International Journal of Artificial Intelligence, Data Science, and Machine Learning
Grace Horizon Publication | Volume 7, Issue 1, 130-134, 2026
ISSN: 3050-9262 | https://doi.org/10.63282/3050-9262.1JAIDSML-V711P124

Original Article

Beyond CVEs: Agentic Al for Real-World Software
Vulnerability Discovery and Prioritization

Vedika Saravanan
Independent Researcher, Providence, USA.
Received On: 31/12/2025 Revised On: 02/02/2026 Accepted On: 04/02/2026 Published On: 06/02/2026
Abstract - Software systems are increasingly built with complex configurations involving third-party libraries, cloud
platforms, and continuously running deployment pipelines. These factors contribute to the continuous expansion of
attack surfaces, making security a critical concern. State-of-the-art software security tools rely on predefined
vulnerability identifiers, such as the Common Vulnerabilities and Exposures (CVES), combined with static, rule-based
analysis. However, such approaches are ineffective at discovering previously unknown vulnerabilities, exposed
misconfigurations, and environment-dependent security issues commonly found in real-world systems. This results in
suboptimal coverage, elevated false positive rates, and alert fatigue for security teams. This paper introduces an
agentic artificial intelligence—centric framework for software vulnerability discovery and prioritization that operates
beyond CVE-based detection. The proposed system adopts a multi-agent architecture in which specialized agents
analyze proprietary and third-party source code, software dependencies, configuration artifacts, and runtime
environment context. Leveraging large language models with semantic reasoning and contextual risk inference
capabilities, the framework identifies security issues that lack prior classification in public vulnerability databases.
Unlike traditional severity-based scoring approaches, the proposed framework prioritizes vulnerabilities based on
exploit likelihood, prevalence, and operational impact. This risk-based prioritization reduces remediation effort by
focusing attention on vulnerabilities that pose substantial real-world risk. Experimental evaluation on heterogeneous,
production-scale software repositories demonstrates improved recall for previously unclassified vulnerabilities, along
with a measurable reduction in false positives and alert fatigue when compared to conventional CVE-based scanners.
These findings indicate that agentic Al represents a promising pathway for bridging academic vulnerability
taxonomies with the practical security requirements of modern software supply chains.

Keywords - Agentic Al, Software Vulnerability Detection, CVE-agnostic Security Analysis, Multi-Agent Systems,
Context-Aware Risk Assessment, Vulnerability Prioritization, Software Supply Chain Security.

1. Introduction
1.1. Background on Software Vulnerabilities

Rapid turnover of software engineering practices such as
cloud-native architectures, microservices, and open-source
development practices and adoption of continuous
integration and deployment (CI/CD) pipelines make modern
day software system management challenging for
practitioners. However, advances like these - increasing the
scalability and acceleration of development on new
technologies - also introduce an elastic attack surface. It’s
hardly an end-to-end scenario, but mistakes from one domain
to another - programming flaws into security, dependency
risks and vulnerabilities, misconfigurations and runtime
exposures are the main facilitator for the trend of
compromise. Supply chain breach, zero-days and
compromised cloud services demonstrate the weakness of
traditional vulnerability management against real-world risk.

The traditional vulnerability checking methods can be
divided into three groups: 1) Static Analysis; 2) Dynamic
Analysis and, 3) Signature-based Scanning. These
methodologies have been useful in understanding known
CWEs but are less effective when ecosystems expand and
adversaries exploit context-dependent weaknesses rather

than isolated programming errors. Therefore, there is an
urgent need for smart vulnerability discovery solutions that
do not rely solely on syntax-based patterns, but instead
incorporate environmental context and user behavior.

1.2. Limitations of CVE-Based Tools

The vast majority of recent wvulnerability scanners
utilize the Common Vulnerabilities and Exposures (CVES)
as base work to discover, identify security problems. CVEs
are recognized and widely accepted as an extensive database
of vulnerabilities, but there are the disadvantages along with
the advantages. Reactivity: A database model, for example
CVE is inherently reactive. In many cases, only reported
vulnerabilities are logged (including theoretical attacks from
contrived exploits), leaving systems exposed to zero-day and
newly discovered security threats. Second, tools based on
CVEs are unable to represent context-sensitive
vulnerabilities such as unsafe configurations, unsafe
interactions between dependencies, and environment-specific
vulnerabilities that cannot easily be addressed by a
numbering point.

Severity ratings, such as those provided by the Common
Vulnerability Scoring System (CVSS), often fail to align

Vedika Saravanan / IJAIDSML, 7(1), 130-134, 2026

with practical exploitability. Vulnerabilities categorized as
"high severity" may be functionally impossible to exploit
within specific production deployments due to environmental
constraints or compensating controls. Conversely, "low-
severity” flaws may pose significant systemic risk by
expanding the attack surface, facilitating privilege escalation,
or acting as catalysts for sophisticated attack chains that
result in catastrophic business impact. This discrepancy
frequently generates high rates of false positives and
subsequent alert fatigue, which compromises the operational
efficiency of security teams and delays the remediation of
mission-critical threats. Such limitations necessitate the
development of vulnerability discovery methodologies that
are adaptive, context-aware, and independent of predefined
signature databases.

1.3. Motivation for Agentic Al

Catalysts of these possibilities include recent
advancements in Al (e.g.,, LLMs and self-reasoning
systems), which enable creativity thinking beyond the rule-
based and signature based detection approaches. They are
task-oriented, cooperative agents capable of breaking down
complex tasks into smaller ones, incorporating evidence
from multiple sources and learning dynamically from
feedback and context. These properties also make the
agentic Al approach to security analysis particularly suitable
for today’s software ecosystems, where vulnerabilities often
emerge from the interaction of code, configuration,
dependencies, and runtime semantics. Via agentic Al,
discovery of vulnerability could shift from the simple one-

size-fits- -all approach of static pattern matching to
intelligent inference through achieving semantic
understanding, behavioral modeling and environmental

awareness. We show how one such agentic model is capable
of effecting the continual inspection of software artifacts,
inferring exploitation paths and risk in light of deployment-
dependent characteristics. This approach allows for early
detection of weaknesses not yet known or formally classified
which may result in a stronger security posture much
sooner.

1.4. Research Gap

Although there is an increasing trend toward employing
machine learning (ML) / Al for software security, most of
existing works are limited in their scope. The majority of the
Al based research leverages supervised models for learning
from labeled datasets (i.e., vulnerability detected, not
detected), as these labeled data are knowledge driven, since
provided labels in this sense use prior known CVEs and
historical information. Those models are also not a great
vocal in generalizers with the coming of new vulnerabilities
and even more importantly, they are non-explainable &
context-agnostic. The current approaches do not give
substantial support for this reasoning in a multi-Ul setting
because: (i) they concentrate descriptively on the Ul features
and has no explicit reasoning about the relationships among
source code entities, APl dependencies, user preferences, and
runtime context.

131

The bounty report for these systems was rather opaque
(CVE-sensitive) and context sensitive, allowing to prioritize
risks not only by the severity scores, but also watering them
down based upon the exploitability. This void must be filled
with an intelligent and automated system that is capable of
reasoning across software artifacts and operations
environment in a holistic manner, while minimizing false
positives for the report back to security practitioners, as well
as elevating the nature of the remediation.

2. Related Work

The research of vulnerability discovery is well
documented by the software security community both in
academia and industry. The current available methods can
be roughly grouped into the following three categories:
CVE-based vulnerability scanning, static/dynamic analysis,
and machine-learning based security analysis. Every class
has some insight helpful to security, but is limited in terms of
discovering new attacks and exploitability.

2.1. CVE-Based Vulnerability Detection

Most free and proprietary vulnerability scanning tools
rely on the Common Vulnerabilities and Exposures (CVE)
database to determine the presence of security issues in
software. Tools of dependency checkers and vulnerability
management platforms prefix/overlay known CVEs
associated with a severity score on software components
using the Common Vulnerability Scoring System (CVSS)
[1]1.[2]. Although this approach is great for consistent
reporting and wide usage, it's a reactive measure that only
helps when publicly known vulnerabilities are disclosed.
Information systems such as zero-day vulnerabilities, un-
documented security configurations and insecure product
interaction might not be discovered until revealed publicly
[3]. Further, CVE focused tools do not identify if the
vulnerability is a significant one in the context of the
deployment scope and causes high amount of false positives
and alerts based overload [4].

2.2. Static and Dynamic Analysis Techniques

SAST and DAST tools that focus on vulnerabilities
locating by source code scanning or runtime behavior
monitoring, respectively [5], [6]. Static analyzers can
sometimes find bugs in the code without executing the code,
but they usually have loose semantics and high false positive
rates. Methods like dynamic analysis are runtime-based and
identify vulnerabilities at the time of execution, however
they suffer from low coverage and scalability. Hybrid static
and dynamic techniques have been proposed [7] for this
purpose, but are still based on pre-defined patterns of
vulnerabilities and/or they do not involve context-aware
reasoning.

2.3. Machine Learning and Al-Based Approaches

In the development of vulnerability detection, there had
been some studies focusing on it while applying machine
learning and deep learning techniques, such as classifying
vulnerable code snippets [8], predicting vulnerabilities at
function level [9] and pattern learning from labeled data [10].
However, these methods have limitations: most of them are

Vedika Saravanan / IJAIDSML, 7(1), 130-134, 2026

trained on a typical supervised learning with CVE-labelled
dataset where the capability to generalize on vulnerabilities
that have not been encountered before is restricted. In
addition, a number of Al-centric systems are monolithic and
do not offer an interpretable feedback loop whose can be
easily be used for deploying to new execution contexts [11].

2.4. Context-Aware and Supply Chain Security Analysis
Third-party dependencies, configuration artifacts and
deployment environments are becoming more attention due
to the increasing importance of software supply chains
relations, they have been referred as the highlighted fields in
recent research [12], [13]. But few methods are proposed to
take these dimensions into account and to assess risks from
both. Recent work has demonstrated that the criticality of
vulnerabilities is insufficient for modelling actual risk in the
world, and calls for context-sensitive priority mechanisms
[14]. However, few systems incorporate context-aware
reasoning in combination with autonomous decision making.

3. Methodology

This section presents the proposed agentic Al-based
framework for software wvulnerability discovery and
prioritization. It overcomes issues of CVE focus and rule-
driven security tools with reasoned autonomy, situational
context-aware analysis and coordinated decision- making
across a multi-dimensional software system.

3.1. System Overview
3.1.1. Why Agentic Al

Most recent software security problems owe less to code
shouts fallacies and more to interactions between source
code, third-party libraries, configuration parameters, runtime
settings. Legacy security products primarily examine these
elements in isolation and largely rely on rule-based ones or
existing vulnerability signatures. However, these
methodologies are not general and they do not take into
account the exploitability in a real-world scenario. Agentic
Al offers a radically different alternative in which multiple
intelligent, autonomous agents with their own goals come
together to accomplish challenging tasks. Every agent is
responsible for analyzing one specific aspect of the software
and exchange intermediate results with other agents.
Consequently, it provides the aggregate wisdom for full-
blown vulnerability discovery, semantics comprehension and
contextual risk analysis. It is also enhanced with Large
Language Models (LLMs) to reason on the semantics of
code, configuration intent and probable attacker behavior.

3.1.2. Overall Workflow
The complete workflow of the proposed system includes the
following steps:

132

Artifact Collection: The software artifacts, such as
source code repositories, dependency manifest files,
configuration files and deployment metadata are
brought into the system.

Parallel Agent Analysis: Agents that are specialized
for specific artifacts and operate as individual
analysis units to detect the security attacks in it.
Agent Coordination: Agents share attacks at the

common reasoning layer facilitating cross-
fertilization and correlation of vulnerabilities.

e Contextual Risk Assessment: Identified
vulnerability should be assessed for exploit

probability, exposure on environment and business
impact.

Prioritize and Report: Assign real-world risk to
vulnerabilities and provide precision reporting to
your development and security teams.

With this pipeline one can perform proactive and
ongoing discovery of vulnerabilities without relying on pre-
defined CVE references.

3.2. Multi-Agent Architecture

The infrastructure introduced is based on a cooperative
multi-agent concept, where each agent specializes in one part
of the focus but yet contributes to one common risk
statement.

3.2.1. Code Analysis Agent

The Code Analysis Agent scans application source code
to identify insecure development practices, flawed logic, and
patterns that resemble vulnerabilities. It interprets flow,
control, intent, and data paths using LLM-based semantic
reasoning, which differs from traditional static analysis tools.
If it detects an error in authentication logic, the handling
of tainted data, or wvulnerabilities in functions
like eval() or open(), it will generate an alarm even if no
signature in the vulnerability database covers it.

3.2.2. Dependency Analysis Agent

Nowadays, a significant amount of software is built on
top of third-party libraries and frameworks, dependency
vulnerabilities are one of the primary attack surfaces. The
Dependency Analysis Agent inspects dependency manifests
and package graphs to identify out-of-date, vulnerable, or
risky dependencies. Besides these CVE matching checks,
the agent takes into account: how a specific dependency
accomplishes against its other dependencies (by checking
transitive order and risk), and context of usage to decide
whether a vulnerability in this dependency can be personally
exploited for useful purposes towards your application.

Vedika Saravanan / IJAIDSML, 7(1), 130-134, 2026

Agentlc Al-Based Vulnerablllty Dlscovery and Prlorltlzanon Framework

Analysis Agents

—

PP Code Analysis Agent

Source ——p

» Source Code Review

Risk-Based Prioritization

+ Exploit Likelihood

Dependenc)

+ Environmental Exposure
‘ + Operational Impact

Manifests

Configuration
Files

3
&)

E Configuration Analysis Agent » Config & Misconfig Analysis

|

Vulnerability Report |

+ High-Risk Findings

Runtime
Envxronmenl

£

IIH
|

- T
|
1
- - —

Agent Coordination & Knowledge Sharing

+ Remediation Actions

Ce————————C

Fig 1: Agentic Al-Based Vulnerability Discovery and Prioritization Framework

3.2.3. Configuration Analysis Agent

The Configuration Analysis Agent examines
misconfigured artifacts, including YAML and JSON files,
environment variables, container definitions, and cloud
deployment scripts. It identifies insecure defaults, excessive
privileges, unsafe service exposure, and configuration
patterns that frequently escape CVE-based detection.

3.2.4. Context and Risk Agent

The contextual and risk Agent is tasked to get answers
from all agents but itself, and then evaluate the risk in a
context. It assesses the risk based on deploy-scope, network-
facing integrations, permission level and probable adversary
paths. This generator addresses this issue by providing an
(in-house) assessment of the real-world exploitability,
instead of just showing raw CVSS scores.

4. Results & Discussion

In this section, we present the empirical results of our
proposed agentic Al-based discovery framework evaluated
with production-scale diverse software repositories. The
testing of the proposed system is performed to compare it
with other existing CVE-based vulnerability scanner tools
by detection rate, prioritizing ability and quality value on
alerting for prioritization. We tested our approach on a
curated set of diverse software repositories in the real-world
for heterogeneous programming languages, third-party
dependencies, and configuration artifacts. We benchmarked
the performance of our baseline with respect to traditional
CVE-centric vulnerability scanners that rely on static rules
and severity-based scores. We evaluate performance using
true positives (TP), false positives (FP), and prioritization
effectiveness, as these metrics directly reflect operational
usability in security workflows.

4.1. Vulnerability Detection Performance

The results in Table - 1 show that the proposed agent-
based Al framework performs better in detecting
vulnerabilities compared to conventional CVE-based tools.
The results demonstrate that the proposed approach has

significantly higher recall, particularly for unknown and
environment-dependent vulnerabilities.

Table 1: Vulnerability Detection Performance

Comparison
Method Known Unclassified Overall
CVEs Vulnerabilities Recall
Detected Detected (%)
CVE-Based High Low 68.4
Scanner
Static + Rule- | Medium Very Low 61.2
Based
Analysis
Proposed High High 84.7
Agentic Al
Framework

133

The results of the experiments clearly reveal advantages
of an agentic Al based framework for wvulnerability
discovery and prioritization. Using a group of special agents
and the proposed LLM platform are able to identify
vulnerabilities not found by traditional CVE scanners. 2.1
Contextual risk analysis. Although it has not been covered by
this paper, for the above risk matrix based approach
contextual risk assessment may better enhance the accuracy
of prioritization such that more vulnerable items of high
impact are addressed first. This also serves to decrease false
positive rates and, quite directly, tensioning alert fatigue that
is a common problem at large security operations. Our
findings suggest that agentic Al holds the potential to bridge
academic vulnerability models and realistic needs of
software security in today’s sophisticated supply chains.

5. Conclusion

To mitigate the weakness of rule-based and CVE-centric
vectors, this manuscript presents a CVE-independent, agentic
Al-based framework for software vulnerability discovery
and prioritization. Our approach leverages an embedded
multi-agent architecture on the large language model to fill
these gaps for source code, dependencies, configurations
and runtime context in this analysis. We show through

Vedika Saravanan / IJAIDSML, 7(1), 130-134, 2026

experiments on production-scale data, the potential of being
able to attain higher recall detection and less alert
notifications by more than an order of magnitude reduction
in false positive. Results demonstrate that the ability to apply
contextual, risk-based reasoning is sufficient to
autonomously rate vulnerabilities into real-world
exploitability and operational impact which are two
characteristics required by any pragmatic strategy for state-
of-the-art vulnerability management modeling.

References
[1] MITRE Corporation, “Common Vulnerabilities and
Exposures (CVE),” 2024. [Online]. Available:

https://cve.mitre.org

FIRST Organization, “Common Vulnerability Scoring
System (CVSS) v3.1: Specification Document,” 2019.

S. Frei, M. May, U. Fiedler, and B. Plattner, “Large-
scale vulnerability analysis,” in Proc. ACM Conf.
Computer and Communications Security (CCS), 2006,
pp. 131-140.

L. Allodi and F. Massacci, “Comparing vulnerability
severity and exploits in the wild,” in Proc. ACM Conf.
Computer and Communications Security (CCS), Enna,
Greece, 2012.

B. Chess and G. McGraw, “Static analysis for security,”
IEEE Security & Privacy, vol. 2, no. 6, pp. 76-79,
Nov.-Dec. 2004.

W. G. J. Halfond, J. Viegas, and A. Orso, “A
classification of SQL injection attacks and

(2]
(3]

(4]

(5]

(6]

134

countermeasures,” in Proc. IEEE Int. Symp. Software

Reliability Engineering (ISSRE), 2006, pp. 65-81.

S. K. Sahoo, J. Criswell, C. Geigle, and V. Adve, “Using

likely invariants for automated software fault

localization,” ACM SIGARCH Computer Architecture

News, vol. 41, no. 1, pp. 139-152, 2013.

Z. Li, D. Zou, S. Xu, Z. Chen, M. Zhu, S. Wang, and H.

Jin, “VulDeePecker: A deep learning-based system for

vulnerability detection,” in Proc. Network and

Distributed System Security Symp. (NDSS), 2018.

Y. Zhou and D. Evans, “Automated vulnerability

discovery in source code using deep learning,” in Proc.

IEEE Symp. Security and Privacy (S&P), 2019.

[10] R. Russell et al., “Automated vulnerability detection in
source code using machine learning,” IEEE Security &
Privacy, vol. 18, no. 4, pp. 6673, 2020.

[11] T. Chen, S. Wang, and X. Li, “Explainable vulnerability
detection using attention-based neural networks,” IEEE
Trans. Dependable and Secure Computing, vol. 19, no.
3, pp. 1792-1806, Mar. 2022.

[12] E. K. Blum, “Software supply chain security: Threats
and mitigation strategies,” IEEE Software, vol. 38, no.
4, pp. 54-62, 2021.

[13] J. Ladisa, H. Okhravi, and M. K. Reiter, “Security risks
in modern software supply chains,” in Proc. IEEE
European Symp. Security and Privacy (Euro S&P),
2021.

[14] N. H. Pham, T. Dang, and T. N. Nguyen, “Context-
aware vulnerability prioritization for software systems,”
IEEE Access, vol. 8, pp. 172345-172357, 2020.

(71

(8]

(9]

https://cve.mitre.org/

