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Abstract - Capacity planning and infrastructure automation are still some of the hardest problems in modern 

distributed systems, with a direct impact on overall costs. However, they are often underestimated, especially as 

hardware keeps improving and each CPU core becomes faster over time. As infrastructure scales in size and 

complexity, historical statistics and operational models based on historical data fail to provide reliable forecasting 

metrics and cost projections. Building on prior research that examines operational ownership, infrastructure 

reliability, and deployment correctness, this paper investigates the application of Artificial Intelligence (AI) to 

capacity planning and Infrastructure as Code (IaC). We demonstrate how learning-based optimization, predictive 

analysis and automation can improve planning accuracy, reduce operational toil, and help achieving reliability and 

efficiency objectives. The paper positions AI not as a replacement for capacity management systems but presents a 

force multiplier to ensure the accuracy of such pieces of software is high ensuring forecasts and reality do not differ 

by a large amount. 
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1. Introduction 
Modern infrastructure management has shifted over time 

where it no longer entails managing individual servers only, 

it also requires positioning of the hardware according to the 

services that are running in the system and is very much 

aware of the software parameters as well. One of the most 

modern orchestration engines that exemplifies this is 

Kubernetes where large AI platforms, compute, storage, 

GPUs, networking infrastructure are all pooled together with 

some logical constraints however still shared across 

organizations.   In such setup, infrastructure being correct 

and performance is not just about if resources were created 

successfully, it mostly is focused on if systems is highly 

available, capable of performing consistently and keeps 

working the same as changes happen i.e. is reliable. This 

requirement emerges from the fact that in modern distributed 

systems, changes are constant with new workloads, 

upgrades, scaling events, failures, downtimes happening all 

the time and older mechanisms to predict capacity 

requirements with buffers calculated on the basis of organic 

growth are no longer applicable and any misses are slower as 

capacity backfill is a long supply chain process. Modern 

approaches to capacity require understanding of how 

workloads pack together, configurations of GPU’s such as 

shared or dedicated or split, isolation strategies, requirements 

of confidentiality etc. With this approach to manging 

infrastructure via code has also evolved as it does not only 

look at provisioning machines and focusses on understanding 

cluster layout, device parameters, stacking rules and how 

platform evolves over time. AI helps by constantly learning 

from these systems, simulating behaviors based on known 

constraints, pro-actively take actions on predicted failures 

and adjust ahead of time avoiding potential service 

downtimes. The goal of this paper is not to replace human 

judgement, but to understand the context and constraints 

better and apply the same consistently at scale.  

 

2. Background and Motivation 
Often capacity planning is treated as a cost-optimization 

strategy to improve overall efficiency. However, in practice 

it ties closely to the reliability of services running on the 

actual hardware. Insufficient capacity manifests itself as 

latency regressions, deployment failures, on-call fatigue, 

delayed scale ups and recover of applications during 

unavoidable mass failures leading to cascading impact. Prior 

research on on-call ownership highlights how poor capacity 

planning also increases cognitive load during incidents. 

Infrastructure as a code has now matured from just being a 

provisioning mechanism to a primary control plane for 

allocations of hardware in the right way. Current work on 

infrastructure deployment workflows demonstrates that 

misconfigurations on hardware level are a dominant cause of 

outages in some cases. Static IaC definitions lack situational 

awareness and motivation of using AI into capacity planning 

stems for the fact that we want it to be environment aware 

and operate at scale. As infrastructure complexity grows, 

operational intent must be encoded in systems capable of 

learning, adaptation, and continuously improving. 

 

3. AI-Driven Capacity Planning 
In Kubernetes based platforms, capacity planning 

extends beyond just aggregation of resource utilization and 
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capacity planning must consider pod placement constraints 

which varies depending on the type of workloads and their 

latency requirements. Some commonly known constraints 

are GPU partitioning, NUMA locality, average utilization 

threshold, locality concerns and core scheduler behavior. 

Machine learning models trained on Kubernetes native 

metrics such as pod churn, pending pods, allocation pressure, 

node conditions, application classification provide 

significantly higher prediction accuracy that just host level 

utilization averages that are historically the only key 

parameter that was fed into capacity planning.  In GPU 

centric deployments like enterprise AI factories forecasting 

mechanism help anticipate fragmentation, MIG saturation, 

cross tenant contention as well. This further exemplifies that 

capacity planning aligns very closely with scheduler realities 

rather than theoretical mathematics. Operational failures in 

Kubernetes environments often get cascaded due to control 

plane failures such as scheduling backlogs, admission 

rejections, or degraded daemon sets which require special 

capacity planning and disaster recovery strategy than just 

application plane.  

 

Learning based anomaly detection with these signals 

enables early intervention before a workload is impacted and 

hence AI driven optimizations must respect key Kubernetes 

primitives of disruption budgets, maintenance windows, and 

fault domains. Reinforcement learning approaches can learn 

scaling actions that minimize disruption while preserving 

service level objectives and reliability goals. Infrastructure as 

code defines cloud resources as well as cluster composition 

such as node pools, accelerators, CNI configurations, storage 

classes, device plugins and security classifications. AI 

assisted metadata generation helps express intent at a lower 

level to represent isolation boundaries, disruption 

requirements, upgrade strategies, security or ACL 

dependencies rather than low level resource counts. Large 

Kubernetes platforms evolve continuously, and AI models 

trained on prior rollouts can estimate disruption risk, helping 

operators stage changes through canaries and phased rollouts 

which a must have for ephemeral infrastructure where drift 

accumulation poses a major reliability risk. Learning based 

drift detection transforms IaC into a continuously reconciled 

contract between desired and actual cluster state. 

 

3. System Architecture 
Figure 1 illustrates a proposed system architecture for 

AI-driven capacity planning in hyperscale Kubernetes 

environments integrating observability, forecasting, 

predictive modeling, rules embedding, policy enforcement 

and automated IaC execution. At the lowest level, 

observability layer collects real-time metrics, events and logs 

from control plane, node pools, pods and hardware 

utilization. Telemetry sources include Prometheus metrics, 

event streams and any custom scheduler annotations specific 

to the deployment setup. This layer provides the necessary 

automation for real time understanding of cluster state, 

resource utilization and workload behavior. Next, feature 

engineering layer transforms raw telemetry into actionable 

signals capturing pending pods, fragmentation, node health 

and utilization, maintenance windows, workloads priorities 

that feed into machine learning models that perform 

predictive forecasting and possible optimizations by 

simulating these signals.  

 

This enables the system to anticipate resource demand 

and recommend scaling actions across CPU, GPU, and 

confidential workloads. Key innovation of this architecture is 

the inclusion of a rules engine, which acts as a decision gate 

between AI recommendations and execution controlled by 

human intervention. While predictive model provides 

proactive scaling suggestions the rules engine embeds 

constraint requirements known to software engineers as well 

as validates them while generating recommendations. These 

constraints may include isolation requirements for 

confidential workloads, GPU MIG partitioning limits, 

disruption budgets during rolling upgrades, anti-affinity rules 

and cost or budget thresholds.  

 

Observability is built into rules engine as well to flag 

any recommendations that violate these rules for human 

review after any automated adjustments that can be done 

thereby reducing the noise for humans as well.  Once 

recommendations pass all validations, the next layer of 

policy and decision engine generates final instructions for 

cluster scaling, pod migration or resource bin packing. These 

decision pipe into actual IaC and automation pipelines via 

tools such as Helm, Terraform or any other CI/CD 

workloads. This ensures that the desired AI predicted cluster 

state is applied reliably to the infrastructure and maintains 

consistency across all node pools and workloads The 

architecture supports continuous closed-loop feedback and 

enabled hyperscale clusters to operate efficiently while 

respecting operational constraints which ensures efficient 

utilization and strict isolation for sensitive workloads. 

Additionally, the system is designed to support federated 

learning across multiple clusters allowing predictive models 

to generalize insights from one environment to another such 

as learning from experiments in a control setup and then 

replicating the same in production.  

 

Building on these predictions, the Capacity Gap 

Estimation Module computes the delta between forecasted 

demand and available capacity. Rather than producing 

abstract utilization forecasts this component quantifies 

actionable capacity requirements, including the number of 

additional CPU and GPU nodes (with MIG profile 

awareness). This module incorporates suggested placements 

and then makes informed decisions in real time on capacity 

needs. Its output represents a precise capacity shortfall or 

surplus to enable deterministic planning decisions based on 

real time cluster snapshot. In summary, the architecture 

provides a hybrid framework that combines AI-driven 

foresight with rule-based safety, closed-loop automation, and 

declarative enforcement, enabling Kubernetes-based 

infrastructure at massive scale to operate predictively, safely, 

and efficiently. 
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Fig 1: System Architecture 

 

4. AI-Driven Kubernets Cluster Optimization 
The motivation behind AI driven capacity planning is to 

directly enable Kubernetes cluster optimization by strongly 

aligning resource supply with scheduler behavior and 

workload dynamics. This is a missing piece often known to 

cause discrepancies between capacity planned and capacity 

needed as schedulers are often not fed information on 

hardware capabilities and vice versa achieving the following 

goals: 

1. Scheduler Aware Capacity Planning: historically 

cluster sizing has often led to stranded capacity 

either due to bin packing inefficiencies, 

conservative disruption budgets or constraints that 

cannot be avoided due to company policies. AI 

based forecasting attempts to model scheduler 

signals to recommend optimal node pool sizes and 

shapes. This approach helps in reduced scale up 

latency during demand spikes.  

2. Predictive Right Sizing of Node Pools: By 

combining AI forecasting for workload mix and 

growth forecasting AI models enable proactive right 

sizing of the node pools as well as get ability to 

predict what happens when new capacity is added 

and if the overall cluster efficiency is improved or 

degraded. Instead of uniformly scaling the clusters, 

this system can selectively scale specific pools and 

target applications of same nature (memory bound, 

latency bound or compute bound) accordingly 

resulting in reduced cost while preserving isolation.  

3. Maintenance Aware Optimization: AI driven 

planning incorporates maintenance schedules, 

disruption budgets, and fault domain constraints. 

This allows specific clusters to maintain appropriate 

headroom to sustain any maintenance operations 

without causing service level degradation. 

5. Confidential Workload Constraints 
Not all workloads in a multi-tenant environment can be 

considered fungible or safe to co-locate with other 

workloads. Applications processing highly confidential 

information require strict isolation guarantees to comply with 

confidentiality or data access requirements. Examples 

include proprietary models, financial workloads or inference 

services processing users’ private information. In such 

scenarios, traditional bin packing or capacity assumptions do 

not hold valid.  AI driven capacity planning needs to 

incorporate such non stackable constraints such as pods 

cannot share nodes with other tenants, GPU partitioning is 

restricted, fault domain and security isolation requirements 

need to be met over utilization efficiency.  AI models adapt 

to these constraints very effectively as these can be easily 

modeled during simulations and validated. Forecasting 

recommendations then focus on exclusive capacity demand 

per workload classification and preserve higher headroom to 

maintain security requirements. This shifts capacity planning 

objectives from maximum isolation to predictable isolation 

and cost efficiency is balanced against compliance risk. In 

this paper we assume that such workloads receive dedicated, 

forecast backed capacity while benefiting from predictive 

scaling and maintenance-aware planning. 

 

6. Experimental Evaluation 
In this paper we target evaluation of proposed system 

architecture in a Kubernetes deployment of 100,000 nodes 

and behavior under extreme load. The simulation accounts 

for API server rate limits, controller throughputs and etcd 

performance characteristics. GPU nodes are modeled with 

MIG partitioning and cross-tenant allocation logic. 

Confidential workloads are simulated via strict node 

isolation and mandatory anti affinity policies. Analysis is 

conducted by simulating pod arrival rates, replication 

requirements, and bursty workloads. Across all scenarios, the 

AI driven model is observed to maintain robust performance 

and reactive scaling is observed to have significant 

degradation under sudden workload spikes. These results 

demonstrate that predictive capacity planning is essential to 

maintain a highly scalable setup. 

 

6.1. Simulation Setup 

To get realistic results that are applicable directly in the 

software industry we model real-world large-scale 

deployments by simulating a data center with 100,000 nodes 

comprised of 60,000 CPU only nodes, 30,000 GPU nodes 

and 10,000 dedicated nodes for confidential workloads 

spread across multiple Kubernetes clusters which are further 

divided into multiple node pools reflecting this composition. 

Workloads running in these pools are comprised of CPU 

intensive pods with 3 replicas each, GPU heavy ML jobs 

with 2 replicas and MIG-aware allocation, and confidential 

applications requiring 1 replica and strict isolation. Pod 

placement constraints, fault domain isolation, multi-tenant 

separation are also modeled to emulate realistic scheduling at 

scale. Metrics, events and logs from these simulated clusters 

feeds into feature engineering pipeline producing required 

signals for predictive AI models and rules-based validation 

enabling policy compliant recommendations. 
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6.2. Methodology 

As per the described architecture, time series forecasting 

using LSTM models estimated pod demand across different 

node pools in the clusters and reinforcement learning 

recommends scaling actions for allocation of nodes and pool 

resizes based on the simulated traffic patterns. Rules 

engineer accurately validated the recommendations and 

violations were adjusted in real time automatically or quickly 

escalated for human review. We evaluate 3 strategies in the 

experimental setup: static provisioning with conservative 

fixed buffers and manual allocation of nodes, reactive auto-

scaling which triggers scale ups based on utilization and AI 

driven predictive planning via validations done by the rules 

engine. Key metrics include total utilization, scheduling 

latency, pending pods, fragmentation, SLA and rules 

violations. 

 

6.3. Simulation Results 

Table I. captures the results across different workloads, 

and we observe that with AI driven approach pending pods 

decreased dramatically, GPU fragmentation dropped by 30% 

and average node utilization improved by 22% compared to 

static provisioning. These reductions are observed with 

confidential workloads still maintaining strict isolation.  The 

rules engine blocked close to 300 unsafe AI suggested 

actions thereby automatically preventing SLA violations or 

policy breaches that could have occurred at the expense of 

minor reductions in utilization. 

 

Table 1: Simulation Results Summary 

Metric Static 

Provisioni

ng 

Reactive 

Autoscalin

g 

Proposed 

Architectur

e 

CPU Node 

Utilization 

50% 62% 72% 

GPU Node 

Utilization 

48% 60% 78% 

Confidential 

Node 

Utilization 

80% 80% 91% 

Pending Pods 12,500 6,000 1,800 

GPU 

Fragmentation 

High Medium Low 

SLA 

Violations 

4,000 2,100 500 

Rule 

Violations 

0 N/A ~320 

 

7. Challenges and Limitations 
While software industry is moving heavily use of AI, AI 

based capacity planning also poses several challenges that 

must be addressed: 

 Data Volume and Velocity: Processing metrics, 

events and logs at scale and in real time introduces 

fast streaming requirements and heavy use of 

storage. This requires investment in state-of-the-art 

solutions using model training to preprocess and 

infer signals on the fly to ensure timely decisions.  

 Generalized solutions: Predictive models that are 

trained on one cluster with a certain workload 

pattern may need to be re-trained on other clusters if 

there is a lot of heterogeneity in clusters. Often, in 

such cases companies move towards creating 

homogenous clusters that can be operated with 

some predictability.  

 Security and Confidentiality: Deployment of 

workloads with strict confidentiality requirements 

limits bin packing and effective use of hardware and 

creates overhead to ensure resource isolation.  

 Building Trust on AI decisions: AI decisions can be 

difficult to interpret specially in incident situations 

where reliable recovery takes most importance, and 

every predicted decision needs to be critically 

explained and understood. This is tackled by 

associating a confidence score on the predicted 

actions.  

 Seamless integration: Often outputs of prediction 

models do not directly tie into CI/CD pipeline 

actions and need to be translated which introduces 

one more layer of delay and operational complexity.  

 

8. Threats to Validity 
Experiments conducted in this paper are subject to a few 

threats to validity. As the evaluation relies on simulated 

environments, they do not incorporate real-world dynamics 

such as unexpected network downtime, operator 

interventions, unexpected scheduler behaviors, unexpected 

workload behaviors etc. The logs and events used to train 

and evaluate may not exactly represent various scenarios that 

may happen in a production environment.  Generalization of 

models is also limited with forecasting and validations done 

one set of workloads that may under perform in new cluster 

topologies. Emergency overrides, policy changes and human 

decisions can alter the effectiveness of results seen in the 

experiments however can be easily modeled. Additionally, 

multi cluster interactions and heterogeneity of infrastructure 

may impact the results and must be considered while 

interpreting the experimental results. 

 

9. Future considerations 
With AI advancements happening at a speedy rate, future 

research has potential to expand AI driven capacity planning 

and IaC in multiple directions such as: 

 Multi-agent re-enforcement learning can be used to 

manage heterogeneous node pools which 

dynamically adjust resources while respecting 

necessary constraints 

 Understanding impact and effect of resource 

allocation and workload performance with 

predictive models can improve reliability and 

reduce operational risk. 

 Models can be trained across multiple clusters with 

varying deployment patterns to further improve 

prediction accuracy and support multi-cloud 

orchestration. 
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 Integrating AI with chaos testing frameworks can 

help preemptively identify weak points in overall 

scheduling strategy. 

 Developing models and visualization tools that 

allow SRE teams to understand the 

recommendations is crucial for adoption of solution 

proposed in production environments. 

 

10. Conclusion 
Enterprise platforms backed by Kubernetes constantly 

demand capacity planning and infrastructure automation. 

Static buffers baked into capacity planning cannot keep up 

with complexities introduced by schedulers operating in a 

continuously changing heterogenous environment. 

Integrating AI tooling, basing scaling decisions on real time 

telemetry and adapting Infrastructure as Code to apply such 

decisions can allow organizations to encode operational 

learning directly into the platform. AI driven forecasting 

enables infrastructure to evolve safely, scale predictably, and 

maintain reliability over time. Architecture proposed in this 

study does not replace operator expertise and rather allows 

them to amplify it to operate Kubernetes platforms at scale in 

a pro-active manner. 
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