International Journal of Artificial Intelligence, Data Science, and Machine Learning
Grace Horizon Publication | Volume 7, Issue 1, 141-148, 2026
ISSN: 3050-9262 | https://doi.org/10.63282/3050-9262.IJAIDSML-V711P126

Original Article

Scalable Adaptive Learning for Early Software Fault
Prediction in Agile: From Reliability Gains to Sprint
Planning Optimization

Mohit Bansal*, Tanvi Arora®, Rahul Chatterjee®, Simran Kaur®
14Computer Science Department Shiv Nadar University Greater Noida, Uttar Pradesh, India.
?Artificial Intelligence Department Shiv Nadar University Greater Noida, Uttar Pradesh, India.
®Information Technology Shiv Nadar University Greater Noida, Uttar Pradesh, India.
Received On: 03/01/2026 Revised On: 06/02/2026 Accepted On: 08/02/2026 Published on: 10/02/2026
Abstract - Agile teams increasingly deliver software through rapid iterations, cloud-native deployment, and
continuously evolving architectures. While this cadence accelerates value delivery, it also amplifies the operational
cost of faults: late discovery increases rework, destabilizes sprint commitments, and elevates reliability risk.
Traditional software defect prediction has produced strong results in offline, within-project settings, yet common
limitations remain for modern Agile delivery: models degrade under concept drift, labels arrive late (often after
release), and predictions are rarely integrated into sprint planning decisions in a decision-traceable manner. This
manuscript proposes Scalable Adaptive Learning for Sprint Analytics (SALSA), a framework that couples adaptive
fault prediction with sprint planning optimization. SALSA unifies drift-aware continual learning, transfer and
federated strategies for low-data or privacy-constrained contexts, effort-aware evaluation aligned with Agile quality
assurance capacity, and interpretable risk rationales suitable for governance in regulated environments. The
framework extends beyond probability of fault to estimate reliability gain and to optimize sprint backlog selection
under capacity constraints, balancing feature delivery with risk reduction. A worked sprint planning example
demonstrates how predicted risk, effort, and expected reliability gain can be translated into a concrete backlog
recommendation and quality budget allocation. The manuscript also outlines a replication-ready evaluation protocol
emphasizing time-ordered validation, cost-effectiveness, and measurable planning outcomes. By connecting early
fault prediction to sprint-level decision making, SALSA reframes defect prediction as an operational capability that
improves both software reliability and sprint planning efficiency.

Keywords - Agile Software Development, Software Defect Prediction, Continual Learning, Concept Drift, Effort-
Aware Metrics, Explainable Al, Federated Learning, Sprint Planning Optimization, Software Reliability, Devops
Analytics.

1. Introduction

Agile methods emphasize iterative delivery, frequent
reprioritization, and short feedback loops. Practical sprint
planning depends on limited capacity and uncertain
information, especially when technical debt and latent
defects compete with feature work. Agile planning guidance
underscores the need for reliable estimation, transparent
prioritization, and continuous refinement as information
changes during execution [1]. However, fault-related work is
often reactive: defects are detected late in the sprint or post-
release, generating unplanned work, spillover, and reliability
regressions.

Software defect prediction seeks to anticipate fault-
prone artifacts so quality assurance effort can be focused
earlier. Large-scale benchmarking studies show that many
classifiers can be competitive when evaluated on standard
metrics, but performance varies by dataset characteristics and
experimental design [2]. Earlier work demonstrates that
static code attributes can support useful predictors, indicating

that repository-mined features can identify risk hot spots
before runtime failures manifest [3].

Agile delivery introduces additional challenges. Cross-
project generalization is difficult because feature
distributions shift across domains and processes, and
prediction success depends on data and process compatibility
[4]. Moreover, Agile teams often require just-in-time risk
signals near the moment of code change rather than coarse,
release-level predictions. Just-in-time quality assurance
research addresses this need by linking change-level signals
to defect proneness in time-sensitive workflows [5].

Modern delivery pipelines intensify these problems
through drift: codebases evolve rapidly, team practices shift,
architecture refactoring changes coupling patterns, and
platform migrations alter telemetry signals. Continual
learning literature emphasizes that models trained on
stationary batches can fail under nonstationary streams and
can catastrophically forget past knowledge unless adaptation
is managed explicitly [6]. In practice, reliability

Mohit Bansal et al. / IJAIDSML, 7(1), 141-148, 2026

improvements also depend on adjacent engineering practices
such as automated testing strategies. Comparative analysis of
testing frameworks in enterprise Java systems shows
reliability sensitivity to testing approach and coverage
mechanisms, reinforcing that predictive models should be
connected to actionable interventions rather than treated as
passive scoring tools [7]. Transfer learning has emerged as a
key approach for low-data scenarios, aiming to leverage
source projects when target data are limited, though
distribution mismatch remains a principal barrier [8].

Recent work explicitly targets Agile fault prediction
with scalable and adaptive machine learning, connecting
early prediction to reliability and sprint planning efficiency
[9]. Building on this direction, the present manuscript
addresses an additional operational gap: prediction outputs
are often not translated into sprint planning decisions under
explicit capacity constraints, nor are they consistently
governed through interpretable, auditable rationales.

This paper makes four contributions. First, it introduces
SALSA, an end-to-end architecture for adaptive early fault
prediction integrated with sprint planning optimization.
Second, it specifies a drift-aware adaptive learning design
combining continual learning with transfer and federated
options. Third, it defines an effort- and planning-aligned
evaluation and decision formulation that operationalizes
predicted risk into reliability gain and sprint decisions.
Fourth, it proposes decision transparency artifacts, enabling
engineering governance compatible with high-stakes and
regulated contexts.

2. Background and Related Work
2.1. Scalable Learning Signals in Modern Agile Systems
Agile fault prediction increasingly relies on
heterogeneous signals beyond classic static metrics. Real-
time and resource-constrained contexts motivate lightweight
learning pipelines, where feature extraction and inference
must remain efficient even under edge or near-edge
constraints [10]. Many enterprise systems adopt
microservices and cloud platforms, introducing service
boundaries, distributed tracing, and operational telemetry as
relevant predictors. Secure, compliant microservices
architectures on platforms such as AWS and OpenShift
highlight the operational complexity and the importance of
reliability in regulated domains [11]. These characteristics
motivate feature sets that incorporate deployment, runtime,
and configuration signals alongside code and process
metrics.

A central methodological issue is that defect prediction
performance metrics must align with the resource budget of
quality work. Effort-aware defect prediction emphasizes that
artifacts differ in treatment cost, and that evaluation should
measure cost-effectiveness rather than only classification
accuracy [12]. Deep learning approaches have been applied
to fault prediction, including CNN and RNN models that
capture structural and sequential patterns, suggesting
improved representation learning for complex software
artifacts [13]. These methods are promising but can be brittle

142

under drift and often require careful interpretability when
deployed into planning workflows.

2.2. Explainability and Governance for Prediction-Guided
Decisions

When predictions drive engineering actions,
transparency becomes critical. High-stakes Al deployments
in regulated environments require explainability and
auditable decision pathways to establish trust and operational
governance [14]. Local explanation methods such as LIME
provide instance-level rationales that help stakeholders
understand why a specific artifact is flagged as high risk
[15]. In regulated operational pipelines that combine OCR,
machine learning, and microservices, the need for
traceability extends across the full processing chain and
motivates governance patterns applicable to software
delivery analytics as well [16]. Broader frameworks for
explainable Al in high-stakes domains emphasize
interpretability as a system-level requirement, not only a
model property [17]. SHAP provides a theoretically
grounded feature attribution approach that supports
consistent local and global explanations across model
classes, enabling comparative reasoning and decision review
[18].
2.3. Comparative Defect Prediction, and
Operational Decision Making

Comparative studies of machine learning models for
defect prediction demonstrate that no single learner
dominates across datasets, motivating ensembles, meta-
learning, and adaptive selection [19]. Privacy constraints also
arise in multi-team and multi-organization contexts, where
sharing raw defect data or code metrics may be restricted.
Federated learning architectures for privacy-preserving
detection tasks show how distributed training can occur
without centralized data pooling, albeit with governance and
protocol complexity [20].

Privacy,

Operational performance improvements in distributed
systems also depend on platform-level optimizations such as
predictive analytics and caching strategies, which can
stabilize response times and reduce failure modes,
reinforcing the importance of incorporating operational
telemetry and intervention levers into prediction workflows
[21]. In addition, AlOps-oriented root cause analysis and
automated remediation for multi-system data integrity issues
demonstrates how predictive and diagnostic analytics can
reduce recovery time and improve operational reliability,
offering an analogy for integrating fault prediction with
actionable remediation in Agile settings [22]. Lightweight
baselines such as decision trees and KNN remain relevant for
interpretability and deployment simplicity, and comparative
evaluation of these approaches provides useful anchors for
understanding tradeoffs under constraints [23]. Federated
learning at scale further motivates decentralized training
designs suitable for privacy-preserving multi-team learning
[24].

Mohit Bansal et al. / IJAIDSML, 7(1), 141-148, 2026

2.4, Decision Intelligence, Scalable Analytics Platforms,
and Enterprise Modernization

Agile governance frameworks that combine decision
intelligence and defect prediction highlight the value of
architecture-centered lifecycle governance, linking predictive
signals to planning and control processes [25]. Scalability
considerations extend to compute-intensive simulation and
analytics, where machine learning integrated with HPC
pipelines illustrates design patterns for performance,
reproducibility, and large-scale experimentation [26].

Enterprise analytics platforms increasingly leverage
high-performance in-memory systems to support real-time
decision workloads; research on SAP S/4HANA database
layers illustrates how low-latency access patterns enable
operational analytics [27]. Architecture modernization
affects fault behavior: monolith-to-microservices transitions
and gateway optimization can change failure propagation
and observability patterns, requiring models to adapt to new
architectural feature distributions [28]. Deep learning
systems in other domains, such as emotion understanding
pipelines, further demonstrate how multi-stage workflows
combine representation learning, calibration, and human-
facing interpretation, relevant for structuring explainable
analytics in engineering processes [29].

2.5. Automation, Observability, and Data Engineering for
Adaptive Learning

Automated model selection and low-code machine
learning pipelines can reduce adoption friction, particularly
when retraining must occur frequently under drift [30].
Cloud-native monitoring and deployment optimization
studies emphasize the role of observability tooling and
Helm-based deployment strategies in maintaining reliability,
highlighting telemetry sources that can enrich fault
prediction models [31]. Federated AlOps frameworks for
multi-cluster OpenShift show how distributed operational
intelligence can be organized across clusters, aligning with
multi-team Agile environments where training data and
telemetry are naturally partitioned [32].

Machine learning-driven risk detection in CI/CD
provides a direct connection between pipeline events and
operational risk signals, supporting earlier intervention in
delivery workflows [33]. Security and anomaly detection
research for data in transit illustrates robust detection
patterns that can inspire analogous anomaly signals in
software delivery telemetry [34]. Predictive monitoring and
error mitigation in change-data-capture pipelines further
supports the argument that early-warning systems reduce
downstream recovery cost in complex integrations [35].

Enterprise transition guidance for SAP Fiori in
S/AHANA modernization highlights integration challenges
and strategic implications, analogous to how modernization
affects engineering process, telemetry, and defect
distributions in Agile teams [36]. Enhancing OCR accuracy
through neural networks shows how calibration and data-
quality improvements translate into reduced error rates in
high-stakes workflows, reinforcing the importance of

143

continual tuning for performance stability [37]. CRM and
deep learning systems for patient journey mapping highlight
end-to-end data integration and predictive engagement
pipelines, providing parallels for integrating multiple signals
into coherent decision support [38]. Convergence
optimization studies emphasize training stability, relevant for
continual retraining regimes where frequent updates must
remain stable and cost-effective [39].

Finally, performance comparison of defect prediction
models reinforces the need for robust baseline evaluation and
repeatable experimentation under Agile constraints [40].
Unified data engineering for smart mobility demonstrates
real-time integration across heterogeneous streams,
analogous to unifying SCM, CI/CD, and observability
sources into a single feature plane for prediction [41].
Forecasting and decision support patterns in portfolio
intelligence under uncertainty motivate analogous sprint
portfolio selection under risk [42]. Platform comparisons
such as Pivotal Cloud Foundry versus OpenShift emphasize
that deployment substrates affect observability and
performance, which can indirectly influence fault patterns
and model features [43]. Graph neural networks for
knowledge representation motivate encoding software
architecture and dependency structures as graphs for more
expressive risk modeling [44].

3. Problem Statement and Research Gap
3.1. Problem Statement

Consider an Agile project delivering work in discrete
sprints indexed by t. Let At = {a {t1}, a {t2}, ..,
a_{t,n_t}} denote candidate work items at sprint planning
time. A work item may correspond to a user story, a change
set, or a set of files and services impacted by planned work.
Each item a_{t,i} has estimated effort e {t,i} (e.g., story
points) and impacts a set of artifacts M_{ti}. The
operational goal is to (i) predict early fault risk for impacted
artifacts before or during sprint execution and (ii) optimize
sprint selection and quality allocation under a capacity
constraint E_t to maximize expected reliability improvement
while limiting spillover and unplanned rework.

3.2. Research Gap

Despite extensive defect prediction research, several
end-to-end gaps persist for modern Agile delivery. First,
nonstationarity is pervasive; models can degrade rapidly as
code, architecture, and delivery pipelines evolve, requiring
drift-aware adaptation rather than fixed offline training [6].
Second, action alignment is often weak: models provide
scores but do not translate those scores into sprint decisions
or explicit quality budgets under capacity constraints [1].
Third, effort and cost are frequently implicit; quality actions
differ in effort and opportunity cost, so usefulness must be
evaluated via cost-effectiveness and fixed-effort perspectives
[12]. Fourth, governance and interpretability are required
when predictions influence planning; stakeholders need
auditable rationales and stable explanations [14]. Fifth,
multi-team environments introduce privacy and data-sharing
constraints, motivating transfer and federated strategies that

Mohit Bansal et al. / IJAIDSML, 7(1), 141-148, 2026

preserve confidentiality while still learning from distributed
experience [20].

4. Salsa Framework Overview
4.1. Architecture and Data Flow

SALSA comprises five layers: (1) signal ingestion from
source control, work-item tracking, CI/CD pipelines, and
runtime observability; (2) a time-indexed feature and label
store supporting reproducible time splits and drift
monitoring; (3) an adaptive model service implementing
continual learning and optional transfer or federated
learning; (4) an explanation and governance service that
produces rationale artifacts for engineers and stakeholders;
and (5) a sprint planning optimizer that translates predicted
risk into backlog selection and quality allocation decisions.

4.2. Core Outputs and Interfaces

For each artifact m at sprint time t, SALSA outputs a
calibrated probability p_t(m) of fault manifestation within a
defined prediction window, an uncertainty estimate u_t(m)
that supports active learning and targeted review, and an
explanation x_t(m) that identifies the most influential signals
for that prediction. For each work item a, artifact-level
outputs are aggregated into an item-level risk score R_t(a), a
predicted reliability gain under candidate interventions, and a
recommended quality action plan. These outputs are
delivered through dashboards, CI/CD gates, and planning-
time reports designed to be reviewed during sprint
ceremonies.

5. Adaptive Learning for Early Fault Prediction
5.1. Feature Construction

SALSA organizes features into five groups. Static code
features capture complexity, size, coupling, and change-
proneness proxies, consistent with evidence that static
attributes enable effective predictors [3]. Change and process
features capture churn, review activity, and developer
interaction patterns aligned with just-in-time quality
assurance practices [5]. Testing features incorporate
coverage deltas, flaky-test signals, and framework-specific
indicators; this connects predicted risk to actionable test
strategy changes, reflecting reliability sensitivity to
automated testing practices in enterprise systems [7].
Architecture and dependency features represent service
interactions and call graphs and can be encoded through
graph representations where available [44]. Operational
features include deployment frequency, rollback events,
latency and error trends, and cache-related indicators,
motivated by cloud-native observability research and
performance optimization patterns [31].

5.2. Model Family and Calibration

SALSA uses a hybrid ensemble to match heterogeneous
signal types: gradient-boosted decision trees for tabular
metrics, sequence models for time-ordered change histories,
and optional graph components for dependency structure.
The ensemble outputs a probability estimate that is calibrated
using periodic reliability calibration. Calibration is essential
because planning decisions depend on interpretable
probabilities; miscalibration can cause teams to over-allocate

144

quality work or ignore important risk signals. Calibration
refresh is triggered by drift detection and by significant shifts
in class balance across sprints.

5.3. Drift Detection and Continual Updates

Drift is monitored through (i) feature distribution change
metrics, (ii) prediction residual trends, and (iii) uncertainty
increases for recurrent artifact families. When drift is
detected, SALSA increases retraining frequency and expands
the window of recent data used for adaptation while applying
continual learning constraints to reduce catastrophic
forgetting [6]. To keep frequent retraining stable, SALSA
adopts conservative optimizer schedules and convergence
monitoring, which is particularly relevant in short retraining
cycles [39].

5.4. Transfer and Federated Learning Modes

In low-data projects, SALSA supports transfer learning
by initializing target models using representations learned
from related projects, then adapting with target-specific data
to reduce mismatch [8]. In privacy-constrained multi-team
settings, SALSA supports federated learning, where model
updates rather than raw data are aggregated. Governance and
protocol design follow privacy-preserving patterns
established for distributed detection tasks, emphasizing
secure aggregation, client selection policies, and auditability
[20]. Distributed orchestration and monitoring are aligned
with federated AlOps design patterns to improve reliability
of the training service across clusters [32].

5.5. Explainability Artifacts for Engineers

SALSA generates instance-level explanations using
local surrogate models for on-demand interpretability and
stable additive attributions for consistent global reasoning
[15]. These artifact-level explanations are complemented by
decision-level narratives used in sprint planning: a short
justification summarizing the dominant signals, their
directionality, and the recommended intervention. This
approach aligns with the needs of auditable decision
pathways in regulated environments [14].

6. Reliability Gain Modeling
6.1. Linking Predictions to Interventions

Predictions are most valuable when paired with
interventions that reduce fault probability. Let q denote a
quality action such as targeted test creation, additional
review, refactoring of a hotspot, or deployment hardening.
For each artifact m and action g, SALSA estimates an
intervention effectiveness factor n(q,m) in [0,1], representing
the expected proportional reduction in fault probability if the
action is executed. Estimating 1 can use historical outcomes,
test coverage deltas, and post-incident learning. Reliability-
oriented engineering studies emphasize that intervention
choice matters; testing strategy changes, monitoring
improvements, and deployment optimizations can materially
affect reliability outcomes [7].

6.2. Expected Prevented-Fault Mass
Let pt(m) be the predicted fault probability for artifact m
at time t. For a work item a that touches artifacts M(a), the

Mohit Bansal et al. / IJAIDSML, 7(1), 141-148, 2026

expected prevented-fault mass under action q is A(a,q) =
¥ {meM(a)} p_t(m)m(q,m). This term can be converted
into expected reliability gain by mapping prevented-fault
mass into changes in defect density, escaped defect rates, or
service-level error budgets. When operational telemetry
features are included, intervention effects can incorporate
system-level factors such as cache behavior and latency error
reduction, reflecting patterns observed in predictive analytics
and caching optimization [21].

6.3. Cost and Uncertainty Considerations

Quality actions consume capacity and may introduce
uncertainty. SALSA treats the cost C(q) as effort in story
points or engineer-hours and includes uncertainty u_t(m) in
prioritization. For high-uncertainty high-risk artifacts,
SALSA can trigger active learning: a limited budget of
manual review to improve labels and reduce uncertainty for
future sprints. This makes the system adaptive not only via
retraining but also via targeted data acquisition.

7. Sprint Planning Optimization
7.1. Optimization Formulation

Let E_t be sprint capacity. For each candidate work item
a, let VV(a) be business value, e(a) be implementation effort,
and R(a) be aggregated risk. SALSA chooses a subset S_t of
items and a quality action q(a) for each chosen item to
maximize risk-adjusted utility: maximize £ _{a€S_t} (V(a) +
A-Ap(a,q(a)) — R residual(a,q(a))) subject to X e(a) +
C(q(a)) < E t. Here A tunes the emphasis on reliability gains
and p penalizes residual risk after intervention. The
formulation turns quality risk into an explicit planning
tradeoff consistent with Agile planning principles [1].

7.2. Greedy and Solver-Based Strategies

Many teams prefer simple, explainable heuristics.
SALSA provides a greedy strategy based on utility per unit
cost and enforces a quality buffer for the top-risk tail. For
organizations with mature operations research capability,
SALSA can also export a mixed-integer formulation for
solver-based optimization. Regardless of method, evaluation
should be effort-aware because defect treatment cost varies;
effort-aware metrics provide a more faithful view of
planning benefit than raw classification statistics [12].

7.3. Interpretable Decision Logs

Every planning recommendation is accompanied by a
decision log: top features driving risk, estimated effect of
proposed interventions, and the constraint-based reason why
certain items were included or excluded. This supports the
auditability needed in governance-heavy environments and
reduces resistance to model-guided planning [14].

8. Implementation Details and Mlops
8.1. Data Collection and Labeling

SALSA’s signal ingestion pipeline collects source
control metrics, issue tracker status transitions, CI/CD
telemetry, and runtime observability events. Labeling is
time-windowed: an artifact is labeled faulty if a defect linked
to that artifact is introduced or detected within a defined
horizon. This reduces leakage from future information and

145

allows time-ordered validation. In environments where labels
arrive late, SALSA maintains provisional labels and updates
them as defects are confirmed, enabling continual refinement
without corrupting evaluation splits.

8.2. Feature Store, Model Registry, and Deployment

A time-indexed feature store enables reproducible
training and debugging. Model versions are tracked in a
registry with metadata including training window, drift
scores, calibration statistics, and explanation stability
metrics. Deployment follows a canary pattern: new models
score in shadow mode for a sprint window, then promote
only if calibration and effort-aware metrics improve, aligning
with reliability practices in cloud-native deployment
optimization [31].

8.3. Security and Privacy Controls

In privacy-constrained settings, federated learning mode
is used. Updates are encrypted and aggregated; clients are
selected to balance representation and fairness. Anomaly
detection applied to model update streams can detect
poisoning or faulty clients, drawing inspiration from secure
communication anomaly detection patterns [34]. In regulated
environments, the governance layer stores explanation
artifacts and decision logs to ensure traceability, analogous
to governance requirements in regulated ML pipelines [16].

9. Evaluation Design
9.1. Datasets, Splits, and Baselines

Evaluation should use time-ordered splits to reflect
deployment conditions: train on sprints 1..t, validate on t+1,
and test on t+2, repeated across rolling windows. Cross-
project experiments should explicitly report data, domain,
and process differences that affect generalization [4].
Baselines include traditional models from benchmark studies
[2], static-feature approaches [3], just-in-time predictors [5],
deep learning variants [13], interpretable baselines such as
decision trees and KNN [23], and recent comparative model
sets [19].

9.2. Metrics and Outcomes

SALSA is evaluated on predictive, cost-effectiveness,
and planning outcomes. Predictive metrics include AUC, F1,
MCC, Brier score, and calibration error. Cost-effectiveness
metrics include recall at fixed effort cutoffs and cost curves
[12]. Planning outcomes include escaped defects per sprint,
unplanned work ratio, spillover rate, and stability of sprint
commitments. In CI/CD-integrated deployments, risk signals
can also be evaluated against pipeline risk detection
baselines that trigger earlier intervention based on build and
deployment behaviors [33].

9.3. Drift and Adaptation Studies

A core evaluation dimension is robustness under drift.
Experiments should compare performance decay of static
models against SALSA’s continual learning configuration.
Drift detection quality can be assessed by correlating drift
triggers with observed changes in defect density, architecture
shifts, and platform migrations such as monolith-to-
microservices transitions [28].

Mohit Bansal et al. / IJAIDSML, 7(1), 141-148, 2026

10. Case Study Walkthrough and Worked

Example
10.1. Sprint Backlog Selection Example

Consider a sprint with capacity E_t = 20 story points and
eight candidate items. Each item has an effort estimate,
business value score, and aggregated risk score. Assume a
standard quality action costs two points per selected item and
yields reliability gain proportional to risk. SALSA ranks
items by utility-per-cost and selects until capacity is
exhausted while reserving a small quality buffer for
emergent risk. This process explicitly trades business value
against reliability gains and reduces late-sprint surprises.

10.2. Sensitivity to Reliability Weighting

Planning behavior depends on A and p. As A increases,
SALSA favors items with high reliability leverage even if
business value is moderate; as p increases, SALSA penalizes
residual risk and may defer risky items that cannot be
sufficiently mitigated within the sprint. Sensitivity analysis is
essential for governance: teams can choose a reliability
posture aligned with product criticality, compliance
obligations, and error budgets. This mirrors how regulated
domains require explicit and auditable decision thresholds
[14].

10.3. Modernization and Telemetry-Rich Scenarios

In cloud-native modernization programs, observability
signals and platform-level factors can materially affect fault
patterns. Deployment substrate differences, monitoring
configuration, and rollout strategies can change failure rates
and detection latency. Comparative platform studies and
monitoring optimization research illustrate that these
operational choices influence reliability and should be
represented in features and intervention modeling [43].

11. Discussion
11.1. Practical Adoption in Agile Rituals

SALSA is designed to fit Agile rituals. During backlog
refinement, risk explanations help identify hidden
complexity and test gaps; during sprint planning, the
optimizer proposes a risk-adjusted sprint set; during
execution, CI/CD gates flag high-risk changes for extra
review. This approach encourages proactive quality rather
than reactive defect triage. It also aligns with decision-
intelligence-driven governance patterns where predictive
analytics inform lifecycle control decisions [25].

11.2. Scalability, Compute,
Considerations

Scalability concerns arise in feature computation,
retraining, and inference. Real-time integration of
heterogeneous streams benefits from data engineering
patterns that unify telemetry and event sources into
consistent schemas [41]. Compute-intensive experimentation
and simulation pipelines can support robust model selection
and calibration at scale, leveraging HPC-inspired practices
for reproducibility and throughput [26]. In-memory analytics
platforms can reduce latency for feature retrieval and scoring
in large enterprises [27].

and Data Engineering

146

11.3. Extensibility to Graph and Portfolio Reasoning

As system architectures become more interconnected,
risk reasoning may benefit from graph representations of
dependencies and knowledge. Graph neural network
approaches motivate encoding service interactions and
artifact relationships to propagate risk across dependency
edges [44]. Portfolio optimization analogies in decision-
support domains motivate treating sprint planning as a
constrained portfolio problem under uncertainty, where risk
and value are jointly optimized [42].

12. Threats to Validity

Key threats include label noise and delay (defects may
be discovered after the sprint), confounding process changes
(team turnover, refactoring campaigns, and tool migrations),
and generalization limits across domains. Cross-project
learning can fail without careful alignment of process and
data assumptions [4]. Action-effect estimation can also be
biased if intervention effectiveness is not calibrated using
historical outcomes; rigorous post-sprint analysis is needed
to update m estimates and prevent overconfident planning
recommendations.

13. Conclusion and Future Work

This manuscript presented SALSA, a scalable adaptive
learning framework that connects early software fault
prediction to sprint planning optimization. By combining
drift-aware continual learning, transfer and federated
strategies, effort-aware evaluation, and interpretable
explanations, SALSA operationalizes defect prediction as a
planning and reliability capability rather than a standalone
classifier. Future work includes empirical validation on
multi-project time-ordered datasets and telemetry-rich
enterprise environments, deeper graph-based modeling of
dependency risk, and controlled studies measuring
improvements in sprint stability and escaped defect reduction
under different reliability-weight settings.

References

[1]1 M. Cohn, Agile Estimating and Planning. Upper Saddle
River, NJ, USA: Prentice Hall, 2005.

S. Lessmann, B. Baesens, C. Mues, and S. Pietsch,
“Benchmarking classification models for software defect
prediction: A proposed framework and novel findings,”
IEEE Trans. Softw. Eng., vol. 34, no. 4, pp. 485-496,
2008, doi: 10.1109/TSE.2008.35.

T. Menzies, J. Greenwald, and A. Frank, “Data mining
static code attributes to learn defect predictors,” IEEE
Trans. Softw. Eng., vol. 33, no. 1, pp. 2-13, 2007.

T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and B.
Murphy, “Cross-project defect prediction: A large scale
experiment on data vs. domain vs. process,” in Proc.
ESEC/FSE, 2009, pp. 91-100, doi:
10.1145/1595696.1595713.

Y. Kamei et al., “A large-scale empirical study of just-
in-time quality assurance,” IEEE Trans. Softw. Eng.,
vol. 39, no. 6 pp. 757-773, 2013, doi:
10.1109/TSE.2012.70.

G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S.
Wermter, “Continual lifelong learning with neural

[2]

(3]

[4]

5]

[6]

Mohit Bansal et al. / IJAIDSML, 7(1), 141-148, 2026

networks: A review,” Neural Netw., vol. 113, pp. 54-71,

2019, doi: 10.1016/j.neunet.2019.01.012.

S. R. Gudi, “Enhancing reliability in Java enterprise

systems through comparative analysis of automated

testing frameworks,” Int. J. Emerging Trends Comput.

Sci. Inf. Technol., vol. 4, no. 2, pp. 151-160, 2023, doi:

10.63282/3050-9246.1JETCSIT-V412P115.

J. Nam, S. J. Pan, and S. Kim, “Transfer defect

learning,” in Proc. Int. Conf. Softw. Eng. (ICSE), 2013,

pp. 382-391.

S. K. Gunda, S. Yalamati, S. R. Gudi, I. Manga, and A.

K. Aleti, “Scalable and adaptive machine learning

models for early software fault prediction in agile

development: Enhancing software reliability and sprint
planning efficiency,” Int. J. Appl. Math., vol. 38, no. 2s,

2025, doi: 10.12732/ijam.v38i2s.74.

[10] I. Manga, “Edge software engineering for lightweight
Al: Real-time environmental data processing with
embedded systems,” J. Comput. Anal. Appl., vol. 34, no.
6, pp. 88-104, Jun. 2025.

[11]1 S. R. Gudi, “Design and evaluation of secure
microservices architecture for HIPAA-compliant
prescription processing on AWS and OpenShift,” Int. J.
Artif. Intell., Data Sci., Mach. Learn., vol. 5, no. 2, pp.
144-149, 2024, doi: 10.63282/3050-9262.1JAIDSML-
V/512P116.

[121 T. Mende and R. Koschke, “Effort-aware defect
prediction models,” in Proc. Euromicro Conf. Softw.
Maintenance and Reengineering (CSMR), 2010, doi:
10.1109/CSMR.2010.18.

[13] S. K. Gunda, “A deep dive into software fault
prediction: Evaluating CNN and RNN models,” in Proc.
Int. Conf. Electronic Systems and Intelligent Computing
(ICESIC), Chennai, India, 2024, pp. 224-228, doi:
10.1109/ICESIC61777.2024.10846549.

[14] S. S. G. Bandari, S. D. Siwa, and R. R. Thalakanti,
“Regulatory grade fraud detection using explainable
artificial intelligence with auditable decision pathways
and empirical validation on banking data,” Int. J. Artif.
Intell., Data Sci., Mach. Learn., vol. 5, no. 3, pp. 139—
147, 2024, doi: 10.63282/3050-9262.1JAIDSML-
V513P115.

[15] S. K. Gunda, "Enhancing Software Fault Prediction with
Machine Learning: A Comparative Study on the PC1
Dataset," 2024 Global Conference on Communications
and Information Technologies (GCCIT),
BANGALORE, India, 2024, pp. 1-4,
https://doi.org/10.1109/GCCIT63234.2024.10862351.

[16] S. R. Gudi, “Al-driven fax-to-digital prescription
automation: A cloud-native framework using OCR,
machine learning, and microservices for pharmacy
operations,” Int. J. Emerging Res. Eng. Technol., vol. 5,
no. 1, pp. 111-116, 2024, doi: 10.63282/3050-
922X.1JERET-V5I1P113.

[17] I. Manga, “Towards explainable Al: A framework for
interpretable deep learning in high-stakes domains,” in
Proc. Int. Conf. Soft Computing for Security
Applications (ICSCSA), Salem, India, 2025, pp. 1354—
1360, doi: 10.1109/ICSCSA66339.2025.11170778.

[7]

(8]

(9]

147

[18] S. M. Lundberg and S.-I. Lee, “A unified approach to
interpreting model predictions,” in Advances in Neural
Information Processing Systems (NeurIPS), 2017, pp.
4768-4777.

[19] S. K. Gunda, “Analyzing machine learning techniques
for software defect prediction: A comprehensive
performance comparison,” in Proc. Asian Conf. on
Intelligent Technologies (ACOIT), Kolar, India, 2024,
pp. 1-5, doi: 10.1109/ACOIT62457.2024.10939610.

[20] R. R. Thalakanti, S. S. Goud Bandari, and S. D. Sivva,
“Federated learning for privacy preserving fraud
detection across financial institutions: Architecture
protocols and operational governance,” Int. J. Emerging
Res. Eng. Technol., vol. 5, no. 2, pp. 108-114, 2024,
doi: 10.63282/3050-922X.1JERET-V512P111.

[21] S. R. Gudi, “Leveraging predictive analytics and Redis-
backed caching to optimize specialty medication
fulfillment and pharmacy inventory management,” Int. J.
Al, BigData, Computational and Management Studies,
vol. 5, no. 3, pp. 155-160, 2024, doi: 10.63282/3050-
9416.1JAIBDCMS-V5I3P116.

[22] Reddy Mittamidi VK., “AI/ML powered intelligent root
cause analysis and automated remediation for multi
system data integrity issues,” IJAIBDCMS, vol. 6, no. 4,
pp. 133-141, Nov. 2025. Available:
https://ijaibdcms.org/index.php/ijaibdcms/article/view/3
38

[23] S. K. Gunda, “Machine learning approaches for software
fault diagnosis: Evaluating decision tree and KNN
models,” in Proc. Global Conf. on Communications and
Information Technologies (GCCIT), Bangalore, India,
2024, pp. 1-5, doi:
10.1109/GCCIT63234.2024.10861953.

[24] I. Manga, “Federated learning at scale: A privacy-
preserving framework for decentralized Al training,” in
Proc. Int. Conf. Soft Computing for Security
Applications (ICSCSA), Salem, India, 2025, pp. 110-
115, doi: 10.1109/ICSCSA66339.2025.11170780.

[25] S. D. Sivwa, R. R. Thalakanti, S. S. G. Bandari, and S.
D. R. Yettapu, “Al-driven decision intelligence for agile
software lifecycle governance: An architecture-centered
framework integrating machine learning defect
prediction and automated testing,” IJETCSIT, vol. 4, no.
4, pp. 167-172, Dec. 2023. Available:
https://ijetcsit.org/index.php/ijetcsit/article/view/554

[26] S. K. Gunda, “Accelerating scientific discovery with
machine learning and HPC-based simulations,” in
Integrating Machine Learning Into HPC-Based
Simulations and Analytics, B. Ben Youssef and M. Ben
Ismail, Eds. IGI Global Scientific Publishing, 2025, pp.
229-252, doi: 10.4018/978-1-6684-3795-7.ch009.

[27] T. Raikar, “High-performance in-memory computing: A
research study on SAP S/4 HANA database layer,”
American Journal of Technology, vol. 4, no. 2, pp. 93—
113, 2025, doi: 10.58425/ajt.v4i2.449.

[28] S. R. Gudi, “Deconstructing monoliths: A fault-aware
transition to microservices with gateway optimization
using Spring Cloud,” in Proc. Int. Conf. on Electronics
and Sustainable Communication Systems (ICESC),

https://doi.org/10.1109/GCCIT63234.2024.10862351

Mohit Bansal et al. / IJAIDSML, 7(1), 141-148, 2026

Coimbatore, India, 2025, pp. doi:
10.1109/ICESC65114.2025.11212326.

[291 G. V. Krishna, B. D. Reddy, and T. Vrindaa,
“EmoVision: An intelligent deep learning framework for
emotion understanding and mental wellness assistance
in human computer interaction,” IJAIDSML, vol. 6, no.
4, pp. 14-20, Oct. 2025. Auvailable:
https://ijaidsml.org/index.php/ijaidsml/article/view/295

[30] I. Manga, “AutoML for all: Democratizing machine
learning model building with minimal code interfaces,”
in Proc. Int. Conf. on Sustainable Computing and Data
Communication Systems (ICSCDS), Erode, India, 2025,
pp. 347-352, doi:
10.1109/ICSCDS65426.2025.11167529.

[31] S. R. Gudi, “Monitoring and deployment optimization in
cloud-native systems: A comparative study using
OpenShift and Helm,” in Proc. 4th Int. Conf. on
Innovative Mechanisms for Industry Applications
(ICIMIA), Tirupur, India, 2025, pp. 792-797, doi:
10.1109/ICIMIA67127.2025.11200594.

[32] S. K. R. Vanama, “Al report - Federated AlOps for
multi-cluster OpenShift,” JAIBDCMS, vol. 6, no. 2, pp.
96-108, May 2025. Available:
https://ijaibdcms.org/index.php/ijaibdcms/article/view/3
36

[33]1 R. R. Thalakanti and S. S. Goud Bandari, “Intelligent
continuous integration and delivery for banking systems
using machine learning driven risk detection with real
world deployment evaluation,” IJAIBDCMS, vol. 5, no.
4, pp. 168-175, 2024, doi: 10.63282/3050-
9416.1JAIBDCMS-V514P118.

[341S. R. Gudi, “Ensuring secure and compliant fax
communication: Anomaly detection and encryption
strategies for data in transit,” in Proc. 4th Int. Conf. on
Innovative Mechanisms for Industry Applications
(ICIMIA), Tirupur, India, 2025, pp. 786-791, doi:
10.1109/1CIMIA67127.2025.11200537.

[35] V. K. Reddy Mittamidi, “Leveraging Al and ML for
predictive monitoring and error mitigation in change
data capture pipelines,” IJETCSIT, vol. 6, no. 3, pp.
104-111, Aug. 2025. Available:
https://ijetcsit.org/index.php/ijetcsit/article/view/515

[36] T. Raikar and V. Apelagunta, “Implementing SAP Fiori
in S/I4AHANA transitions: Key guidelines, challenges,
strategic implications, Al integration recommendations,”

815-820,

148

Journal of Engineering Research and Sciences, vol. 4,
no. 11, pp. 1-9, 2025, doi: 10.55708/JS0411001.

[37]1 S. R. Gudi, “Enhancing optical character recognition
(OCR) accuracy in healthcare prescription processing
using artificial neural networks,” European Journal of
Artificial Intelligence and Machine Learning, vol. 4, no.
6, 2025, doi: 10.24018/ejai.2025.4.6.79.

[38] A. K. Kishore Varma Alluri, “Using Salesforce CRM
and deep learning (CNN) techniques to improve patient
journey mapping and engagement in small and medium
healthcare organizations,” IJAIDSML, vol. 6, no. 4, pp.
101-1009, Nov. 2025. Available:
https://ijaidsml.org/index.php/ijaidsml/article/view/330

[39] R. R. Thalakanti, “Enhancing convergence in fully
connected neural networks via optimized
backpropagation,” in Proc. 2nd Int. Conf. on Computing
and Data Science (ICCDS), Chennai, India, 2025, pp. 1-
6, doi: 10.1109/ICCDS64403.2025.11209625.

[40] S. K. Gunda, “Comparative analysis of machine learning
models for software defect prediction,” in Proc. Int.
Conf. on Power, Energy, Control and Transmission
Systems (ICPECTS), Chennai, India, 2024, pp. 1-6, doi:
10.1109/ICPECTS62210.2024.10780167.

[41] I. Manga, “Unified data engineering for smart mobility:
Real-time integration of traffic, public transport, and
environmental data,” in Proc. Int. Conf. Soft Computing
for Security Applications (ICSCSA), Salem, India,
2025, pp. 1348-1353, doi:
10.1109/1CSCSA66339.2025.11170800.

[42] A. K. Kishore Varma Alluri, “Salesforce CRM
framework for real time DeFi portfolio intelligence and
customer engagement forecasting in Web3 based
decentralized finance ecosystems using ML techniques,”
IJAIBDCMS, vol. 6, no. 4, pp. 99-107, Nov. 2025.
Auvailable:
https://ijaibdcms.org/index.php/ijaibdcms/article/view/3
19

[43] S. R. Gudi, “A comparative analysis of Pivotal Cloud
Foundry and OpenShift cloud platforms,” The American
Journal of Applied Sciences, vol. 7, no. 07, pp. 20-29,
2025, doi: 10.37547/tajas/Volume07Issue07-03.

[44] 1. Manga, “Scalable graph neural networks for global
knowledge representation and reasoning,” in Proc. Int.
Conf. on Inventive Systems and Control (ICISC),
Coimbatore, India, 2025, pp. 1399-1404, doi:
10.1109/1CI1SC65841.2025.11188341.

