International Journal of Artificial Intelligence, Data Science, and Machine Learning
Grace Horizon Publication | Volume 7, Issue 1, 120-123, 2026
ISSN: 3050-9262 | https://doi.org/10.63282/3050-9262.1JAIDSML-V711P122

Original Article

Broadband Subscriber Data Integration with ETL to SaaS

Amey Deshpande
Sr. Cloud Delivery Manager, Calix Inc. McKinney, TX, USA.

Received On: 30/12/2025 Revised On: 31/01/2026 Accepted On: 02/02/2026 ~ Published On: 04/02/2026
Abstract - In the Broadband Service Provider (BSP) industry, billing data can originate from various sources like
customer subscriptions, payment platforms and network telemetry. The data is often imported using Comma
Separated Values (CSV) file uploads from billing systems. To get the best outcome of the Software as a Service (SaaS)
platform the data must be cleaned up and standardized prior to feeding to the product. The smallest error rate in
billing data can lead to revenue leakage for a business. Poor data hygiene is a leading cause of billing system
projects failing to meet their targets. BSPs cannot afford to have data management as a reactive measure anymore.
Ensuring data quality before feeding into critical products is imperative for a successful business, however, the scope
of such efforts is not always simple. Using automation for cleaning and restructuring of data with Extract, Transform
and Load (ETL) tools ensures an effective and reliable methodology of data accuracy. Product adoption is as much
reliant on operations and training, as it is on high accuracy in billing and network data. In modern broadband

services, having healthy data is key to a strong foothold in the BSP market.

Keywords - ETL, Streamsets, Kafka, SaaS, CSV Data Processing, Data Standardization, Telecom Analytics.

1. Introduction

At a high level, a BSP in the Southeast was largely
focused on installing new hardware, testing internet
connectivity, turning up new services, conducting field
operations and regular network maintenance. In all these
tasks that made up the core milestones for any service
provider, there was a lot of underlying data captured across
various platforms. The subscriber data was entered manually
into the billing system to capture the demographic details as
well as the subscription. The payment and service status data
for a subscriber was also loaded in the same billing system.
For monitoring and alarm notifications, the subscriber’s
equipment was captured in a network management system
including manual entry of crucial subscriber information
creating a 1:1 mapping. Finally, the very core of these
operations, the access network architecture was stored as a
configuration on a separate platform with daily backups and
restoration. There were hundreds of thousands of subscribers,
each with their unique data in the billing, network and
administration systems, amounting to very large datasets for
the BSP to manage. While some of the data was auto
generated via telemetry and application interfaces, the
majority of the data, especially the subscriber data in billing
and network systems, was a manual effort. It brought
inevitable human errors, misses and inaccuracies in the data
over time, since the source of such data was spread
throughout the BSP. It included employees across multiple
teams writing to the same databases, which eventually led to a
poor quality of overall data.

2. SaaS Requirements

A SaaS platform and its products are designed to provide a
support, marketing and operations environment to the BSP.
To adopt a product for any of these purposes, the BSP is

required to bring in necessary data to integrate in either a
cadence or in a real time setting. BSPs typically relied on
Business Support Systems (BSS) providers and Operations
Support Systems (OSS) providers to track daily billing
activities along with network and field operations that go in
alignment with the billing system. The SaaS platform brought
together data across all platforms used by the BSP, layered
with its own analytics and integration to present a seamless
presentation of the whole business. The products required
three sets of data:

2.1. Billing data: This data included all information related
to the subscriber and was unique to their account with the
BSP.

Subscriber name, address, phone, email, etc.

Service and subscription codes

Device identifiers

Other billing attributes like start date, special
services, etc.

PONPE

2.2. Access Network data: This data included information
regarding all equipment involved in the access network
from the Central Office (CO) to the last mile of the
subscriber.

1. Layer-2 Ethernet and Gigabit Passive Optical

Network (GPON) switches.

2. Optical Network Terminal (ONT).

3. Customer Premises Equipment (CPE).

4. Node — Shelf — Card — Port identifiers.

Amey Deshpande / IJAIDSML, 7(1), 120-123, 2026

2.3. Layer-3 routing data: This data included information
pertaining the layer-3 routed traffic for the subscribers of
this BSP:

1. IP Netflows imported from the core or edge routers
in the BSP’s network.
Remote Authentication Dial-in User Service
(RADIUS) identifiers for Point to Point over
Ethernet (PPPoE) subscribers imported from a
Radius server.
Internet Protocol version 4 (IPv4) subnets defined
for capturing and mapping IP traffic limited to the
BSP.

2.

3. Data Convergence
3.1. Framework:

A SaaS platform, in its purpose to deliver services using
the BSP’s data, required an architecture to be implemented.
This architecture would be designed to converge data from
various to a single point in the cloud databases.

S N
— M) SaaS
Billing System Platform
Dse‘;:)cfgrr;%i'}c « Subscriber
Cloud ¢ CPE Device
Engine « IP Traffic
= C | S bMaspingd P
| orrelation ubscriber an
be
Network
Management
System
OLT, ONT, CPE Data
B —)
&=/
Edge Router

Fig 1: High Level Data Convergence to the Saas Platform

3.2. Cloud Engine:

There are various moving parts to a cloud engine
especially when data extraction is involved. In today’s data-
driven world, organizations face the challenge of managing
and harnessing vast amounts of data from various sources.
This is where data lakes come into play. A data lake is a
centralized repository that stores structured, semi-structured,
and unstructured data in its raw format [1]. In this
architecture some of the data such as telemetry from the
network equipment was stored in the data lake in the raw
format with minimal to no structuring. Whereas the
subscriber data from the billing system had to be transformed
into a pre-defined framework prior to writing to a database in
cloud. Since there were millions of subscribers from various
BSPs utilizing a common Saa$S platform, each source of data
used their own syntax and headers which resulted in
requiring a structuring prior to writing in the database.

4 ETL

The BSS provider for the BSP was uploading files to the
SFTP location as prescribed by the SaaS platform to be able
to easily import the file. However, the structure, headers and
values used by the BSS would not necessarily meet the data
requirements of the product. Majority of the data needed
adjustment and customized logic. To do all of that, the SaaS

121

platform used a methodology called Extract, Transform and
Load (ETL). ETL cleanses and organizes data using a set of
business rules to meet specific business intelligence
requirements, such as monthly reporting, but it may also
handle more complicated analytics to improve back-end
operations or end user experiences [2]. The SaaS platform
employed ETL to:

Extract data from billing systems.

Reorganize the data per standardized syntax.

Load the data into a target database.

There were multiple steps involved in the ETL process
shown in Fig2.

[BSP

BSS

Cloud
File Store

csv
Validation

Streamsets Pipelines Kafka

Cloud DB
Fig 2: Steps of data ETL from BSP to Cloud.

4.1. Extract:

The first stage involved collecting the required billing data
from all sources of the BSP, which in this case was the BSS
provider. The most important aspect of extraction process
was that it was critical to how high-quality, relevant data
could be transformed and loaded into the target system [3].
The BSS provider was required to supply a flat file, or a
CSV file to a pre-defined SFTP location. The file uploads
would be an automated daily job on the BSS portal either
configured by the BSP or outsourced to the BSS operations
team for a daily upload. In cloud, the SFTP server was
hosted on a Virtual Machine (VM) running Ubuntu
Operating System (OS). The BSP used a unique set of
username and password to login to the server. Once a file
was uploaded, it would trigger a managed service for
validation where it would confirm file attributes as per RFC
4180 [4]:

1. The received file is in a .CSV extension

Amey Deshpande / IJAIDSML, 7(1), 120-123, 2026

2. No special symbols or letters other than the allowed
characters and delimiters such as ‘-¢ and °.’, etc.
were in the file.

3. There were no white spaces in the file, which are
typically found right before or after the delimiter.

4. The headers in the file did not contain any numbers

or special characters of any kind.

Finally, if none of the criteria failed, the validation would
pass. The files were then stored in a mounted Gluster
Filesystem (FS) volume in the cloud.

4.2. Transform:

Transforming the data is the most complex of all 3 steps
in ETL. Here the data ingested to the FS was read header by
header, which was line 1 in the file followed by the huge
datasets under these headers that formed all the comma
separated values. During this stage of the lifecycle of data,
extracted data are cleaned, normalized and aggregated for
consistency and usability. It was important for data quality
and integrity that the SaaS product take this step. Research
showed that the average financial loss for an organization is
$15 million a year due to poor data quality, which
emphasized the need for robust ETL processes to improve
data quality [3].

Streamsets was used for the ingestion and restructuring of
data in this step along with Kafka. Streamsets was a widely
used data integration platform crucial in helping to build, run
and manage numerous data pipelines. The powerful platform
was beneficial for accurately overseeing the process of batch
and streaming data flows [5]. The implementation of
subscriber and network data over a SaaS cloud platform
touched on two complementary technologies used together
for real time data processing and integration. Here’s how
Streamsets and Kafka worked together:

Kafka carried out the distributed event streaming to
provide high-throughput and low-latency data

4.3. Load:

Biling fiakd
§ »
White / Dresg
Kafka Consuener 1 o

writes. It was the ideal choice for real-time
ingestion and buffering of data streams.

StreamSets was the data integrator that simplified
the pipeline design and its monitoring. It was able to
read from and write to Kafka topics using built-in
connectors enabling transformation and delivery to
the cloud destinations without the need of custom
coding.

In short, Kafka was used to handle data transport
and durability while StreamSets managed data flow
orchestration, schema evolution, and error handling.

Streamsets supported java-based regular expressions
(regex) in multiple stages and functions. Regex was used for
conditional routing and filtering of data based on defined
pattern or logic. Few examples of streamsets regex shown
below:

e It was applied to headers to iron out uppercase and

lowercase alignments:

"fromFieldExpression": "/Account™,

"toFieldExpression™: "/account”

¥
Applied to replace the custom header to a writable
header expression recognized by the database:
"fromFieldExpression": "/'911 Zip™,
"toFieldExpression™: "/zipcode"
}
Used to set a custom value to a field that was not
seen in the CSV but required to be written in the
database:

"fieldToSet": "/maxdownload",
"expression": "5000"

@ i
Equipmant Kafa Producer 1
@- -
b |
Discard Records Emmml

Fig 3: Streamsets Pipeline Using Kafka for data Restructuring

Based on the billing data, nodes in the pipeline were
designed to bring together the billing data in a very strictly
structured framework, followed by telemetry data received
from the access network equipment and additional IP
mapping endpoints received because of additional imports
from the network management system. Using tailor made
regex data structures at each node in the pipeline was
eventually set up to deliver a clean and standardized dataset.
The data produced in Kafka would be void of any duplicate

122

entries and contained data headers exactly as programmed in
regex. The values under the headers were either produced as
is or manipulated for better alignment prior to writing. In the
last stage, data Loading would move transformed data to a
target system, which in this case was a data warehouse.

The cloud systems were optimized for storage and
analysis, such that data was made available for business
intelligence or machine learning applications. After that, data

Amey Deshpande / IJAIDSML, 7(1), 120-123, 2026

was successfully integrated into the system in the multiple
steps that made up the ETL cycle. With this structured
approach, data consistency, quality and readiness for
downstream analysis were ensured [3].

5. Cloud vs On-Premises ETL Deployment

Cloud ETL is managed by the cloud host, offering
scalability and flexibility. On-premises ETL is managed in
house, providing complete control over infrastructure and
data security. It is up to the SaaS provider to architect the
ETL in cloud or on-premises. The factors determining this
decision are largely on the customer base, which in this case

were BSP organizations, with a desire to adopt the SaaS
product by integration of their subscriber data. This data had
unpredictable sources among BSS providers as well as BSP
in-house billing systems. Given that the revenue for BSPs
is on a subscription basis, the risk is higher with long term
product adoptions. With that mindset and to achieve
maximum product adoption from BSPs across the country,
the SaaS provider would carefully consider all the pros and
cons of the ETL deployment. The below table goes over high
level pre-deployment considerations for the Saas provider:

Table 1: Cloud vs on-Premises ETL Deployment

Cloud ETL

On-Premises ETL

Hosted on a third-party provider like AWS, Azure, Google.

Hosted in-house at the provider’s servers and network.

Managed by cloud provider, including updates.

Managed by the provider, including all maintenance.

Highly scalable and flexible, scaled up or down on demand.

Less scalable; would need new hardware to expand,
adding overhead cost.

Low initial cost - pay-as-you-go per usage. Could add cost in the

long run.

High upfront investment in hardware, software, and
licenses.

Less control over the underlying infrastructure; relies on the
provider's security measures.

Complete control over hardware, software configuration,
and security policies.

Seamless integration with other cloud services and data
warehouses.

Integration requiring more effort to connect with external
services.

Data integration is often the simplest type of integration
to implement, but requires proper information management
techniques to make the solution sustainable and cost-
effective [6]. The SaaS provider, depending on the product
or service their customers are adopting will architect their
Data integration accordingly on-premises, or in the cloud, or
a mix of both.

6. Conclusion

Small businesses typically do not have the IT depth of
larger businesses and as a result they struggle to leverage
their limited resources for a competitive advantage. Often,
small and medium scale BSPs do not have the resources to
effectively maintain their own data centers or on-premises
equipment. These factors make the adoption of SaaS
solutions attractive to small BSPs, as they can access high-
end software without needing to install the infrastructure
internally to support it. Once a solution is chosen, it is
common for that solution to need to be integrated with other
applications which is where the data integration and use of
ETL to achieve it plays a huge role in cloud-native products
[7]. The BSS originated CSV file could contain multiple
duplicate rows of data per subscriber, with misses leading to
empty data fields and inability of tracking certain data that
the SaaS platform required for analysis. All of this was

123

resolved by using a combination of Streamsets and Kafka to
be loaded to the cloud databases as a daily job.

References

[1] Building a Data Lake: A Step-by-Step Guide with Codes
and Examples, by Pradyumna Karkhane

[21 An Overview of ETL Techniques, Tools, Processes and
Evaluations in Data Warehousing by Bilal Khan,
Saifullah Jan, Wahab Khan and Muhammad Imran
Chughtai.

[3] ETL: From Design to Deployment by Raghav, Barani,
Vijay Ram, Christ University Bangalore, Bangalore,
India

[4] https://datatracker.ietf.org/doc/html/rfc4180

[5] Streaming Data Ingestion into Bigquery Using
Streamsets by Hareesh Kumar Rapolu, International
Journal of Leading Research Publication (IJLRP), E-
ISSN: 2582-8010

[6] Reliable Dynamic Data Integration Approach for SAAS
Application with Their On-Premises Systems by K.
Abdur Rahman Khan, Dr. P. Suryanarayana Babu

[71 Implementing and Integrating SaaS Solutions at Small
Businesses by Bob Bemrose Technical Operations
Support Coordinator ManageForce.

https://datatracker.ietf.org/doc/html/rfc4180

