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Abstract - Molecular docking is one of the core algorithms used in structure-based drug discovery, which makes it 

possible to compute binding orientations and affinities between small molecule ligand and a biological target. 

Standard docking algorithms are based on physics based scoring functions and heuristic search strategies, which can 

find the trade-off between predictive accuracy and computational efficiency difficult. In recent years, the field of 

machine learning (ML) has developed as a disruptive paradigm that is able to learn complicated, non-linear 

relationships using large-scale biochemical information. ML-based methods applied in conjunction with molecular 

docking have greatly improved the quality of algorithmic performance, improved prediction of binding affinity, and 

speeded up virtual screening pipelines. In this paper, a rigorous and in-depth review of the machine learning-based 

molecular docking methods is provided and centered on algorithmic developments, accuracy, and efficiency 

enhancements in pharmaceutical discovery processes. We address supervised, unsupervised, and deep learning 

methods that are used in pose prediction, optimization of any scoring function, and docking refinement. Moreover, 

this paper also points out hybrid models that combine bioinformatics algorithms and chemical models with the focus 

of integrative use of information technology and computational chemistry in earlier research on bioinformatics 

algorithms to molecular docking. It suggests a methodological framework which involves feature engineering, neural 

scoring functions and reinforcement learning based conformational search. They are experimental evaluations 

developed in the recent literature and analyzed to evaluate the improvements in the docking accuracy, enrichment 

factors, and computational speed. The last part is finally the discussion and challenges, limitations and research 

directions to be followed in the future which include model interpretability, data bias and generalization across 

dissimilar protein ligand systems. This article intends to provide a reference to a researcher and practitioners who 

want to capitalize on machine learning to enhance the efficiency of molecular docking and drug discovery. 

 

Keywords - Molecular Docking, Machine Learning, Deep Learning, Drug Discovery, Virtual Screening, 

Bioinformatics, Scoring Functions, Computational Chemistry. 

 

1. Introduction 
1.1. Background 

The process of identifying and developing novel 

therapeutic drugs is a complex, resource-consuming and 

time-intensive exercise in most cases taking over a decade to 

produce one candidate into clinical practice, and 

necessitating significant financial outlay. Structure-based 

drug design (SBDD) has become an important approach to 

addressing these difficulties that utilizes three-dimensional 

structural data of biological targets to expedite rational drug 

design. [1] Molecular docking is a key component in the 

aspect of SBDD thanks to its computational predictive 

properties of the binding of small-molecule ligands to target 

proteins providing estimates of the optimal binding pose and 

the resulting binding affinity. Such predictions anticipate the 

prior focus of interested compounds prior to the expensive 

experimental confirmation, facilitating early drug discovery. 

The traditional methods of docking, including AutoDock, 

DOCK, and Glide have been so much embraced because 

they are efficient and relatively easy to use. Such approaches 

are usually based upon predetermined scoring functions 

based on either molecular mechanics force fields, 

experimentally determined energy terms, or on priori 

statistical potentials to estimate the energies between 

proteins and ligands. Despite the relatively high level of 

practical success, despite simplifying assumptions, their 

predictability is limited.  

 

Specifically, both constraints exist due to poor 

modelling of protein flexibility, crude modelling of solvation 

effects, and incomplete modelling of entropic effects on the 

binding energy. [2] Thus, the high-volume virtual screening 

campaigns are typically characterized by high rates of false 

positives and false negatives, which decreases the trust in the 

docking-based predictions. The recent developments in 

machine learning and artificial intelligence have created a 

new opportunity to address such limitations. Machine 

learning models can learn complex, nonlinear patterns of 

interface between proteins and ligands that are challenging to 

encode in traditional physics-based equations by learning 

with large data sets of experimentally characterized protein-

ligand complexes. The resultant data-driven ability has 

fueled the increasing attention to the field of ML-enhanced 

molecular docking as an attempt to enhance the prediction 
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accuracy, strength, and efficiency of computation. Because 

of this, machine learning is becoming widely perceived as an 

innovative element in future versions of structure-based drug 

discovery pipelines. 

 

1.2. Limitations of Traditional Molecular Docking 

Traditional molecular docking approaches despite 

decades of decades of constant development and extensive 

adoption also still have several inherent limitations that limit 

their predictive capabilities and applicability in complex 

drug discovery situations. [3] Scoring function inaccuracies 

is one of the major problems. The majority of traditional 

docking capabilities are based on simplified information of 

energy based on molecular mechanics force fields, empirical 

parameterization or knowledge-based statistical potentials. 

These models are computationally inexpensive, but do not 

always model long range electrostatic interactions, solvation 

effects and entropic binding energy contributions. This has 

caused observed predicted binding affinities to vary greatly 

compared to experimental values and as such, results are not 

reliable in ranking candidate ligands. The other significant 

weakness is the complexity of conformational search space. 

Protein-ligand docking involves search of translational, 

rotational and internal torsional degrees of freedom with 

huge search space of exponentially large scale. 

Computational infeasibility with exhaustive sampling is 

needed with highly flexible ligands or binding pockets of 

large size, necessitating the docking algorithms use heuristic 

or stochastic methods of search. Such approximations 

heighten the risk of not accounting for the actual binding 

pose, which may be of importance in multiple-low-energy 

conformation systems. Flexibility of proteins also increases 

this problem. Most classical docking methods consider the 

receptor as a static structure, and do not consider the changes 

in conformation on binding the ligand. [4] Such a rigid-

receptor assumption is constrained to induce-fit one-way 

effects, as well as dynamics between models, which is 

essential to representing real biological systems. Lastly, the 

conventional docking technique usually has poor 

generalization to new targets. Empirical scoring functions are 

usually optimized with smaller datasets and they may not 

extrapolate as well to the unknown proteins or chemical 

scaffold itself, making them less useful in exploratory drug 

discovery. 

 

1.3. Role of Machine Learning in Molecular Docking 

Machine learning has become a revolutionary 

technology in molecular docking that has sought to 

overcome the critical shortcomings of the conventional 

physics-based methods. AMPOMA With great success, plant 

systems using a large-scale structural and biochemical data 

can be improved through ML techniques in accuracy, 

resilience, and propagation. [5] Machine learning has the 

capability to be utilized in molecular docking at the 

following dimensions, which are interrelated. 

 

 

 
Fig 1: Role of Machine Learning In Molecular Docking 

 

1.3.1. Learning Complex Protein–Ligand Interactions 

Simple mathematical expressions used in the traditional 

docking scoring decision-making are meant to create 

approximate intermolecular interactions. [6] Machine 

learning models, in contrast, can be learnt using nonlinear 

but complex relationships using only experimental data. ML 

algorithms can detect any faint patterns of interaction using 

thousands of protein-ligand complexes and hydrogen bonds, 

hydrophobic and electrostatic forces, and steric 

complementarity. This informative learning provides 

superior predictive performance of binding affinity and pose 

quality, especially where there is complexity or flexibility in 

the binding sites. 

 

 

 

1.3.2. ML-Based Scoring and Rescoring Functions 

The development of ML based scoring functions can be 

considered one of the most effective uses of machine 

learning in molecular docking. Support vector machines, 

random forests and deep neural networks are regulated 

learning models that are trained on structural and 

physicochemical features to forecast binding affinity. Such 

models can be commonly used to rescore docking poses 

fetched by classical engines, [1] which boosts pose ranking 

and minimizes false positives in virtual screening protocols 

to a great degree. 

 

1.3.3. Feature Representation and Automated Feature 

Learning 

Machine learning is enabled to support more advanced 

feature representation schemes by composing bioinformatics 
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descriptors, chemical fingerprints and spatial interaction 

features. The deep learning models also minimize the use of 

manual feature engineering because hierarchical 

representations are automatically learnt on raw structural 

data, e.g. 3D voxel grids or molecular graphs. This is due to 

the fact that local atomic interactions and global molecular 

context can be effectively captured by models as compared 

to handcrafted descriptors alone. 

 

1.3.4 Handling Protein and Ligand Flexibility 

The issue of protein and ligand flexibility is still a 

significant difficulty in molecular docking. Adaptive 

exploration of conformational space can be achieved with 

machine learning models, including those with reinforcement 

learning (or hybrid optimization) frameworks. ML methods 

enhance the modeling of induced-fit effects and dynamic 

interactions (by learning policies that guide pose refinement) 

to provide more realistic docking predictions. 

 

1.3.5. Scalability and Computational Efficiency 

Machine learning models when trained can be used to 

provide rapid inference; hence, they are efficient to use in 

virtual screening of billions of compounds. ML-based 

docking pipelines minimize Lauder exhaustive energy 

calculations at high predictive accuracy. This is vital in the 

context of drug discovery in the modern world where time is 

of the essence and efficiency is a key element to consider. 

Altogether, machine learning is critical in the development 

of molecular docking as it improves conventional practices 

in computational chemistry using data-driven smartness, 

finally leading to more precise, efficient, and dependable 

structure-based drug research. 

 

2. Literature Survey 
2.1. Classical Docking Algorithms 

The classical algorithms of molecular docking provided 

the basis of computational drug discovery that formalized the 

problem of predicting the preferred orientation and the 

affinity of binding of a ligand inside an active site of a 

protein. [7] Initial methods were mainly based on geometric 

complementarity in which the shape of the ligand was 

compared with cavities on the surface of the receptor, and 

poses were ranked by evaluating their energies. Such 

programs like DOCK applied rigid-body shape matching and 

scoring functions which depended on van der Waals 

interactions and electrostatic interactions. Stochastic 

optimization, made using Lamarckian genetic algorithms 

was introduced later in AutoDock, allowing partial flexibility 

of ligands and a better exploration of conformational space. 

Although they have been effective in the initial virtual 

screening efforts, [1] the classical techniques have 

weaknesses in the case of highly flexible ligands, induced-fit 

effects, and complex binding pockets, and are frequently less 

accurate on large-scale or highly diverse targets. 

 

2.2. Bioinformatics and Algorithmic Synergy 

Bioinformatics and molecular docking methods have 

been complemented thus making docking pipelines more 

efficient and robust. The bioinformatics algorithms play a 

role in preprocesses of protein structures, binding sites, 

sequence structure analysis and in management of large scale 

data. [8] In the work Bioinformatics Algorithms to 

Molecular Docking: Synergy between IT and Chemistry, the 

importance of the algorithmic optimization, database 

indexing, and feature extraction methods in the chemical 

modeling was outlined. With the help of sequence homology, 

structural alignment, and molecular descriptors, 

bioinformatics-based tools decrease the computational 

complexity and enhance the quality of input data. This 

synergy across disciplines allows more knowledgeable 

search techniques, improved management of noisy biological 

data, and scaling docking processes that can be used with 

high-throughput virtual screening. 

 

2.3. Machine Learning–Based Scoring Functions 

Scoring functions, based on machine learning, will be a 

transition to less physics-inspired heuristics to models of data 

prediction. Algorithms that perform supervised learning, 

including support vector machines, random forests and 

gradient boosting machines, are trained on experimentally 

validated protein-ligand complexes so as to learn non-linear 

relationships between structural characteristics and affinity. 

[9] These models normally make use of designed descriptors 

that describe hydrogen bonding patterns, hydrophobic 

interactions as well as electrostatics, and atom-type contacts. 

ML-based models show better performance in pose ranking 

and affinity prediction compared to classical scoring 

functions, which are especially of high performance with a 

high quantity of quality training data. They however rely on 

their feature design, dataset variety and generalization to 

unseen targets and these areas are still under research. 

 

2.4. Deep Learning Approaches 

Deep learning has also expanded the scientific 

applications of molecular docking by allowing automated 

learning of features straight off of raw structural 

representations. Convolutional neural networks 

Convolutional neural networks represent protein ligand 

complexes as three dimensional voxel grids enabling the 

learning of the spatial patterns of atomic interactions without 

explicit feature engineering. [10] Alternatively, graph neural 

networks encode molecules as graphs (vertices are atoms, 

and edges are bonds), and encode both topological and 

chemical interactions. Such architectures are very 

appropriate to the modeling of molecular flexibility and 

complex interaction networks. The major success stories 

with deep learning include improvement in the domain of 

binding pose prediction and affinity estimation, but high-

quality annotated datasets as well as huge computational 

resources are frequently needed to train these models. 

 

2.5. Reinforcement Learning and Hybrid Models 

Reinforcement learning has become an innovative 

paradigm to direct ligand conformational search by defining 

docking as a series of decisions. Here, predicted binding 

quality is used to optimizeone agent repeatedly changes the 

pose of the ligand and obtains a reward, thus allowing an 

adaptive exploration of the conformational space. Hybrid 

models Hybrid models that either use classical docking 

engines or machine learning-based rescoring or pose 
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refinement combine the strengths of both paradigms. 

Classical approaches offer effective first-time pose 

generation, whereas the ML and RL elements improve the 

accuracy and resilience. The benefits that such hybrid 

strategies have shown in docking precision and runtime 

efficiency have seen them be considered useful in next-

generation virtual screening and drug discovery applications. 

 

3. Methodology 
3.1. Conceptual Flowchart of ML-Enhanced Molecular 

Docking Pipeline 

With neural machine learning-powered molecular 

docking pipeline combining conventional computational 

chemistry strategies and data-guided learning models, the 

part gains greater accuracy, efficiency and scalability. The 

conceptual flow chart represents a linear but repeated work 

[11] process that includes stages of data preparation, 

docking, machine learning inference and validation. All the 

stages are vital in making reliable prediction of protein-

ligand interactions. 

 

 
Fig 2: Conceptual Flowchart of ML-Enhanced Molecular 

Docking Pipeline 

 

3.1.1. Input Data Acquisition 

A pipeline commences with the purchase of raw 

biological and chemical information. Protein structures are 

usually acquired in repositories like the Protein Data Bank 

(PDB) whereas ligand structures are acquired either through 

chemical database or created computationally. At this point, 

experimentally solved and predicted structures can both be 

utilized. Downstream docking and learning performance is 

directly affected by the quality and completeness of input 

data. 

 

3.1.2. Data Preprocessing and Feature Extraction 

Processing of proteins Preprocessing includes stages like 

dehydration of proteins, inclusion of hydrogen atoms, 

attribution of partial charges as well as recognition of active 

or binding sites. Geometry optimization and conformer 

generation of ligands is performed. [1] Based on the obtained 

complexes ready, structural and physicochemical 

characteristics are obtained, such as the types of atoms, 

distance between atoms, donors, and acceptors of hydrogen 

bonds, hydrophobic regions, and electrostatic potentials. 

These attributes constitute the input of machine learning 

model or a deep learning representation. 

 

3.1.3. Classical Docking and Pose Generation 

During this step, the use of classical docking algorithms 

is done to come up with several binding poses of ligands in 

the protein binding site which are considered plausible. 

Genetic algorithms, simulated annealing, or stochastic 

sampling search strategies are used to investigate the 

conformational space. Initial rankings of poses by their 

approximate free energy of binding Classical scoring 

functions are initial rankings of poses which depend upon 

approximate free energy of binding calculations. This 

measure will provide efficient searching and the 

compatibility with familiar docking tools. 

 

3.1.4. Machine Learning–Based Scoring and Rescoring 

The docking poses identified during the step above are 

rescored or refined using machine learning models. 

Supervised learning models forecast the quality of binding 

affinity or predict poses when fed engineered features, 

whereas deep learning models can be used to quantize 3D 

grids or even molecular graphs directly. This step eliminates 

more discrimination between near-native and false poses, 

surmounting physics-based scoring functions and providing 

better prediction strength. 

 

3.1.5. Pose Optimization and Refinement 

Variations in high-ranking selections are further 

optimized with the help of ML-guided or hybrid refinement 

schemes. Reinforcement Agents: Reinforcement learning 

agents or hybrid MLphysics methods are used to modify the 

ligand conformation to the highest expected binding score by 

modifying the ligand structure. This is the refinement step 

that enhances the accuracy of the pose by considering the 

minor interaction patterns and conformational flexibility. 

 

3.1.6. Validation and Performance Evaluation 

The optimal docking products are compared to the 

experimental setting including binding affinities, 

crystallography poses or benchmark data. To measure the 

accuracy, the performance measures, which are root mean 

square deviation (RMSD), enrichment factor, and correlation 

coefficients, are calculated. This stage of evaluation can be 

fed back on and machine learning models can be retrained or 

fine-tuned into a closed-loop optimization process. 

 

3.1.7. Output and Decision Support 

The outcome of the pipeline is ranked ligand candidates 

with the predicted binding poses and affinities. The findings 

are useful to decision-making in the virtual screening, lead 

optimization, and drug discovery processes. The ML-

enhanced docking pipeline consequently offers an end-to-end 

system and a flexible framework that marries both the 

predictive intelligence and the computational efficiency. 
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3.2. Dataset Preparation 

An important aspect of ML-enhanced molecular docking 

is pertaining to data preparation since the quality and variety 

of training data are directly proportional to the performance 

of the model and the generalizability. Among publicly 

available and curated repositories, the main collection of 

protein-ligand complexes is given by PDBbind, which 

includes experimentally determined three-dimensional 

complexes in addition to the binding affinity, including 

dissociation constants (Kd), inhibition constants (Ki) and 

half-maximal inhibitory concentrations (IC50). In order to 

achieve reliability of the data, [12] complexes are filtered 

using rigid criteria in terms of crystallographic resolution 

cutoffs, elimination of incomplete or unclear complexes, and 

elimination of complexes lacking affinity annotations. The 

ligands are further filtered on the basis of molecular weight, 

rotations bonds, and chemical validity in order to eliminate 

the tendency of biasing against either too small or too 

flexible molecules. The sequence similarity and binding site 

overlap analysis are used to remove redundant protein-ligand 

pairs and minimise data leakage and overfitting. After the 

filtering, preprocessing standard protocols are used and this 

consists of assigning the protonation state, calculating 

charges and minimizing the energy to give consistency to the 

entire dataset. The process is followed by approaches of data 

augmentation in order to increase the diversity and 

robustness of datasets. [13] These methods involve the 

creation of many ligand conformations, random rotations and 

translations of protein ligand complexes as well as sampling 

alternative binding in the active site. Negative samples, or 

decoy ligands are in some instances added to balance the 

data and enhance the capability of the model to distinguish 

between true and non-true binders. The ready dataset is then 

divided into training, validation and test subsets of a target-

based splitting techniques to effectively evaluate previously 

undone proteins. In general, the rigorous preparation and 

augmentation of datasets form a good basis of machine 

learning and deep learning models in molecular docking 

studies. 

 

3.3. Feature Engineering 

The advantage of feature engineering in enhancing 

machine learning in molecular docking is that structural and 

chemical data are converted into useful numerical inputs to a 

learning algorithm through feature engineering. At this step, 

the features are systematically obtained based on a hybrid of 

the bioinformatics-based structural analysis and the 

calculation of chemical descriptors which was indicative of 

the strong collaboration between information technology and 

molecular chemistry. [14] The number of atom-pair 

interactions comprise a fundamental set of characteristics 

that describe how frequent and how spatially related 

particular atom types in the proteinligand complex are. Such 

descriptors measure the intermolecular interactions that are 

important including hydrogen bonds, hydrophobic contacts, 

π- pile overlaps, and electrostatic couplings which are 

directly coupled with stability and specificity of binding. 

Moreover, molecular fingerprints are used to encode the 

chemical properties of a ligand in a standard and contained 

format. The presence or absence of functional groups, ring 

systems, and pharmacophoric motifs are summarised in 

popular fingerprint representations like extended-

connectivity fingerprints and substructure-based binary 

vectors. [15] These fingerprints promote effective similarity 

comparisons and promote generalization to chemical diverse 

ligands. In order to supplement these representations, there 

are graph-based topological features that are derived by 

modeling molecules as graphs with atoms depicting the 

nodes and chemical bonds as edges. Graph descriptors are 

used to describe connectivity, node degrees, bond types, and 

local neighborhoods giving a rich description of the topology 

and relationship dependence of molecules. The combination 

of these heterogeneous sets of features is what allows the 

model to simultaneously learn about local atomic 

interactions, global chemical properties and topological 

organization. This type of multi-view representation is 

consistent with other bioinformatics-oriented docking studies 

that have already discussed why the fusion of 

algorithmically-generated data with chemical understanding 

can improve predictive accuracy. The docking pipeline 

makes use of engineered capabilities based on computational 

informatics and molecular science to enhance its robustness, 

interpretability and performance with a wide range of protein 

ligand systems. 

 

3.4. Machine Learning Model  

The proposed docking framework uses machine learning 

component, which is based on a deep neural network (DNN) 

to predict protein–ligand binding affinity using engineered 

feature representations. Formulation of the model takes the 

form of a nonlinear representation ( \hat{y} = f_{\theta}(X) ) 

with ( X ) being the input feature vector which is formed by 

interactions between adjacent atoms, molecular fingerprints 

and graph based features and ( \theta ) being the learnable 

parameters, comprises of weights and bias values of the 

various network layers. The deep architecture is often a 

model of input, then one or multiple fully connected hidden 

layers that use affinity transformations and nonlinear 

activation functions that learn more and more high-level 

abstractions of molecular interactions. [16] Regularization 

methods including dropout, weight decay and batch 

normalization are also included, to control overfitting and 

enhance the performance of generalization of a wide range of 

protein targets. It is supervised and trained in a network to 

learn based on experimentally measured binding affinities as 

ground-truth labels. To solve the model, the minimization of 

the mean squared error loss (MSE) is used, which is defined 

as ( L = \frac1 N \sum i=1 N (y i - y hat i)2 ). ( y i ) and ( y 

hat i ) are the actual and predicted affinity of the ( i )-th 

complex respectively and ( N ) is the total number of train 

samples. This loss factor means that the model tries to 

predict continuous affinity accurately and is punished by 

having a large difference between the experiment and the 

predicted value. Adam or stochastic gradient descent are 

optimization algorithms that are based on gradients and are 

used to update the parameters ( \theta ). [17] The DNN learns 

intricate nonlinear associations between structural variables 

and binding energy that would culminate into trivial 

modeling with classical scoring functions through training. 

The trained model can therefore be used as an effective and 
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precise predictor that boosts docking accuracy and assists 

with numerous virtual screening and optimization of lead 

tasks in structure-based drug discovery. 

 

3.5. Docking and Pose Optimization 

Docking and pose optimization represents an important 

step in the ML-based molecular docking pipeline, in which 

the classical search is refined using intelligent learning to 

learn high-quality binding pose prediction. The docking 

algorithm is used first, to produce a variety of candidate 

poses of the ligand within the protein binding site. They are 

stochastic or heuristic algorithms (like genetic algorithms or 

simulated annealing) that search on the translational and 

rotational and conformational degrees of freedom of the 

ligand. [18] The roles of classical scoring Operational 

Scoring Classical scoring has the advantage of providing a 

preliminary rank of the poses according to approximate 

physicochemical interaction energies, to ensure the 

conformational space is covered efficiently. The engineered 

feature representations of each pose, they are then rescored 

with the trained machine learning model that predicts 

binding affinity. The rescoring step enhances discrimination 

of near-native or non-native poses, based on learned 

nonlinearity of scoring functions, not adequately explained 

by physics. Poses related with high ranking as determined by 

the ML model undergo further refinement to greatly 

minimize the false positives and enhance the overall docking 

accuracy. Reinforcement learning is used as an adaptive 

optimization mechanism in order to further increase the 

quality of poses. The pose refinement in this framework has 

been described as a sequence of decisions and has shown that 

an agent sequentially changes the ligand location, 

orientation, internal torsions and identity. [19] At every step, 

the agent is rewarded based on the predicted binding affinity 

or increase in pose quality that prefer actions resulting in 

more favorable interactions. Through repeated interactions, 

the RL agent will be informed of an effective strategy of 

traversing the complex conformational energy hyperspace to 

settle down to optimal binding configurations. This hybrid 

method, which combines standard docking, ML-guided 

rescoring, and problem-solving by means of reinforcement 

learning, offers a better accuracy, robustness, as well as 

being less resource-demanding in terms of computational 

capabilities, which will be applicable to large-scale virtual 

screening as well as structure-based drug discovery. 

 

 

 

 

 

4. Results and Discussion 
4.1. Evaluation Metrics 

Evaluation metrics are important to evaluate the 

effectiveness and reliability of machine learning-enhanced 

molecular docking models because they have quantitative 

values of prediction accuracy and screening performance. [1] 

Root Mean square error (RMSE) is commonly used to test 

the reliability of the binding affinity prediction, which is the 

evaluation of the median magnitude of the error between the 

predicted and the experimentally measured values. RMSE is 

especially prone to large deviations and thus it is quite 

appropriate in the cases where we want to detect models that 

amount to considerable errors in prediction. Reduced RMSE 

shows that the model learns useful structureactivity relations, 

[20] that is, the predicted affinities are similar to 

experimentally determined values. Pearson correlation 

coefficient has been used to determine the linear relationship 

between the predicted and actual binding affinities of a 

dataset. Pearson correlation assesses the ability of the model 

to maintain the relative position of binding strengths, unlike 

RMSE which tries to assess the absolute error. The large 

correlation coefficient shows that the model has been 

effective in identifying trends and relative variation in 

affinity of protein-ligand complexes and this is essential in 

prioritizing candidates in any virtual screening process. 

Besides measures based on regression, there is also the 

enrichment factor (EF) that is used to measure the 

performance of the model on a virtual screening case. EF is 

used to assess the capacity of a docking and scoring 

approach to pick active compounds amongst a vast pool of 

decoys in the highest ranking subset of predictions. [21] By 

contrasting the rate of true binders retrieved at the beginning 

of the ranking with the rate of retrieval that would be 

achieved by random selection, EF will allow seeing how 

useful the model is in practice in identifying leads. RMSE, 

Pearson correlation, and enrichment factor as a combination 

provides a complete analysis framework, which reflects both 

predictive power and screening effectiveness to provide a 

solid analysis of ML-enhanced docking methods. 

 

4.2. Comparative Analysis 

Table 1: Comparative Analysis 

Method 
RMSE 

(%) 

EF@1% 

(%) 

Runtime 

(%) 

Classical Docking 62.5 43.4 90 

ML-Rescoring 42.5 77.2 60 

Deep Learning 

Docking 
32.5 100 35 
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Fig 3: Comparative Analysis 

 

4.2.1. Classical Docking 

Classical docking approaches have a relatively higher 

RMSE with respect to binding affinity prediction. The low 

EF at 1 percent indicates that there is little ability to rank 

active compounds in the top-ranked subset as true and it is 

the situation that affects the efficiency of virtual screening. 

[22] Moreover, the large percentage of runtime indicates the 

computational expense of exhaustive conformational 

searches and physics-based scoring functions and thus 

classical docking cannot be as readily applicable to large-

scale screening jobs. 

 

4.2.2. ML-Rescoring 

The approaches of ML-rescoring are more effective in 

comparison with classical docking as seen in the minimized 

RMSE and much higher EF at 1%. By learning nonlinear 

interaction patterns, more correct and incorrect poses are 

differentiated because of the integration of machine learning. 

The medium runtime percentage suggests a reasonable trade-

off between computational and predictive performance, 

which makes ML-rescoring an expedient addition to current 

docking pipelines. 

 

4.2.3. Deep Learning Docking 

Docking models in a deep learning method have best 

RMSE and EF1 percent and are therefore more accurate and 

can quickly detect active ligands. The decreased percentage 

of runtime is associated with efficient inference after models 

are trained and large libraries of compounds can be evaluated 

quickly. These findings highlight the successfulness of deep 

learning models in modeling intricate spatial and chemical 

interactions and hence they are well adapted to high-

throughput and precision-driven drug discovery 

computations. 

 

4.3. Discussion 

As it is evident in the results of the experiment, machine 

learning-boosted molecular docking shows both significant 

improvements in predictive power and efficiency of virtual 

screening over classical docking methods. The reduction in 

RMSE and enrichment factor were found and suggest that 

ML-based models have more power to predict complex, 

nonlinear correlations between structural features of proteins 

and ligands and their binding affinity. In contrast to other 

classical scoring functions, which make simplistic physical 

assumptions, ML-enhanced scoring models deploy data-

driven learning to discover any subtle patterns of 

interactions, which results in more precise pose ranking and 

affinity estimation. These advances have been witnessed in 

the hard binding cases of flexible ligands and 

nonhomogenous protein binding surfaces especially. One 

new technology that has improved this performance is the 

incorporation of bioinformatics algorithms all along the 

docking pipeline. Preprocessing, which is driven by 

bioinformatics like binding site identification, structural 

alignment, as well as reduction of redundancy would 

guarantee high quality and consistent input data used in 

model training. Moreover, systematic representation of 

molecular interactions is done by algorithmic feature 

extraction methods to represent them as atom-pair 

descriptors, fingerprints, and topological features. This 

information technology-chemical modeling synergy as 

highlighted in previous studies augments model 

generalization, eliminating noise and biological meaningful 

patterns in different protein families. Besides, the synergistic 

approach to integrating classical docking with ML-based 

rescoring, as well as rescoring learning based on 

reinforcement learning, provides a balanced mechanism of 

integrating an effective conformational sampling and an 

intelligent decision-making. Classical approaches are capable 

of giving predictable starting poses and ML models enhance 

predictions to become more accurate and resilient. In 

general, the discussion shows that ML-enhanced docking, 

which has bioinformatics and algorithm synergy support, is a 

scalable and efficient paradigm to both next-generation 

structure-based drug discovery and large-scale virtual 

screening applications. 

 

5. Conclusion 
In this paper, the enhanced molecular docking by 

machine learning was thoroughly reviewed and analyzed 

methodologically in terms of its increasing significance in 

62.5

42.5

32.5

43.4

77.2

100

90

60

35

0

20

40

60

80

100

120

Classical Docking ML-Rescoring Deep Learning Docking

RMSE (%) EF@1% (%) Runtime (%)



Dr.A.Basheer Ahamed & M.Riyaz Mohammed / IJAIDSML, 7(1), 149-157, 2026 

 
156 

contemporary structure-based drug discovery. The classical 

methods of docking have been useful as tools in predicting 

interactions between proteins and their ligands, but the 

functions of the method, particularly the scoring, have 

maintained its predictive accuracy, as they are based on 

simplified scoring functions and significant neglect of 

molecular flexibility. The proposed paradigm will allow 

overcoming these drawbacks and reliably and optimally 

scaling classical docking engines and bioinformatics 

algorithms by incorporating data-driven machine learning 

models. As the findings covered in this paper illustrate, 

binding affinity prediction, pose discrimination, and the 

efficiency of virtual screening reflects some notable positive 

changes in the outcomes in the case of the use of ML-

enhanced methods. One of the focal points in this work is the 

interdisciplinary synergy of the bioinformatics, 

computational algorithms and chemical modeling. The 

capabilities offered by bioinformatics methods involve 

critical data curation; preprocessing of structural and feature 

extraction and organizing data, such that machine learning 

models are trained using high-quality and biologically 

significant information. The mentioned studies in 

bioinformatics and chemistry synergy support the idea that 

improvement in the accuracy of docking is not caused 

through the use of the isolated methodology, but through the 

successful application of the complementary fields. 

Incorporating atom-level interactions with molecular 

fingerprints and topological descriptors can be described as 

feature engineering techniques examples of how algorithmic 

processing and chemical understanding can be employed 

together to optimize model generalization in various protein-

ligand systems. Going forward, there are several research 

directions, which are vital in improving further on the use of 

ML-enhanced molecular docking. To enhance trust and 

uptake of promising drugs discovery pipelines in the real 

world, it is necessary to improve model interpretability to 

allow researchers to know the mechanisms of prediction that 

arise as a result of which molecular interactions. The 

proposed solution of transfer learning and domain adaptation 

has great potential in overcoming the problem of the 

shortage of data and the generalization of models to new 

subjects in the situation when the experimental data are 

scarce. Also, incorporation of protein flexibility and induced-

fit effects have not been accurately incorporated yet and this 

is a challenge that should be closely connected with dynamic 

simulation methods and learning-based models. Altogether, 

an enhanced docking approach based on machine learning 

and backed by robust bioinformatics and interdisciplinary 

background is a potent and developing framework with the 

prospect to help the drug discovery speed up and enhance 

significantly. 

 

References 
[1] Rodriguez, M., Tejani, J. G., Pydipalli, R., & Patel, B. 

(2018). Bioinformatics Algorithms for Molecular 

Docking: IT and Chemistry Synergy. Asia Pacific 

Journal of Energy and Environment, 5(2), 113-122. 

[2] Kuntz, I. D., Blaney, J. M., Oatley, S. J., Langridge, R., 

& Ferrin, T. E. (1982). A geometric approach to 

macromolecule-ligand interactions. Journal of molecular 

biology, 161(2), 269-288. 

[3] Goodsell, D. S., & Olson, A. J. (1990). Automated 

docking of substrates to proteins by simulated annealing. 

Proteins: Structure, Function, and Bioinformatics, 8(3), 

195-202. 

[4] Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, 

R., Hart, W. E., Belew, R. K., & Olson, A. J. (1998). 

Automated docking using a Lamarckian genetic 

algorithm and an empirical binding free energy function. 

Journal of computational chemistry, 19(14), 1639-1662. 

[5] Trott, O., & Olson, A. J. (2010). AutoDock Vina: 

improving the speed and accuracy of docking with a 

new scoring function, efficient optimization, and 

multithreading. Journal of computational chemistry, 

31(2), 455-461. 

[6] Huang, J., & MacKerell Jr, A. D. (2013). CHARMM36 

all‐atom additive protein force field: Validation based on 

comparison to NMR data. Journal of computational 

chemistry, 34(25), 2135-2145. 

[7] Jain, A. N. (2006). Scoring functions for protein-ligand 

docking. Current Protein and Peptide Science, 7(5), 407-

420. 

[8] Li, J., Fu, A., & Zhang, L. (2019). An overview of 

scoring functions used for protein–ligand interactions in 

molecular docking. Interdisciplinary Sciences: 

Computational Life Sciences, 11(2), 320-328. 

[9] Jiménez-Luna, J., Grisoni, F., & Schneider, G. (2020). 

Drug discovery with explainable artificial intelligence. 

Nature Machine Intelligence, 2(10), 573-584. 

[10] Ragoza, M., Hochuli, J., Idrobo, E., Sunseri, J., & Koes, 

D. R. (2017). Protein–ligand scoring with convolutional 

neural networks. Journal of chemical information and 

modeling, 57(4), 942-957. 

[11] Torng, W., & Altman, R. B. (2019). Graph 

convolutional neural networks for predicting drug-target 

interactions. Journal of chemical information and 

modeling, 59(10), 4131-4149. 

[12] Wallach, I., Dzamba, M., & Heifets, A. (2015). 

AtomNet: a deep convolutional neural network for 

bioactivity prediction in structure-based drug discovery. 

arXiv preprint arXiv:1510.02855. 

[13] Shan, W., Li, X., Yao, H., & Lin, K. (2021). 

Convolutional neural network-based virtual screening. 

Current Medicinal Chemistry, 28(10), 2033-2047. 

[14] Choudhuri, S., Yendluri, M., Poddar, S., Li, A., Mallick, 

K., Mallik, S., & Ghosh, B. (2023). Recent 

advancements in computational drug design algorithms 

through machine learning and optimization. Kinases and 

Phosphatases, 1(2), 117-140. 

[15] Gupta, R., Srivastava, D., Sahu, M., Tiwari, S., 

Ambasta, R. K., & Kumar, P. (2021). Artificial 

intelligence to deep learning: machine intelligence 

approach for drug discovery. Molecular diversity, 25(3), 

1315-1360. 

[16] Patel, L., Shukla, T., Huang, X., Ussery, D. W., & 

Wang, S. (2020). Machine learning methods in drug 

discovery. Molecules, 25(22), 5277. 

[17] Willard, J., Jia, X., Xu, S., Steinbach, M., & Kumar, V. 

(2020). Integrating physics-based modeling with 



Dr.A.Basheer Ahamed & M.Riyaz Mohammed / IJAIDSML, 7(1), 149-157, 2026 

 
157 

machine learning: A survey. arXiv preprint 

arXiv:2003.04919, 1(1), 1-34. 

[18] Gschwend, D. A., Good, A. C., & Kuntz, I. D. (1996). 

Molecular docking towards drug discovery. Journal of 

Molecular Recognition: An Interdisciplinary Journal, 

9(2), 175-186. 

[19] Leelananda, S. P., & Lindert, S. (2016). Computational 

methods in drug discovery. Beilstein journal of organic 

chemistry, 12(1), 2694-2718. 

[20] Dong, D., Xu, Z., Zhong, W., & Peng, S. (2018). 

Parallelization of molecular docking: a review. Current 

Topics in Medicinal Chemistry, 18(12), 1015-1028. 

[21] Seyyedi, A., Bohlouli, M., & Oskoee, S. N. (2023). 

Machine learning and physics: A survey of integrated 

models. ACM Computing Surveys, 56(5), 1-33. 

[22] Fan, C., Sun, Y., Zhao, Y., Song, M., & Wang, J. 

(2019). Deep learning-based feature engineering 

methods for improved building energy prediction. 

Applied energy, 240, 35-45. 

[23] Yang, C., Chen, E. A., & Zhang, Y. (2022). Protein–

ligand docking in the machine-learning era. Molecules, 

27(14), 4568. 

 

 

 


