
 International Journal of Artificial Intelligence, Data Science, and Machine Learning

Grace Horizon Publication | Volume 7, Issue 1, 111-115, 2026

ISSN: 3050-9262 | https://doi.org/10.63282/3050-9262.IJAIDSML-V7I1P120

Original Article

 AI-Assisted Forecasting and Capacity Planning in Multi-

Tenant Environments

Nikhita Kataria

Manager, Software Engineering.

Received On: 28/12/2025 Revised On: 30/01/2026 Accepted On: 02/02/2026 Published On: 04/02/2026

Abstract - Capacity planning and infrastructure automation are still some of the hardest problems in modern

distributed systems, with a direct impact on overall costs. However, they are often underestimated, especially as

hardware keeps improving and each CPU core becomes faster over time. As infrastructure scales in size and

complexity, historical statistics and operational models based on historical data fail to provide reliable forecasting

metrics and cost projections. Building on prior research that examines operational ownership, infrastructure

reliability, and deployment correctness, this paper investigates the application of Artificial Intelligence (AI) to

capacity planning and Infrastructure as Code (IaC). We demonstrate how learning-based optimization, predictive

analysis and automation can improve planning accuracy, reduce operational toil, and help achieving reliability and

efficiency objectives. The paper positions AI not as a replacement for capacity management systems but presents a

force multiplier to ensure the accuracy of such pieces of software is high ensuring forecasts and reality do not differ

by a large amount.

Keywords - Artificial Intelligence, Capacity Planning, Infrastructure as Code, Site Reliability Engineering, Machine

Learning, Reliability Engineering.

1. Introduction
Modern infrastructure management has shifted over time

where it no longer entails managing individual servers only,

it also requires positioning of the hardware according to the

services that are running in the system and is very much

aware of the software parameters as well. One of the most

modern orchestration engines that exemplifies this is

Kubernetes where large AI platforms, compute, storage,

GPUs, networking infrastructure are all pooled together with

some logical constraints however still shared across

organizations. In such setup, infrastructure being correct

and performance is not just about if resources were created

successfully, it mostly is focused on if systems is highly

available, capable of performing consistently and keeps

working the same as changes happen i.e. is reliable. This

requirement emerges from the fact that in modern distributed

systems, changes are constant with new workloads,

upgrades, scaling events, failures, downtimes happening all

the time and older mechanisms to predict capacity

requirements with buffers calculated on the basis of organic

growth are no longer applicable and any misses are slower as

capacity backfill is a long supply chain process. Modern

approaches to capacity require understanding of how

workloads pack together, configurations of GPU’s such as

shared or dedicated or split, isolation strategies, requirements

of confidentiality etc. With this approach to manging

infrastructure via code has also evolved as it does not only

look at provisioning machines and focusses on understanding

cluster layout, device parameters, stacking rules and how

platform evolves over time. AI helps by constantly learning

from these systems, simulating behaviors based on known

constraints, pro-actively take actions on predicted failures

and adjust ahead of time avoiding potential service

downtimes. The goal of this paper is not to replace human

judgement, but to understand the context and constraints

better and apply the same consistently at scale.

2. Background and Motivation
Often capacity planning is treated as a cost-optimization

strategy to improve overall efficiency. However, in practice

it ties closely to the reliability of services running on the

actual hardware. Insufficient capacity manifests itself as

latency regressions, deployment failures, on-call fatigue,

delayed scale ups and recover of applications during

unavoidable mass failures leading to cascading impact. Prior

research on on-call ownership highlights how poor capacity

planning also increases cognitive load during incidents.

Infrastructure as a code has now matured from just being a

provisioning mechanism to a primary control plane for

allocations of hardware in the right way. Current work on

infrastructure deployment workflows demonstrates that

misconfigurations on hardware level are a dominant cause of

outages in some cases. Static IaC definitions lack situational

awareness and motivation of using AI into capacity planning

stems for the fact that we want it to be environment aware

and operate at scale. As infrastructure complexity grows,

operational intent must be encoded in systems capable of

learning, adaptation, and continuously improving.

3. AI-Driven Capacity Planning
In Kubernetes based platforms, capacity planning

extends beyond just aggregation of resource utilization and

Nikhita Kataria / IJAIDSML, 7(1), 111-115, 2026

112

capacity planning must consider pod placement constraints

which varies depending on the type of workloads and their

latency requirements. Some commonly known constraints

are GPU partitioning, NUMA locality, average utilization

threshold, locality concerns and core scheduler behavior.

Machine learning models trained on Kubernetes native

metrics such as pod churn, pending pods, allocation pressure,

node conditions, application classification provide

significantly higher prediction accuracy that just host level

utilization averages that are historically the only key

parameter that was fed into capacity planning. In GPU

centric deployments like enterprise AI factories forecasting

mechanism help anticipate fragmentation, MIG saturation,

cross tenant contention as well. This further exemplifies that

capacity planning aligns very closely with scheduler realities

rather than theoretical mathematics. Operational failures in

Kubernetes environments often get cascaded due to control

plane failures such as scheduling backlogs, admission

rejections, or degraded daemon sets which require special

capacity planning and disaster recovery strategy than just

application plane.

Learning based anomaly detection with these signals

enables early intervention before a workload is impacted and

hence AI driven optimizations must respect key Kubernetes

primitives of disruption budgets, maintenance windows, and

fault domains. Reinforcement learning approaches can learn

scaling actions that minimize disruption while preserving

service level objectives and reliability goals. Infrastructure as

code defines cloud resources as well as cluster composition

such as node pools, accelerators, CNI configurations, storage

classes, device plugins and security classifications. AI

assisted metadata generation helps express intent at a lower

level to represent isolation boundaries, disruption

requirements, upgrade strategies, security or ACL

dependencies rather than low level resource counts. Large

Kubernetes platforms evolve continuously, and AI models

trained on prior rollouts can estimate disruption risk, helping

operators stage changes through canaries and phased rollouts

which a must have for ephemeral infrastructure where drift

accumulation poses a major reliability risk. Learning based

drift detection transforms IaC into a continuously reconciled

contract between desired and actual cluster state.

3. System Architecture
Figure 1 illustrates a proposed system architecture for

AI-driven capacity planning in hyperscale Kubernetes

environments integrating observability, forecasting,

predictive modeling, rules embedding, policy enforcement

and automated IaC execution. At the lowest level,

observability layer collects real-time metrics, events and logs

from control plane, node pools, pods and hardware

utilization. Telemetry sources include Prometheus metrics,

event streams and any custom scheduler annotations specific

to the deployment setup. This layer provides the necessary

automation for real time understanding of cluster state,

resource utilization and workload behavior. Next, feature

engineering layer transforms raw telemetry into actionable

signals capturing pending pods, fragmentation, node health

and utilization, maintenance windows, workloads priorities

that feed into machine learning models that perform

predictive forecasting and possible optimizations by

simulating these signals.

This enables the system to anticipate resource demand

and recommend scaling actions across CPU, GPU, and

confidential workloads. Key innovation of this architecture is

the inclusion of a rules engine, which acts as a decision gate

between AI recommendations and execution controlled by

human intervention. While predictive model provides

proactive scaling suggestions the rules engine embeds

constraint requirements known to software engineers as well

as validates them while generating recommendations. These

constraints may include isolation requirements for

confidential workloads, GPU MIG partitioning limits,

disruption budgets during rolling upgrades, anti-affinity rules

and cost or budget thresholds.

Observability is built into rules engine as well to flag

any recommendations that violate these rules for human

review after any automated adjustments that can be done

thereby reducing the noise for humans as well. Once

recommendations pass all validations, the next layer of

policy and decision engine generates final instructions for

cluster scaling, pod migration or resource bin packing. These

decision pipe into actual IaC and automation pipelines via

tools such as Helm, Terraform or any other CI/CD

workloads. This ensures that the desired AI predicted cluster

state is applied reliably to the infrastructure and maintains

consistency across all node pools and workloads The

architecture supports continuous closed-loop feedback and

enabled hyperscale clusters to operate efficiently while

respecting operational constraints which ensures efficient

utilization and strict isolation for sensitive workloads.

Additionally, the system is designed to support federated

learning across multiple clusters allowing predictive models

to generalize insights from one environment to another such

as learning from experiments in a control setup and then

replicating the same in production.

Building on these predictions, the Capacity Gap

Estimation Module computes the delta between forecasted

demand and available capacity. Rather than producing

abstract utilization forecasts this component quantifies

actionable capacity requirements, including the number of

additional CPU and GPU nodes (with MIG profile

awareness). This module incorporates suggested placements

and then makes informed decisions in real time on capacity

needs. Its output represents a precise capacity shortfall or

surplus to enable deterministic planning decisions based on

real time cluster snapshot. In summary, the architecture

provides a hybrid framework that combines AI-driven

foresight with rule-based safety, closed-loop automation, and

declarative enforcement, enabling Kubernetes-based

infrastructure at massive scale to operate predictively, safely,

and efficiently.

Nikhita Kataria / IJAIDSML, 7(1), 111-115, 2026

113

Fig 1: System Architecture

4. AI-Driven Kubernets Cluster Optimization
The motivation behind AI driven capacity planning is to

directly enable Kubernetes cluster optimization by strongly

aligning resource supply with scheduler behavior and

workload dynamics. This is a missing piece often known to

cause discrepancies between capacity planned and capacity

needed as schedulers are often not fed information on

hardware capabilities and vice versa achieving the following

goals:

1. Scheduler Aware Capacity Planning: historically

cluster sizing has often led to stranded capacity

either due to bin packing inefficiencies,

conservative disruption budgets or constraints that

cannot be avoided due to company policies. AI

based forecasting attempts to model scheduler

signals to recommend optimal node pool sizes and

shapes. This approach helps in reduced scale up

latency during demand spikes.

2. Predictive Right Sizing of Node Pools: By

combining AI forecasting for workload mix and

growth forecasting AI models enable proactive right

sizing of the node pools as well as get ability to

predict what happens when new capacity is added

and if the overall cluster efficiency is improved or

degraded. Instead of uniformly scaling the clusters,

this system can selectively scale specific pools and

target applications of same nature (memory bound,

latency bound or compute bound) accordingly

resulting in reduced cost while preserving isolation.

3. Maintenance Aware Optimization: AI driven

planning incorporates maintenance schedules,

disruption budgets, and fault domain constraints.

This allows specific clusters to maintain appropriate

headroom to sustain any maintenance operations

without causing service level degradation.

5. Confidential Workload Constraints
Not all workloads in a multi-tenant environment can be

considered fungible or safe to co-locate with other

workloads. Applications processing highly confidential

information require strict isolation guarantees to comply with

confidentiality or data access requirements. Examples

include proprietary models, financial workloads or inference

services processing users’ private information. In such

scenarios, traditional bin packing or capacity assumptions do

not hold valid. AI driven capacity planning needs to

incorporate such non stackable constraints such as pods

cannot share nodes with other tenants, GPU partitioning is

restricted, fault domain and security isolation requirements

need to be met over utilization efficiency. AI models adapt

to these constraints very effectively as these can be easily

modeled during simulations and validated. Forecasting

recommendations then focus on exclusive capacity demand

per workload classification and preserve higher headroom to

maintain security requirements. This shifts capacity planning

objectives from maximum isolation to predictable isolation

and cost efficiency is balanced against compliance risk. In

this paper we assume that such workloads receive dedicated,

forecast backed capacity while benefiting from predictive

scaling and maintenance-aware planning.

6. Experimental Evaluation
In this paper we target evaluation of proposed system

architecture in a Kubernetes deployment of 100,000 nodes

and behavior under extreme load. The simulation accounts

for API server rate limits, controller throughputs and etcd

performance characteristics. GPU nodes are modeled with

MIG partitioning and cross-tenant allocation logic.

Confidential workloads are simulated via strict node

isolation and mandatory anti affinity policies. Analysis is

conducted by simulating pod arrival rates, replication

requirements, and bursty workloads. Across all scenarios, the

AI driven model is observed to maintain robust performance

and reactive scaling is observed to have significant

degradation under sudden workload spikes. These results

demonstrate that predictive capacity planning is essential to

maintain a highly scalable setup.

6.1. Simulation Setup

To get realistic results that are applicable directly in the

software industry we model real-world large-scale

deployments by simulating a data center with 100,000 nodes

comprised of 60,000 CPU only nodes, 30,000 GPU nodes

and 10,000 dedicated nodes for confidential workloads

spread across multiple Kubernetes clusters which are further

divided into multiple node pools reflecting this composition.

Workloads running in these pools are comprised of CPU

intensive pods with 3 replicas each, GPU heavy ML jobs

with 2 replicas and MIG-aware allocation, and confidential

applications requiring 1 replica and strict isolation. Pod

placement constraints, fault domain isolation, multi-tenant

separation are also modeled to emulate realistic scheduling at

scale. Metrics, events and logs from these simulated clusters

feeds into feature engineering pipeline producing required

signals for predictive AI models and rules-based validation

enabling policy compliant recommendations.

Nikhita Kataria / IJAIDSML, 7(1), 111-115, 2026

114

6.2. Methodology

As per the described architecture, time series forecasting

using LSTM models estimated pod demand across different

node pools in the clusters and reinforcement learning

recommends scaling actions for allocation of nodes and pool

resizes based on the simulated traffic patterns. Rules

engineer accurately validated the recommendations and

violations were adjusted in real time automatically or quickly

escalated for human review. We evaluate 3 strategies in the

experimental setup: static provisioning with conservative

fixed buffers and manual allocation of nodes, reactive auto-

scaling which triggers scale ups based on utilization and AI

driven predictive planning via validations done by the rules

engine. Key metrics include total utilization, scheduling

latency, pending pods, fragmentation, SLA and rules

violations.

6.3. Simulation Results

Table I. captures the results across different workloads,

and we observe that with AI driven approach pending pods

decreased dramatically, GPU fragmentation dropped by 30%

and average node utilization improved by 22% compared to

static provisioning. These reductions are observed with

confidential workloads still maintaining strict isolation. The

rules engine blocked close to 300 unsafe AI suggested

actions thereby automatically preventing SLA violations or

policy breaches that could have occurred at the expense of

minor reductions in utilization.

Table 1: Simulation Results Summary

Metric Static

Provisioni

ng

Reactive

Autoscalin

g

Proposed

Architectur

e

CPU Node

Utilization

50% 62% 72%

GPU Node

Utilization

48% 60% 78%

Confidential

Node

Utilization

80% 80% 91%

Pending Pods 12,500 6,000 1,800

GPU

Fragmentation

High Medium Low

SLA

Violations

4,000 2,100 500

Rule

Violations

0 N/A ~320

7. Challenges and Limitations
While software industry is moving heavily use of AI, AI

based capacity planning also poses several challenges that

must be addressed:

 Data Volume and Velocity: Processing metrics,

events and logs at scale and in real time introduces

fast streaming requirements and heavy use of

storage. This requires investment in state-of-the-art

solutions using model training to preprocess and

infer signals on the fly to ensure timely decisions.

 Generalized solutions: Predictive models that are

trained on one cluster with a certain workload

pattern may need to be re-trained on other clusters if

there is a lot of heterogeneity in clusters. Often, in

such cases companies move towards creating

homogenous clusters that can be operated with

some predictability.

 Security and Confidentiality: Deployment of

workloads with strict confidentiality requirements

limits bin packing and effective use of hardware and

creates overhead to ensure resource isolation.

 Building Trust on AI decisions: AI decisions can be

difficult to interpret specially in incident situations

where reliable recovery takes most importance, and

every predicted decision needs to be critically

explained and understood. This is tackled by

associating a confidence score on the predicted

actions.

 Seamless integration: Often outputs of prediction

models do not directly tie into CI/CD pipeline

actions and need to be translated which introduces

one more layer of delay and operational complexity.

8. Threats to Validity
Experiments conducted in this paper are subject to a few

threats to validity. As the evaluation relies on simulated

environments, they do not incorporate real-world dynamics

such as unexpected network downtime, operator

interventions, unexpected scheduler behaviors, unexpected

workload behaviors etc. The logs and events used to train

and evaluate may not exactly represent various scenarios that

may happen in a production environment. Generalization of

models is also limited with forecasting and validations done

one set of workloads that may under perform in new cluster

topologies. Emergency overrides, policy changes and human

decisions can alter the effectiveness of results seen in the

experiments however can be easily modeled. Additionally,

multi cluster interactions and heterogeneity of infrastructure

may impact the results and must be considered while

interpreting the experimental results.

9. Future considerations
With AI advancements happening at a speedy rate, future

research has potential to expand AI driven capacity planning

and IaC in multiple directions such as:

 Multi-agent re-enforcement learning can be used to

manage heterogeneous node pools which

dynamically adjust resources while respecting

necessary constraints

 Understanding impact and effect of resource

allocation and workload performance with

predictive models can improve reliability and

reduce operational risk.

 Models can be trained across multiple clusters with

varying deployment patterns to further improve

prediction accuracy and support multi-cloud

orchestration.

Nikhita Kataria / IJAIDSML, 7(1), 111-115, 2026

115

 Integrating AI with chaos testing frameworks can

help preemptively identify weak points in overall

scheduling strategy.

 Developing models and visualization tools that

allow SRE teams to understand the

recommendations is crucial for adoption of solution

proposed in production environments.

10. Conclusion
Enterprise platforms backed by Kubernetes constantly

demand capacity planning and infrastructure automation.

Static buffers baked into capacity planning cannot keep up

with complexities introduced by schedulers operating in a

continuously changing heterogenous environment.

Integrating AI tooling, basing scaling decisions on real time

telemetry and adapting Infrastructure as Code to apply such

decisions can allow organizations to encode operational

learning directly into the platform. AI driven forecasting

enables infrastructure to evolve safely, scale predictably, and

maintain reliability over time. Architecture proposed in this

study does not replace operator expertise and rather allows

them to amplify it to operate Kubernetes platforms at scale in

a pro-active manner.

References
[1] Google SRE Team, Site Reliability Engineering,

O’Reilly Media, 2016.

[2] B. Burns et al., Designing Distributed Systems, O’Reilly

Media, 2018.

[3] D. G. Feitelson, Workload Modeling for Computer

Systems Performance Evaluation, Cambridge University

Press, 2019.

[4] M. Isard et al., “Autopilot: Automatic Data Center

Management,” OSDI, 2017.

[5] A. Verma et al., “Large-scale Cluster Management at

Google with Borg,” OSDI, 2015.

[6] M. Schwarzkopf et al., “Omega: Flexible, Scalable

Scheduler for Large Clusters,” SOSP, 2013.

[7] NVIDIA, “GPU Operator for Kubernetes,” Technical

Documentation, 2023.

[8] A. Gupta et al., “etcd: A Distributed, Reliable Key-Value

Store for the Most Critical Data of a Distributed System,”

Cloud Native Computing Foundation, 2016.

[9] C. McClurg et al., “Rules Engines for Cloud Automation:

Ensuring Policy Compliance in AI-Driven Systems,”

Journal of Cloud Computing, vol. 12, 2022.

[10] H. Lim et al., “Enhancing GPU Utilization in Multi-

Tenant Kubernetes Clusters,” SC Conference, 2021.

[11] P. Bodik et al., “Resource Management in Multi-Tenant

Cloud Clusters: Lessons from Hyperscale Deployments,”

SoCC, 2012.

[12] F. Pedregosa et al., “Scikit-learn: Machine Learning in

Python,” Journal of Machine Learning Research, vol. 12,

pp. 2825–2830, 2011.

[13] I. Goodfellow, Y. Bengio, and A. Courville, Deep

Learning, MIT Press, 2016.

[14] S. Hochreiter and J. Schmidhuber, “Long Short-Term

Memory,” Neural Computation, vol. 9, no. 8, pp. 1735–

1780, 1997.

[15] R. S. Sutton and A. G. Barto, Reinforcement Learning:

An Introduction, 2nd Edition, MIT Press, 2018.

[16] C. Re et al., “Machine Learning for Systems: Review and

Opportunities,” HotCloud, 2018.

[17] J. Brownlee, Deep Learning for Time Series Forecasting,

Machine Learning Mastery, 2018.

[18] T. Chen et al., “XGBoost: A Scalable Tree Boosting

System,” KDD, 2016.

[19] P. Domingos, “A Few Useful Things to Know about

Machine Learning,” Communications of the ACM, vol.

55, no. 10, pp. 78–87, 2012.

[20] L. Kleinrock, Queueing Systems, Volume 2: Computer

Applications, Wiley, 1976.

