict isolation guarantees to comply with
confidentiality or data access requirements. Examples
include proprietary models, financial workloads or inference
services processing users’ private information. In such
scenarios, traditional bin packing or capacity assumptions do
not hold valid. Al driven capacity planning needs to
incorporate such non stackable constraints such as pods
cannot share nodes with other tenants, GPU partitioning is
restricted, fault domain and security isolation requirements
need to be met over utilization efficiency. Al models adapt
to these constraints very effectively as these can be easily
modeled during simulations and validated. Forecasting
recommendations then focus on exclusive capacity demand
per workload classification and preserve higher headroom to
maintain security requirements. This shifts capacity planning
objectives from maximum isolation to predictable isolation
and cost efficiency is balanced against compliance risk. In
this paper we assume that such workloads receive dedicated,
forecast backed capacity while benefiting from predictive
scaling and maintenance-aware planning.

6. Experimental Evaluation

In this paper we target evaluation of proposed system
architecture in a Kubernetes deployment of 100,000 nodes
and behavior under extreme load. The simulation accounts
for API server rate limits, controller throughputs and etcd
performance characteristics. GPU nodes are modeled with
MIG partitioning and cross-tenant allocation logic.
Confidential workloads are simulated via strict node
isolation and mandatory anti affinity policies. Analysis is
conducted by simulating pod arrival rates, replication
requirements, and bursty workloads. Across all scenarios, the
Al driven model is observed to maintain robust performance
and reactive scaling is observed to have significant
degradation under sudden workload spikes. These results
demonstrate that predictive capacity planning is essential to
maintain a highly scalable setup.

6.1. Simulation Setup

To get realistic results that are applicable directly in the
software industry we model real-world large-scale
deployments by simulating a data center with 100,000 nodes
comprised of 60,000 CPU only nodes, 30,000 GPU nodes
and 10,000 dedicated nodes for confidential workloads
spread across multiple Kubernetes clusters which are further
divided into multiple node pools reflecting this composition.
Workloads running in these pools are comprised of CPU
intensive pods with 3 replicas each, GPU heavy ML jobs
with 2 replicas and MIG-aware allocation, and confidential
applications requiring 1 replica and strict isolation. Pod
placement constraints, fault domain isolation, multi-tenant
separation are also modeled to emulate realistic scheduling at
scale. Metrics, events and logs from these simulated clusters
feeds into feature engineering pipeline producing required
signals for predictive Al models and rules-based validation
enabling policy compliant recommendations.

Nikhita Kataria / IJAIDSML, 7(1), 111-115, 2026

6.2. Methodology

As per the described architecture, time series forecasting
using LSTM models estimated pod demand across different
node pools in the clusters and reinforcement learning
recommends scaling actions for allocation of nodes and pool
resizes based on the simulated traffic patterns. Rules
engineer accurately validated the recommendations and
violations were adjusted in real time automatically or quickly
escalated for human review. We evaluate 3 strategies in the
experimental setup: static provisioning with conservative
fixed buffers and manual allocation of nodes, reactive auto-
scaling which triggers scale ups based on utilization and Al
driven predictive planning via validations done by the rules
engine. Key metrics include total utilization, scheduling
latency, pending pods, fragmentation, SLA and rules
violations.

6.3. Simulation Results

Table I. captures the results across different workloads,
and we observe that with Al driven approach pending pods
decreased dramatically, GPU fragmentation dropped by 30%
and average node utilization improved by 22% compared to
static provisioning. These reductions are observed with
confidential workloads still maintaining strict isolation. The
rules engine blocked close to 300 unsafe Al suggested
actions thereby automatically preventing SLA violations or
policy breaches that could have occurred at the expense of
minor reductions in utilization.

Table 1: Simulation Results Summary

Metric Static Reactive Proposed
Provisioni | Autoscalin | Architectur
ng g e
CPU Node 50% 62% 72%
Utilization
GPU Node 48% 60% 78%
Utilization
Confidential 80% 80% 91%
Node
Utilization
Pending Pods 12,500 6,000 1,800
GPU High Medium Low
Fragmentation
SLA 4,000 2,100 500
Violations
Rule 0 N/A ~320
Violations

7. Challenges and Limitations

While software industry is moving heavily use of Al, Al
based capacity planning also poses several challenges that
must be addressed:

Data Volume and Velocity: Processing metrics,
events and logs at scale and in real time introduces
fast streaming requirements and heavy use of
storage. This requires investment in state-of-the-art
solutions using model training to preprocess and
infer signals on the fly to ensure timely decisions.

114

Generalized solutions: Predictive models that are
trained on one cluster with a certain workload
pattern may need to be re-trained on other clusters if
there is a lot of heterogeneity in clusters. Often, in
such cases companies move towards creating
homogenous clusters that can be operated with
some predictability.

Security and Confidentiality: Deployment of
workloads with strict confidentiality requirements
limits bin packing and effective use of hardware and
creates overhead to ensure resource isolation.
Building Trust on Al decisions: Al decisions can be
difficult to interpret specially in incident situations
where reliable recovery takes most importance, and
every predicted decision needs to be critically
explained and understood. This is tackled by
associating a confidence score on the predicted
actions.

Seamless integration: Often outputs of prediction
models do not directly tie into CI/CD pipeline
actions and need to be translated which introduces
one more layer of delay and operational complexity.

8. Threats to Validity

Experiments conducted in this paper are subject to a few
threats to validity. As the evaluation relies on simulated
environments, they do not incorporate real-world dynamics
such as unexpected network downtime, operator
interventions, unexpected scheduler behaviors, unexpected
workload behaviors etc. The logs and events used to train
and evaluate may not exactly represent various scenarios that
may happen in a production environment. Generalization of
models is also limited with forecasting and validations done
one set of workloads that may under perform in new cluster
topologies. Emergency overrides, policy changes and human
decisions can alter the effectiveness of results seen in the
experiments however can be easily modeled. Additionally,
multi cluster interactions and heterogeneity of infrastructure
may impact the results and must be considered while
interpreting the experimental results.

9. Future considerations

With Al advancements happening at a speedy rate, future
research has potential to expand Al driven capacity planning
and laC in multiple directions such as:

Multi-agent re-enforcement learning can be used to
manage heterogeneous node pools which
dynamically adjust resources while respecting
necessary constraints

Understanding impact and effect of resource
allocation and workload performance with
predictive models can improve reliability and
reduce operational risk.

Models can be trained across multiple clusters with
varying deployment patterns to further improve
prediction accuracy and support multi-cloud
orchestration.

Nikhita Kataria / IJAIDSML, 7(1), 111-115, 2026

Integrating Al with chaos testing frameworks can
help preemptively identify weak points in overall
scheduling strategy.

Developing models and visualization tools that
allow SRE teams to understand the
recommendations is crucial for adoption of solution
proposed in production environments.

10. Conclusion

Enterprise platforms backed by Kubernetes constantly
demand capacity planning and infrastructure automation.
Static buffers baked into capacity planning cannot keep up
with complexities introduced by schedulers operating in a
continuously ~ changing heterogenous environment.
Integrating Al tooling, basing scaling decisions on real time
telemetry and adapting Infrastructure as Code to apply such
decisions can allow organizations to encode operational
learning directly into the platform. Al driven forecasting
enables infrastructure to evolve safely, scale predictably, and
maintain reliability over time. Architecture proposed in this
study does not replace operator expertise and rather allows
them to amplify it to operate Kubernetes platforms at scale in
a pro-active manner.

References

[1] Google SRE Team, Site Reliability Engineering,
O’Reilly Media, 2016.

B. Burns et al., Designing Distributed Systems, O’Reilly
Media, 2018.

D. G. Feitelson, Workload Modeling for Computer
Systems Performance Evaluation, Cambridge University
Press, 2019.

M. Isard et al.,, “Autopilot: Automatic Data Center
Management,” OSDI, 2017.

A. Verma et al., “Large-scale Cluster Management at
Google with Borg,” OSDI, 2015.

(2]
(3]

(4]
(5]

115

[6] M. Schwarzkopf et al, “Omega: Flexible, Scalable
Scheduler for Large Clusters,” SOSP, 2013.

[71 NVIDIA, “GPU Operator for Kubernetes,” Technical
Documentation, 2023.

[8] A. Gupta et al., “etcd: A Distributed, Reliable Key-Value

Store for the Most Critical Data of a Distributed System,”

Cloud Native Computing Foundation, 2016.

C. McClurg et al., “Rules Engines for Cloud Automation:

Ensuring Policy Compliance in Al-Driven Systems,”

Journal of Cloud Computing, vol. 12, 2022.

[10] H. Lim et al., “Enhancing GPU Utilization in Multi-
Tenant Kubernetes Clusters,” SC Conference, 2021.

[11] P. Bodik et al., “Resource Management in Multi-Tenant
Cloud Clusters: Lessons from Hyperscale Deployments,”
SoCC, 2012.

[12] F. Pedregosa et al., “Scikit-learn: Machine Learning in
Python,” Journal of Machine Learning Research, vol. 12,
pp. 2825-2830, 2011.

[13] . Goodfellow, Y. Bengio, and A. Courville, Deep
Learning, MIT Press, 2016.

[14] S. Hochreiter and J. Schmidhuber, “Long Short-Term
Memory,” Neural Computation, vol. 9, no. 8, pp. 1735—
1780, 1997.

[15] R. S. Sutton and A. G. Barto, Reinforcement Learning:
An Introduction, 2nd Edition, MIT Press, 2018.

[16] C. Re et al., “Machine Learning for Systems: Review and
Opportunities,” HotCloud, 2018.

[17] J. Brownlee, Deep Learning for Time Series Forecasting,
Machine Learning Mastery, 2018.

[18] T. Chen et al.,, “XGBoost: A Scalable Tree Boosting
System,” KDD, 2016.

[19] P. Domingos, “A Few Useful Things to Know about
Machine Learning,” Communications of the ACM, vol.
55, no. 10, pp. 78-87, 2012.

[20] L. Kleinrock, Queueing Systems, Volume 2: Computer
Applications, Wiley, 1976.

(9]

