
 International Journal of Artificial Intelligence, Data Science, and Machine Learning 

Grace Horizon Publication | Volume 7, Issue 1, 141-148, 2026 

ISSN: 3050-9262 | https://doi.org/10.63282/3050-9262.IJAIDSML-V7I1P126    

  

 

Original Article  

 

Scalable Adaptive Learning for Early Software Fault 

Prediction in Agile: From Reliability Gains to Sprint 

Planning Optimization 
 

Mohit Bansal1, Tanvi Arora2, Rahul Chatterjee3, Simran Kaur4 

1,4Computer Science Department Shiv Nadar University Greater Noida, Uttar Pradesh, India. 
2Artificial Intelligence Department Shiv Nadar University Greater Noida, Uttar Pradesh, India. 

3Information Technology Shiv Nadar University Greater Noida, Uttar Pradesh, India. 

 

Received On: 03/01/2026         Revised On: 06/02/2026        Accepted On: 08/02/2026        Published on: 10/02/2026 

 

Abstract - Agile teams increasingly deliver software through rapid iterations, cloud-native deployment, and 

continuously evolving architectures. While this cadence accelerates value delivery, it also amplifies the operational 

cost of faults: late discovery increases rework, destabilizes sprint commitments, and elevates reliability risk. 
Traditional software defect prediction has produced strong results in offline, within-project settings, yet common 

limitations remain for modern Agile delivery: models degrade under concept drift, labels arrive late (often after 

release), and predictions are rarely integrated into sprint planning decisions in a decision-traceable manner. This 

manuscript proposes Scalable Adaptive Learning for Sprint Analytics (SALSA), a framework that couples adaptive 

fault prediction with sprint planning optimization. SALSA unifies drift-aware continual learning, transfer and 

federated strategies for low-data or privacy-constrained contexts, effort-aware evaluation aligned with Agile quality 

assurance capacity, and interpretable risk rationales suitable for governance in regulated environments. The 

framework extends beyond probability of fault to estimate reliability gain and to optimize sprint backlog selection 

under capacity constraints, balancing feature delivery with risk reduction. A worked sprint planning example 

demonstrates how predicted risk, effort, and expected reliability gain can be translated into a concrete backlog 

recommendation and quality budget allocation. The manuscript also outlines a replication-ready evaluation protocol 
emphasizing time-ordered validation, cost-effectiveness, and measurable planning outcomes. By connecting early 

fault prediction to sprint-level decision making, SALSA reframes defect prediction as an operational capability that 

improves both software reliability and sprint planning efficiency. 

 

Keywords - Agile Software Development, Software Defect Prediction, Continual Learning, Concept Drift, Effort-

Aware Metrics, Explainable AI, Federated Learning, Sprint Planning Optimization, Software Reliability, Devops 

Analytics. 

 

1. Introduction 

Agile methods emphasize iterative delivery, frequent 

reprioritization, and short feedback loops. Practical sprint 

planning depends on limited capacity and uncertain 

information, especially when technical debt and latent 

defects compete with feature work. Agile planning guidance 

underscores the need for reliable estimation, transparent 

prioritization, and continuous refinement as information 

changes during execution [1]. However, fault-related work is 

often reactive: defects are detected late in the sprint or post-
release, generating unplanned work, spillover, and reliability 

regressions. 

 

Software defect prediction seeks to anticipate fault-

prone artifacts so quality assurance effort can be focused 

earlier. Large-scale benchmarking studies show that many 

classifiers can be competitive when evaluated on standard 

metrics, but performance varies by dataset characteristics and 

experimental design [2]. Earlier work demonstrates that 

static code attributes can support useful predictors, indicating 

that repository-mined features can identify risk hot spots 

before runtime failures manifest [3]. 

 

Agile delivery introduces additional challenges. Cross-
project generalization is difficult because feature 

distributions shift across domains and processes, and 

prediction success depends on data and process compatibility 

[4]. Moreover, Agile teams often require just-in-time risk 

signals near the moment of code change rather than coarse, 

release-level predictions. Just-in-time quality assurance 

research addresses this need by linking change-level signals 

to defect proneness in time-sensitive workflows [5]. 

 

Modern delivery pipelines intensify these problems 

through drift: codebases evolve rapidly, team practices shift, 
architecture refactoring changes coupling patterns, and 

platform migrations alter telemetry signals. Continual 

learning literature emphasizes that models trained on 

stationary batches can fail under nonstationary streams and 

can catastrophically forget past knowledge unless adaptation 

is managed explicitly [6]. In practice, reliability 



Mohit Bansal et al. / IJAIDSML, 7(1), 141-148, 2026 

 
142 

improvements also depend on adjacent engineering practices 

such as automated testing strategies. Comparative analysis of 

testing frameworks in enterprise Java systems shows 

reliability sensitivity to testing approach and coverage 

mechanisms, reinforcing that predictive models should be 

connected to actionable interventions rather than treated as 
passive scoring tools [7]. Transfer learning has emerged as a 

key approach for low-data scenarios, aiming to leverage 

source projects when target data are limited, though 

distribution mismatch remains a principal barrier [8]. 

 

Recent work explicitly targets Agile fault prediction 

with scalable and adaptive machine learning, connecting 

early prediction to reliability and sprint planning efficiency 

[9]. Building on this direction, the present manuscript 

addresses an additional operational gap: prediction outputs 

are often not translated into sprint planning decisions under 

explicit capacity constraints, nor are they consistently 
governed through interpretable, auditable rationales. 

 

This paper makes four contributions. First, it introduces 

SALSA, an end-to-end architecture for adaptive early fault 

prediction integrated with sprint planning optimization. 

Second, it specifies a drift-aware adaptive learning design 

combining continual learning with transfer and federated 

options. Third, it defines an effort- and planning-aligned 

evaluation and decision formulation that operationalizes 

predicted risk into reliability gain and sprint decisions. 

Fourth, it proposes decision transparency artifacts, enabling 
engineering governance compatible with high-stakes and 

regulated contexts. 

 

2. Background and Related Work 
2.1. Scalable Learning Signals in Modern Agile Systems 

Agile fault prediction increasingly relies on 

heterogeneous signals beyond classic static metrics. Real-
time and resource-constrained contexts motivate lightweight 

learning pipelines, where feature extraction and inference 

must remain efficient even under edge or near-edge 

constraints [10]. Many enterprise systems adopt 

microservices and cloud platforms, introducing service 

boundaries, distributed tracing, and operational telemetry as 

relevant predictors. Secure, compliant microservices 

architectures on platforms such as AWS and OpenShift 

highlight the operational complexity and the importance of 

reliability in regulated domains [11]. These characteristics 

motivate feature sets that incorporate deployment, runtime, 
and configuration signals alongside code and process 

metrics. 

 

A central methodological issue is that defect prediction 

performance metrics must align with the resource budget of 

quality work. Effort-aware defect prediction emphasizes that 

artifacts differ in treatment cost, and that evaluation should 

measure cost-effectiveness rather than only classification 

accuracy [12]. Deep learning approaches have been applied 

to fault prediction, including CNN and RNN models that 

capture structural and sequential patterns, suggesting 

improved representation learning for complex software 
artifacts [13]. These methods are promising but can be brittle 

under drift and often require careful interpretability when 

deployed into planning workflows. 

 

2.2. Explainability and Governance for Prediction-Guided 

Decisions 
When predictions drive engineering actions, 

transparency becomes critical. High-stakes AI deployments 

in regulated environments require explainability and 

auditable decision pathways to establish trust and operational 

governance [14]. Local explanation methods such as LIME 

provide instance-level rationales that help stakeholders 

understand why a specific artifact is flagged as high risk 

[15]. In regulated operational pipelines that combine OCR, 

machine learning, and microservices, the need for 

traceability extends across the full processing chain and 

motivates governance patterns applicable to software 

delivery analytics as well [16]. Broader frameworks for 

explainable AI in high-stakes domains emphasize 
interpretability as a system-level requirement, not only a 

model property [17]. SHAP provides a theoretically 

grounded feature attribution approach that supports 

consistent local and global explanations across model 

classes, enabling comparative reasoning and decision review 

[18]. 

 

2.3. Comparative Defect Prediction, Privacy, and 

Operational Decision Making 
Comparative studies of machine learning models for 

defect prediction demonstrate that no single learner 
dominates across datasets, motivating ensembles, meta-

learning, and adaptive selection [19]. Privacy constraints also 

arise in multi-team and multi-organization contexts, where 

sharing raw defect data or code metrics may be restricted. 

Federated learning architectures for privacy-preserving 

detection tasks show how distributed training can occur 

without centralized data pooling, albeit with governance and 

protocol complexity [20]. 

 

Operational performance improvements in distributed 

systems also depend on platform-level optimizations such as 

predictive analytics and caching strategies, which can 
stabilize response times and reduce failure modes, 

reinforcing the importance of incorporating operational 

telemetry and intervention levers into prediction workflows 

[21]. In addition, AIOps-oriented root cause analysis and 

automated remediation for multi-system data integrity issues 

demonstrates how predictive and diagnostic analytics can 

reduce recovery time and improve operational reliability, 

offering an analogy for integrating fault prediction with 

actionable remediation in Agile settings [22]. Lightweight 

baselines such as decision trees and KNN remain relevant for 

interpretability and deployment simplicity, and comparative 
evaluation of these approaches provides useful anchors for 

understanding tradeoffs under constraints [23]. Federated 

learning at scale further motivates decentralized training 

designs suitable for privacy-preserving multi-team learning 

[24]. 

 

 



Mohit Bansal et al. / IJAIDSML, 7(1), 141-148, 2026 

 
143 

2.4. Decision Intelligence, Scalable Analytics Platforms, 

and Enterprise Modernization 
Agile governance frameworks that combine decision 

intelligence and defect prediction highlight the value of 

architecture-centered lifecycle governance, linking predictive 

signals to planning and control processes [25]. Scalability 
considerations extend to compute-intensive simulation and 

analytics, where machine learning integrated with HPC 

pipelines illustrates design patterns for performance, 

reproducibility, and large-scale experimentation [26]. 

 

Enterprise analytics platforms increasingly leverage 

high-performance in-memory systems to support real-time 

decision workloads; research on SAP S/4HANA database 

layers illustrates how low-latency access patterns enable 

operational analytics [27]. Architecture modernization 

affects fault behavior: monolith-to-microservices transitions 

and gateway optimization can change failure propagation 
and observability patterns, requiring models to adapt to new 

architectural feature distributions [28]. Deep learning 

systems in other domains, such as emotion understanding 

pipelines, further demonstrate how multi-stage workflows 

combine representation learning, calibration, and human-

facing interpretation, relevant for structuring explainable 

analytics in engineering processes [29]. 

 

2.5. Automation, Observability, and Data Engineering for 

Adaptive Learning 
Automated model selection and low-code machine 

learning pipelines can reduce adoption friction, particularly 

when retraining must occur frequently under drift [30]. 

Cloud-native monitoring and deployment optimization 

studies emphasize the role of observability tooling and 

Helm-based deployment strategies in maintaining reliability, 

highlighting telemetry sources that can enrich fault 

prediction models [31]. Federated AIOps frameworks for 

multi-cluster OpenShift show how distributed operational 

intelligence can be organized across clusters, aligning with 

multi-team Agile environments where training data and 

telemetry are naturally partitioned [32]. 

 
Machine learning-driven risk detection in CI/CD 

provides a direct connection between pipeline events and 

operational risk signals, supporting earlier intervention in 

delivery workflows [33]. Security and anomaly detection 

research for data in transit illustrates robust detection 

patterns that can inspire analogous anomaly signals in 

software delivery telemetry [34]. Predictive monitoring and 

error mitigation in change-data-capture pipelines further 

supports the argument that early-warning systems reduce 

downstream recovery cost in complex integrations [35]. 

 
Enterprise transition guidance for SAP Fiori in 

S/4HANA modernization highlights integration challenges 

and strategic implications, analogous to how modernization 

affects engineering process, telemetry, and defect 

distributions in Agile teams [36]. Enhancing OCR accuracy 

through neural networks shows how calibration and data-

quality improvements translate into reduced error rates in 

high-stakes workflows, reinforcing the importance of 

continual tuning for performance stability [37]. CRM and 

deep learning systems for patient journey mapping highlight 

end-to-end data integration and predictive engagement 

pipelines, providing parallels for integrating multiple signals 

into coherent decision support [38]. Convergence 

optimization studies emphasize training stability, relevant for 
continual retraining regimes where frequent updates must 

remain stable and cost-effective [39]. 

 

Finally, performance comparison of defect prediction 

models reinforces the need for robust baseline evaluation and 

repeatable experimentation under Agile constraints [40]. 

Unified data engineering for smart mobility demonstrates 

real-time integration across heterogeneous streams, 

analogous to unifying SCM, CI/CD, and observability 

sources into a single feature plane for prediction [41]. 

Forecasting and decision support patterns in portfolio 

intelligence under uncertainty motivate analogous sprint 
portfolio selection under risk [42]. Platform comparisons 

such as Pivotal Cloud Foundry versus OpenShift emphasize 

that deployment substrates affect observability and 

performance, which can indirectly influence fault patterns 

and model features [43]. Graph neural networks for 

knowledge representation motivate encoding software 

architecture and dependency structures as graphs for more 

expressive risk modeling [44]. 

 

3. Problem Statement and Research Gap 
3.1. Problem Statement 

Consider an Agile project delivering work in discrete 

sprints indexed by t. Let A_t = {a_{t,1}, a_{t,2}, ..., 

a_{t,n_t}} denote candidate work items at sprint planning 

time. A work item may correspond to a user story, a change 

set, or a set of files and services impacted by planned work. 

Each item a_{t,i} has estimated effort e_{t,i} (e.g., story 

points) and impacts a set of artifacts M_{t,i}. The 
operational goal is to (i) predict early fault risk for impacted 

artifacts before or during sprint execution and (ii) optimize 

sprint selection and quality allocation under a capacity 

constraint E_t to maximize expected reliability improvement 

while limiting spillover and unplanned rework. 

 

3.2. Research Gap 
Despite extensive defect prediction research, several 

end-to-end gaps persist for modern Agile delivery. First, 

nonstationarity is pervasive; models can degrade rapidly as 

code, architecture, and delivery pipelines evolve, requiring 
drift-aware adaptation rather than fixed offline training [6]. 

Second, action alignment is often weak: models provide 

scores but do not translate those scores into sprint decisions 

or explicit quality budgets under capacity constraints [1]. 

Third, effort and cost are frequently implicit; quality actions 

differ in effort and opportunity cost, so usefulness must be 

evaluated via cost-effectiveness and fixed-effort perspectives 

[12]. Fourth, governance and interpretability are required 

when predictions influence planning; stakeholders need 

auditable rationales and stable explanations [14]. Fifth, 

multi-team environments introduce privacy and data-sharing 

constraints, motivating transfer and federated strategies that 



Mohit Bansal et al. / IJAIDSML, 7(1), 141-148, 2026 

 
144 

preserve confidentiality while still learning from distributed 

experience [20]. 

 

4. Salsa Framework Overview 
4.1. Architecture and Data Flow 

SALSA comprises five layers: (1) signal ingestion from 

source control, work-item tracking, CI/CD pipelines, and 

runtime observability; (2) a time-indexed feature and label 

store supporting reproducible time splits and drift 

monitoring; (3) an adaptive model service implementing 

continual learning and optional transfer or federated 

learning; (4) an explanation and governance service that 

produces rationale artifacts for engineers and stakeholders; 
and (5) a sprint planning optimizer that translates predicted 

risk into backlog selection and quality allocation decisions. 

 

4.2. Core Outputs and Interfaces 
For each artifact m at sprint time t, SALSA outputs a 

calibrated probability p_t(m) of fault manifestation within a 

defined prediction window, an uncertainty estimate u_t(m) 

that supports active learning and targeted review, and an 

explanation x_t(m) that identifies the most influential signals 

for that prediction. For each work item a, artifact-level 

outputs are aggregated into an item-level risk score R_t(a), a 
predicted reliability gain under candidate interventions, and a 

recommended quality action plan. These outputs are 

delivered through dashboards, CI/CD gates, and planning-

time reports designed to be reviewed during sprint 

ceremonies. 

 

5. Adaptive Learning for Early Fault Prediction 
5.1. Feature Construction 

SALSA organizes features into five groups. Static code 

features capture complexity, size, coupling, and change-

proneness proxies, consistent with evidence that static 

attributes enable effective predictors [3]. Change and process 

features capture churn, review activity, and developer 

interaction patterns aligned with just-in-time quality 

assurance practices [5]. Testing features incorporate 

coverage deltas, flaky-test signals, and framework-specific 

indicators; this connects predicted risk to actionable test 

strategy changes, reflecting reliability sensitivity to 
automated testing practices in enterprise systems [7]. 

Architecture and dependency features represent service 

interactions and call graphs and can be encoded through 

graph representations where available [44]. Operational 

features include deployment frequency, rollback events, 

latency and error trends, and cache-related indicators, 

motivated by cloud-native observability research and 

performance optimization patterns [31]. 

 

5.2. Model Family and Calibration 
SALSA uses a hybrid ensemble to match heterogeneous 

signal types: gradient-boosted decision trees for tabular 
metrics, sequence models for time-ordered change histories, 

and optional graph components for dependency structure. 

The ensemble outputs a probability estimate that is calibrated 

using periodic reliability calibration. Calibration is essential 

because planning decisions depend on interpretable 

probabilities; miscalibration can cause teams to over-allocate 

quality work or ignore important risk signals. Calibration 

refresh is triggered by drift detection and by significant shifts 

in class balance across sprints. 

 

5.3. Drift Detection and Continual Updates 
Drift is monitored through (i) feature distribution change 

metrics, (ii) prediction residual trends, and (iii) uncertainty 

increases for recurrent artifact families. When drift is 

detected, SALSA increases retraining frequency and expands 

the window of recent data used for adaptation while applying 

continual learning constraints to reduce catastrophic 

forgetting [6]. To keep frequent retraining stable, SALSA 

adopts conservative optimizer schedules and convergence 

monitoring, which is particularly relevant in short retraining 

cycles [39]. 

 

5.4. Transfer and Federated Learning Modes 
In low-data projects, SALSA supports transfer learning 

by initializing target models using representations learned 

from related projects, then adapting with target-specific data 

to reduce mismatch [8]. In privacy-constrained multi-team 

settings, SALSA supports federated learning, where model 

updates rather than raw data are aggregated. Governance and 

protocol design follow privacy-preserving patterns 

established for distributed detection tasks, emphasizing 

secure aggregation, client selection policies, and auditability 

[20]. Distributed orchestration and monitoring are aligned 

with federated AIOps design patterns to improve reliability 

of the training service across clusters [32]. 
 

5.5. Explainability Artifacts for Engineers 
SALSA generates instance-level explanations using 

local surrogate models for on-demand interpretability and 

stable additive attributions for consistent global reasoning 

[15]. These artifact-level explanations are complemented by 

decision-level narratives used in sprint planning: a short 

justification summarizing the dominant signals, their 

directionality, and the recommended intervention. This 

approach aligns with the needs of auditable decision 

pathways in regulated environments [14]. 

 

6. Reliability Gain Modeling 

6.1. Linking Predictions to Interventions 

Predictions are most valuable when paired with 

interventions that reduce fault probability. Let q denote a 

quality action such as targeted test creation, additional 

review, refactoring of a hotspot, or deployment hardening. 

For each artifact m and action q, SALSA estimates an 

intervention effectiveness factor η(q,m) in [0,1], representing 

the expected proportional reduction in fault probability if the 

action is executed. Estimating η can use historical outcomes, 

test coverage deltas, and post-incident learning. Reliability-

oriented engineering studies emphasize that intervention 

choice matters; testing strategy changes, monitoring 
improvements, and deployment optimizations can materially 

affect reliability outcomes [7]. 

 

6.2. Expected Prevented-Fault Mass 

Let pt(m) be the predicted fault probability for artifact m 

at time t. For a work item a that touches artifacts M(a), the 



Mohit Bansal et al. / IJAIDSML, 7(1), 141-148, 2026 

 
145 

expected prevented-fault mass under action q is Δ(a,q) = 

Σ_{m∈M(a)} p_t(m)·η(q,m). This term can be converted 

into expected reliability gain by mapping prevented-fault 

mass into changes in defect density, escaped defect rates, or 

service-level error budgets. When operational telemetry 
features are included, intervention effects can incorporate 

system-level factors such as cache behavior and latency error 

reduction, reflecting patterns observed in predictive analytics 

and caching optimization [21]. 

 

6.3. Cost and Uncertainty Considerations 
Quality actions consume capacity and may introduce 

uncertainty. SALSA treats the cost C(q) as effort in story 

points or engineer-hours and includes uncertainty u_t(m) in 

prioritization. For high-uncertainty high-risk artifacts, 

SALSA can trigger active learning: a limited budget of 

manual review to improve labels and reduce uncertainty for 
future sprints. This makes the system adaptive not only via 

retraining but also via targeted data acquisition. 

 

7. Sprint Planning Optimization 
7.1. Optimization Formulation 

Let E_t be sprint capacity. For each candidate work item 

a, let V(a) be business value, e(a) be implementation effort, 
and R(a) be aggregated risk. SALSA chooses a subset S_t of 

items and a quality action q(a) for each chosen item to 

maximize risk-adjusted utility: maximize Σ_{a∈S_t} (V(a) + 

λ·Δρ(a,q(a)) − μ·R_residual(a,q(a))) subject to Σ e(a) + Σ 

C(q(a)) ≤ E_t. Here λ tunes the emphasis on reliability gains 

and μ penalizes residual risk after intervention. The 

formulation turns quality risk into an explicit planning 

tradeoff consistent with Agile planning principles [1]. 

 

7.2. Greedy and Solver-Based Strategies 
Many teams prefer simple, explainable heuristics. 

SALSA provides a greedy strategy based on utility per unit 

cost and enforces a quality buffer for the top-risk tail. For 

organizations with mature operations research capability, 

SALSA can also export a mixed-integer formulation for 

solver-based optimization. Regardless of method, evaluation 

should be effort-aware because defect treatment cost varies; 

effort-aware metrics provide a more faithful view of 

planning benefit than raw classification statistics [12]. 

 

7.3. Interpretable Decision Logs 
Every planning recommendation is accompanied by a 

decision log: top features driving risk, estimated effect of 

proposed interventions, and the constraint-based reason why 

certain items were included or excluded. This supports the 

auditability needed in governance-heavy environments and 

reduces resistance to model-guided planning [14]. 

 

8. Implementation Details and Mlops 
8.1. Data Collection and Labeling 

SALSA’s signal ingestion pipeline collects source 

control metrics, issue tracker status transitions, CI/CD 

telemetry, and runtime observability events. Labeling is 

time-windowed: an artifact is labeled faulty if a defect linked 

to that artifact is introduced or detected within a defined 

horizon. This reduces leakage from future information and 

allows time-ordered validation. In environments where labels 

arrive late, SALSA maintains provisional labels and updates 

them as defects are confirmed, enabling continual refinement 

without corrupting evaluation splits. 

 

8.2. Feature Store, Model Registry, and Deployment 
A time-indexed feature store enables reproducible 

training and debugging. Model versions are tracked in a 

registry with metadata including training window, drift 

scores, calibration statistics, and explanation stability 

metrics. Deployment follows a canary pattern: new models 

score in shadow mode for a sprint window, then promote 

only if calibration and effort-aware metrics improve, aligning 

with reliability practices in cloud-native deployment 

optimization [31]. 

 

8.3. Security and Privacy Controls 
In privacy-constrained settings, federated learning mode 

is used. Updates are encrypted and aggregated; clients are 

selected to balance representation and fairness. Anomaly 

detection applied to model update streams can detect 

poisoning or faulty clients, drawing inspiration from secure 

communication anomaly detection patterns [34]. In regulated 

environments, the governance layer stores explanation 

artifacts and decision logs to ensure traceability, analogous 

to governance requirements in regulated ML pipelines [16]. 

 

9. Evaluation Design 
9.1. Datasets, Splits, and Baselines 

Evaluation should use time-ordered splits to reflect 

deployment conditions: train on sprints 1..t, validate on t+1, 

and test on t+2, repeated across rolling windows. Cross-

project experiments should explicitly report data, domain, 

and process differences that affect generalization [4]. 

Baselines include traditional models from benchmark studies 

[2], static-feature approaches [3], just-in-time predictors [5], 
deep learning variants [13], interpretable baselines such as 

decision trees and KNN [23], and recent comparative model 

sets [19]. 

 

9.2. Metrics and Outcomes 
SALSA is evaluated on predictive, cost-effectiveness, 

and planning outcomes. Predictive metrics include AUC, F1, 

MCC, Brier score, and calibration error. Cost-effectiveness 

metrics include recall at fixed effort cutoffs and cost curves 

[12]. Planning outcomes include escaped defects per sprint, 

unplanned work ratio, spillover rate, and stability of sprint 
commitments. In CI/CD-integrated deployments, risk signals 

can also be evaluated against pipeline risk detection 

baselines that trigger earlier intervention based on build and 

deployment behaviors [33]. 

 

9.3. Drift and Adaptation Studies 
A core evaluation dimension is robustness under drift. 

Experiments should compare performance decay of static 

models against SALSA’s continual learning configuration. 

Drift detection quality can be assessed by correlating drift 

triggers with observed changes in defect density, architecture 

shifts, and platform migrations such as monolith-to-
microservices transitions [28]. 



Mohit Bansal et al. / IJAIDSML, 7(1), 141-148, 2026 

 
146 

10. Case Study Walkthrough and Worked 

Example 
10.1. Sprint Backlog Selection Example 

Consider a sprint with capacity E_t = 20 story points and 

eight candidate items. Each item has an effort estimate, 

business value score, and aggregated risk score. Assume a 

standard quality action costs two points per selected item and 

yields reliability gain proportional to risk. SALSA ranks 
items by utility-per-cost and selects until capacity is 

exhausted while reserving a small quality buffer for 

emergent risk. This process explicitly trades business value 

against reliability gains and reduces late-sprint surprises. 

 

10.2. Sensitivity to Reliability Weighting 
Planning behavior depends on λ and μ. As λ increases, 

SALSA favors items with high reliability leverage even if 

business value is moderate; as μ increases, SALSA penalizes 

residual risk and may defer risky items that cannot be 

sufficiently mitigated within the sprint. Sensitivity analysis is 

essential for governance: teams can choose a reliability 
posture aligned with product criticality, compliance 

obligations, and error budgets. This mirrors how regulated 

domains require explicit and auditable decision thresholds 

[14]. 

 

10.3. Modernization and Telemetry-Rich Scenarios 
In cloud-native modernization programs, observability 

signals and platform-level factors can materially affect fault 

patterns. Deployment substrate differences, monitoring 

configuration, and rollout strategies can change failure rates 

and detection latency. Comparative platform studies and 
monitoring optimization research illustrate that these 

operational choices influence reliability and should be 

represented in features and intervention modeling [43]. 

 

11. Discussion 
11.1. Practical Adoption in Agile Rituals 

SALSA is designed to fit Agile rituals. During backlog 
refinement, risk explanations help identify hidden 

complexity and test gaps; during sprint planning, the 

optimizer proposes a risk-adjusted sprint set; during 

execution, CI/CD gates flag high-risk changes for extra 

review. This approach encourages proactive quality rather 

than reactive defect triage. It also aligns with decision-

intelligence-driven governance patterns where predictive 

analytics inform lifecycle control decisions [25]. 

 

11.2. Scalability, Compute, and Data Engineering 

Considerations 
Scalability concerns arise in feature computation, 

retraining, and inference. Real-time integration of 

heterogeneous streams benefits from data engineering 

patterns that unify telemetry and event sources into 

consistent schemas [41]. Compute-intensive experimentation 

and simulation pipelines can support robust model selection 

and calibration at scale, leveraging HPC-inspired practices 

for reproducibility and throughput [26]. In-memory analytics 

platforms can reduce latency for feature retrieval and scoring 

in large enterprises [27]. 

 

11.3. Extensibility to Graph and Portfolio Reasoning 
As system architectures become more interconnected, 

risk reasoning may benefit from graph representations of 

dependencies and knowledge. Graph neural network 

approaches motivate encoding service interactions and 

artifact relationships to propagate risk across dependency 
edges [44]. Portfolio optimization analogies in decision-

support domains motivate treating sprint planning as a 

constrained portfolio problem under uncertainty, where risk 

and value are jointly optimized [42]. 

 

12. Threats to Validity 
Key threats include label noise and delay (defects may 

be discovered after the sprint), confounding process changes 

(team turnover, refactoring campaigns, and tool migrations), 

and generalization limits across domains. Cross-project 

learning can fail without careful alignment of process and 

data assumptions [4]. Action-effect estimation can also be 

biased if intervention effectiveness is not calibrated using 

historical outcomes; rigorous post-sprint analysis is needed 

to update η estimates and prevent overconfident planning 

recommendations. 

 

13. Conclusion and Future Work 
This manuscript presented SALSA, a scalable adaptive 

learning framework that connects early software fault 

prediction to sprint planning optimization. By combining 

drift-aware continual learning, transfer and federated 

strategies, effort-aware evaluation, and interpretable 

explanations, SALSA operationalizes defect prediction as a 

planning and reliability capability rather than a standalone 
classifier. Future work includes empirical validation on 

multi-project time-ordered datasets and telemetry-rich 

enterprise environments, deeper graph-based modeling of 

dependency risk, and controlled studies measuring 

improvements in sprint stability and escaped defect reduction 

under different reliability-weight settings. 

 

References 
[1] M. Cohn, Agile Estimating and Planning. Upper Saddle 

River, NJ, USA: Prentice Hall, 2005. 

[2] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, 

“Benchmarking classification models for software defect 

prediction: A proposed framework and novel findings,” 

IEEE Trans. Softw. Eng., vol. 34, no. 4, pp. 485–496, 

2008, doi: 10.1109/TSE.2008.35. 

[3] T. Menzies, J. Greenwald, and A. Frank, “Data mining 

static code attributes to learn defect predictors,” IEEE 

Trans. Softw. Eng., vol. 33, no. 1, pp. 2–13, 2007. 
[4] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B. 

Murphy, “Cross-project defect prediction: A large scale 

experiment on data vs. domain vs. process,” in Proc. 

ESEC/FSE, 2009, pp. 91–100, doi: 

10.1145/1595696.1595713. 

[5] Y. Kamei et al., “A large-scale empirical study of just-

in-time quality assurance,” IEEE Trans. Softw. Eng., 

vol. 39, no. 6, pp. 757–773, 2013, doi: 

10.1109/TSE.2012.70. 

[6] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. 

Wermter, “Continual lifelong learning with neural 



Mohit Bansal et al. / IJAIDSML, 7(1), 141-148, 2026 

 
147 

networks: A review,” Neural Netw., vol. 113, pp. 54–71, 

2019, doi: 10.1016/j.neunet.2019.01.012. 

[7] S. R. Gudi, “Enhancing reliability in Java enterprise 

systems through comparative analysis of automated 

testing frameworks,” Int. J. Emerging Trends Comput. 

Sci. Inf. Technol., vol. 4, no. 2, pp. 151–160, 2023, doi: 
10.63282/3050-9246.IJETCSIT-V4I2P115. 

[8] J. Nam, S. J. Pan, and S. Kim, “Transfer defect 

learning,” in Proc. Int. Conf. Softw. Eng. (ICSE), 2013, 

pp. 382–391. 

[9] S. K. Gunda, S. Yalamati, S. R. Gudi, I. Manga, and A. 

K. Aleti, “Scalable and adaptive machine learning 

models for early software fault prediction in agile 

development: Enhancing software reliability and sprint 

planning efficiency,” Int. J. Appl. Math., vol. 38, no. 2s, 

2025, doi: 10.12732/ijam.v38i2s.74. 

[10] I. Manga, “Edge software engineering for lightweight 

AI: Real-time environmental data processing with 
embedded systems,” J. Comput. Anal. Appl., vol. 34, no. 

6, pp. 88–104, Jun. 2025. 

[11] S. R. Gudi, “Design and evaluation of secure 

microservices architecture for HIPAA-compliant 

prescription processing on AWS and OpenShift,” Int. J. 

Artif. Intell., Data Sci., Mach. Learn., vol. 5, no. 2, pp. 

144–149, 2024, doi: 10.63282/3050-9262.IJAIDSML-

V5I2P116. 

[12] T. Mende and R. Koschke, “Effort-aware defect 

prediction models,” in Proc. Euromicro Conf. Softw. 

Maintenance and Reengineering (CSMR), 2010, doi: 
10.1109/CSMR.2010.18. 

[13] S. K. Gunda, “A deep dive into software fault 

prediction: Evaluating CNN and RNN models,” in Proc. 

Int. Conf. Electronic Systems and Intelligent Computing 

(ICESIC), Chennai, India, 2024, pp. 224–228, doi: 

10.1109/ICESIC61777.2024.10846549. 

[14] S. S. G. Bandari, S. D. Sivva, and R. R. Thalakanti, 

“Regulatory grade fraud detection using explainable 

artificial intelligence with auditable decision pathways 

and empirical validation on banking data,” Int. J. Artif. 

Intell., Data Sci., Mach. Learn., vol. 5, no. 3, pp. 139–

147, 2024, doi: 10.63282/3050-9262.IJAIDSML-
V5I3P115. 

[15] S. K. Gunda, "Enhancing Software Fault Prediction with 

Machine Learning: A Comparative Study on the PC1 

Dataset," 2024 Global Conference on Communications 

and Information Technologies (GCCIT), 

BANGALORE, India, 2024, pp. 1-4, 

https://doi.org/10.1109/GCCIT63234.2024.10862351.  

[16] S. R. Gudi, “AI-driven fax-to-digital prescription 

automation: A cloud-native framework using OCR, 

machine learning, and microservices for pharmacy 

operations,” Int. J. Emerging Res. Eng. Technol., vol. 5, 
no. 1, pp. 111–116, 2024, doi: 10.63282/3050-

922X.IJERET-V5I1P113. 

[17] I. Manga, “Towards explainable AI: A framework for 

interpretable deep learning in high-stakes domains,” in 

Proc. Int. Conf. Soft Computing for Security 

Applications (ICSCSA), Salem, India, 2025, pp. 1354–

1360, doi: 10.1109/ICSCSA66339.2025.11170778. 

[18] S. M. Lundberg and S.-I. Lee, “A unified approach to 

interpreting model predictions,” in Advances in Neural 

Information Processing Systems (NeurIPS), 2017, pp. 

4768–4777. 

[19] S. K. Gunda, “Analyzing machine learning techniques 

for software defect prediction: A comprehensive 
performance comparison,” in Proc. Asian Conf. on 

Intelligent Technologies (ACOIT), Kolar, India, 2024, 

pp. 1–5, doi: 10.1109/ACOIT62457.2024.10939610. 

[20] R. R. Thalakanti, S. S. Goud Bandari, and S. D. Sivva, 

“Federated learning for privacy preserving fraud 

detection across financial institutions: Architecture 

protocols and operational governance,” Int. J. Emerging 

Res. Eng. Technol., vol. 5, no. 2, pp. 108–114, 2024, 

doi: 10.63282/3050-922X.IJERET-V5I2P111. 

[21] S. R. Gudi, “Leveraging predictive analytics and Redis-

backed caching to optimize specialty medication 

fulfillment and pharmacy inventory management,” Int. J. 
AI, BigData, Computational and Management Studies, 

vol. 5, no. 3, pp. 155–160, 2024, doi: 10.63282/3050-

9416.IJAIBDCMS-V5I3P116. 

[22] Reddy Mittamidi VK., “AI/ML powered intelligent root 

cause analysis and automated remediation for multi 

system data integrity issues,” IJAIBDCMS, vol. 6, no. 4, 

pp. 133–141, Nov. 2025. Available: 

https://ijaibdcms.org/index.php/ijaibdcms/article/view/3

38 

[23] S. K. Gunda, “Machine learning approaches for software 

fault diagnosis: Evaluating decision tree and KNN 
models,” in Proc. Global Conf. on Communications and 

Information Technologies (GCCIT), Bangalore, India, 

2024, pp. 1–5, doi: 

10.1109/GCCIT63234.2024.10861953. 

[24] I. Manga, “Federated learning at scale: A privacy-

preserving framework for decentralized AI training,” in 

Proc. Int. Conf. Soft Computing for Security 

Applications (ICSCSA), Salem, India, 2025, pp. 110–

115, doi: 10.1109/ICSCSA66339.2025.11170780. 

[25] S. D. Sivva, R. R. Thalakanti, S. S. G. Bandari, and S. 

D. R. Yettapu, “AI-driven decision intelligence for agile 

software lifecycle governance: An architecture-centered 
framework integrating machine learning defect 

prediction and automated testing,” IJETCSIT, vol. 4, no. 

4, pp. 167–172, Dec. 2023. Available: 

https://ijetcsit.org/index.php/ijetcsit/article/view/554 

[26] S. K. Gunda, “Accelerating scientific discovery with 

machine learning and HPC-based simulations,” in 

Integrating Machine Learning Into HPC-Based 

Simulations and Analytics, B. Ben Youssef and M. Ben 

Ismail, Eds. IGI Global Scientific Publishing, 2025, pp. 

229–252, doi: 10.4018/978-1-6684-3795-7.ch009. 

[27] T. Raikar, “High-performance in-memory computing: A 
research study on SAP S/4 HANA database layer,” 

American Journal of Technology, vol. 4, no. 2, pp. 93–

113, 2025, doi: 10.58425/ajt.v4i2.449. 

[28] S. R. Gudi, “Deconstructing monoliths: A fault-aware 

transition to microservices with gateway optimization 

using Spring Cloud,” in Proc. Int. Conf. on Electronics 

and Sustainable Communication Systems (ICESC), 

https://doi.org/10.1109/GCCIT63234.2024.10862351


Mohit Bansal et al. / IJAIDSML, 7(1), 141-148, 2026 

 
148 

Coimbatore, India, 2025, pp. 815–820, doi: 

10.1109/ICESC65114.2025.11212326. 

[29] G. V. Krishna, B. D. Reddy, and T. Vrindaa, 

“EmoVision: An intelligent deep learning framework for 

emotion understanding and mental wellness assistance 

in human computer interaction,” IJAIDSML, vol. 6, no. 
4, pp. 14–20, Oct. 2025. Available: 

https://ijaidsml.org/index.php/ijaidsml/article/view/295 

[30] I. Manga, “AutoML for all: Democratizing machine 

learning model building with minimal code interfaces,” 

in Proc. Int. Conf. on Sustainable Computing and Data 

Communication Systems (ICSCDS), Erode, India, 2025, 

pp. 347–352, doi: 

10.1109/ICSCDS65426.2025.11167529. 

[31] S. R. Gudi, “Monitoring and deployment optimization in 

cloud-native systems: A comparative study using 

OpenShift and Helm,” in Proc. 4th Int. Conf. on 

Innovative Mechanisms for Industry Applications 
(ICIMIA), Tirupur, India, 2025, pp. 792–797, doi: 

10.1109/ICIMIA67127.2025.11200594. 

[32] S. K. R. Vanama, “AI report - Federated AIOps for 

multi-cluster OpenShift,” IJAIBDCMS, vol. 6, no. 2, pp. 

96–108, May 2025. Available: 

https://ijaibdcms.org/index.php/ijaibdcms/article/view/3

36 

[33] R. R. Thalakanti and S. S. Goud Bandari, “Intelligent 

continuous integration and delivery for banking systems 

using machine learning driven risk detection with real 

world deployment evaluation,” IJAIBDCMS, vol. 5, no. 
4, pp. 168–175, 2024, doi: 10.63282/3050-

9416.IJAIBDCMS-V5I4P118. 

[34] S. R. Gudi, “Ensuring secure and compliant fax 

communication: Anomaly detection and encryption 

strategies for data in transit,” in Proc. 4th Int. Conf. on 

Innovative Mechanisms for Industry Applications 

(ICIMIA), Tirupur, India, 2025, pp. 786–791, doi: 

10.1109/ICIMIA67127.2025.11200537. 

[35] V. K. Reddy Mittamidi, “Leveraging AI and ML for 

predictive monitoring and error mitigation in change 

data capture pipelines,” IJETCSIT, vol. 6, no. 3, pp. 

104–111, Aug. 2025. Available: 
https://ijetcsit.org/index.php/ijetcsit/article/view/515 

[36] T. Raikar and V. Apelagunta, “Implementing SAP Fiori 

in S/4HANA transitions: Key guidelines, challenges, 

strategic implications, AI integration recommendations,” 

Journal of Engineering Research and Sciences, vol. 4, 

no. 11, pp. 1–9, 2025, doi: 10.55708/JS0411001. 

[37] S. R. Gudi, “Enhancing optical character recognition 

(OCR) accuracy in healthcare prescription processing 

using artificial neural networks,” European Journal of 

Artificial Intelligence and Machine Learning, vol. 4, no. 
6, 2025, doi: 10.24018/ejai.2025.4.6.79. 

[38] A. K. Kishore Varma Alluri, “Using Salesforce CRM 

and deep learning (CNN) techniques to improve patient 

journey mapping and engagement in small and medium 

healthcare organizations,” IJAIDSML, vol. 6, no. 4, pp. 

101–109, Nov. 2025. Available: 

https://ijaidsml.org/index.php/ijaidsml/article/view/330 

[39] R. R. Thalakanti, “Enhancing convergence in fully 

connected neural networks via optimized 

backpropagation,” in Proc. 2nd Int. Conf. on Computing 

and Data Science (ICCDS), Chennai, India, 2025, pp. 1–

6, doi: 10.1109/ICCDS64403.2025.11209625. 
[40] S. K. Gunda, “Comparative analysis of machine learning 

models for software defect prediction,” in Proc. Int. 

Conf. on Power, Energy, Control and Transmission 

Systems (ICPECTS), Chennai, India, 2024, pp. 1–6, doi: 

10.1109/ICPECTS62210.2024.10780167. 

[41] I. Manga, “Unified data engineering for smart mobility: 

Real-time integration of traffic, public transport, and 

environmental data,” in Proc. Int. Conf. Soft Computing 

for Security Applications (ICSCSA), Salem, India, 

2025, pp. 1348–1353, doi: 

10.1109/ICSCSA66339.2025.11170800. 
[42] A. K. Kishore Varma Alluri, “Salesforce CRM 

framework for real time DeFi portfolio intelligence and 

customer engagement forecasting in Web3 based 

decentralized finance ecosystems using ML techniques,” 

IJAIBDCMS, vol. 6, no. 4, pp. 99–107, Nov. 2025. 

Available: 

https://ijaibdcms.org/index.php/ijaibdcms/article/view/3

19 

[43] S. R. Gudi, “A comparative analysis of Pivotal Cloud 

Foundry and OpenShift cloud platforms,” The American 

Journal of Applied Sciences, vol. 7, no. 07, pp. 20–29, 

2025, doi: 10.37547/tajas/Volume07Issue07-03. 
[44] I. Manga, “Scalable graph neural networks for global 

knowledge representation and reasoning,” in Proc. Int. 

Conf. on Inventive Systems and Control (ICISC), 

Coimbatore, India, 2025, pp. 1399–1404, doi: 

10.1109/ICISC65841.2025.11188341.

 


