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Abstract - The rapid evolution of cyber threats has made system security and data protection increasingly critical 

concerns for organizations worldwide. Federated Artificial Intelligence (AI) offers a promising approach by enabling 

distributed learning that preserves data privacy while facilitating secure collaboration. This paper explores how 

Federated AI can enhance access control systems by enabling anomaly detection, policy enforcement, and adaptive 

threat response in real-time. Traditional centralized AI models require data aggregation at a single location, creating 

potential breach vectors and compliance challenges. In contrast, Federated AI mitigates these risks by training 

models across decentralized nodes while maintaining data locality. We present a comprehensive framework 

implementing robust access control mechanisms that leverage collective intelligence while preserving sensitive 

information. By integrating Federated AI with Zero Trust principles, we demonstrate a dynamic access control system 

that adapts to evolving user behaviors and environmental contexts. Our experimental evaluation, using real-world 

datasets like UNSW-NB15 and CICIDS2017, shows that the proposed framework achieves 93.7% accuracy with 

strong privacy guarantees (ε=1.0). We discuss key innovations including edge-based real-time anomaly detection, 

privacy-enhancing techniques such as differential privacy and homomorphic encryption, and the integration of 

generative models for attack simulation. Finally, we analyze the advantages, limitations, and future directions of 

Federated AI in cyber defence applications. 

 

Keywords - Federated AI, Cybersecurity, Access Control, Anomaly Detection, Distributed Learning, Zero Trust, 
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1. Introduction 
In today's increasingly interconnected digital landscape, organizations face unprecedented cybersecurity challenges 

amid rapid technological transformation. The widespread adoption of cloud computing, remote work models, and distributed 

technologies has fundamentally altered the security perimeter. While these technologies offer advantages in flexibility, 

scalability, and cost-efficiency, they also introduce significant security vulnerabilities requiring sophisticated protection 

mechanisms.Access control remains a foundational element of cybersecurity frameworks, determining who can access specific 

resources under what conditions. Unauthorized access represents one of the most significant security threats, potentially 

leading to data breaches, intellectual property theft, and exposure of sensitive information [1]. The complexity of managing 

access control across organizational boundaries and geographically distributed environments continues to increase, while 

compliance requirements for distributed service delivery and authentication mechanisms become more stringent [2].  

 

As cyber threats grow increasingly sophisticated, traditional access control approaches based on static policies and 

centralized architectures prove inadequate. These conventional methods struggle to scale effectively in dynamic environments 

where user roles, device profiles, and threat vectors constantly evolve [3]. Organizations urgently need innovative solutions 

that strengthen security postures while ensuring compliance with privacy regulations and protecting sensitive data. Traditional 

access control models such as Role-Based Access Control (RBAC) and Attribute-Based Access Control (ABAC) have served 

organizations well in relatively stable environments. The remainder of this paper is organized as follows: Section II reviews 

relevant literature on federated learning in cybersecurity and access control. Section III details our methodology, including 

system architecture and implementation. Section IV presents experimental results and discussion. Section V concludes with 

key findings, limitations, and directions for future research. 

 

2. Literature Overview 

Recent research has demonstrated the effectiveness of Federated Learning (FL) in addressing cybersecurity challenges 

while preserving data privacy. Ferrag et al. [4] conducted a comprehensive review of federated deep learning for IoT security, 

highlighting its potential for collaborative intrusion detection without compromising sensitive network data. Similarly, Liu et 

al. [5] proposed FedDICE, a federated learning framework for distributed intrusion detection systems that achieved comparable 

performance to centralized approaches while maintaining data privacy.The application of FL is particularly valuable in 

sensitive sectors such as healthcare, finance, and critical infrastructure, where data sharing is heavily restricted by regulatory 
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frameworks. Popoola et al. [6] demonstrated how federated learning enables healthcare organizations to collaboratively 

develop robust malware detection models while complying with HIPAA regulations. 

 

 Their approach achieved 94.2% detection accuracy without sharing patient data across institutional boundaries. The 

design of effective FL systems for cybersecurity applications requires careful consideration of architectural choices, 

communication protocols, and privacy-preserving mechanisms.Lo et al. [7] identified core architectural patterns for federated 

learning systems, emphasizing the importance of modular design that separates data processing, model aggregation, and 

security components.Practical implementations have shown promising results in diverse security contexts. Verlande et al. [8] 

described the deployment of an FL-based system for enhancing security in human resource management. Their approach used 

collaborative model training to improve malware detection during the recruitment process while maintaining compliance with 

GDPR data privacy requirements. This example illustrates how federated frameworks can be adapted to domain-specific 

security challenges. Recent advances in FL system design have also focused on improving efficiency and scalability. Wu et al. 

[9] proposed lightweight federated learning algorithms specifically designed for resource-constrained IoT environments, 

enabling effective anomaly detection even on devices with limited computational capabilities. 

 

 Implementing effective access control in distributed environments presents significant challenges that traditional 

models struggle to address. Hu et al. [10] analyzed these challenges, highlighting the difficulties in managing decentralized 

access rights through conventional approaches. They proposed an extended Attribute-Based Access Control (ABAC) model 

incorporating dynamic contextual factors to enhance adaptive policy enforcement.ABAC has gained traction for its flexibility 

and granularity in federated environments. Eggert and Zadorozhny [11] demonstrated how ABAC enables more nuanced 

access management by basing permissions on user attributes, including roles and behavioral patterns. This approach is 

particularly valuable in federated settings where multiple stakeholders require varying levels of access to shared resources. The 

integration of machine learning with access control further enhances adaptive capability. Xin et al. [12] developed a dynamic 

access control framework leveraging behavioral analytics to continuously assess user trustworthiness and adjust permissions 

accordingly.Their system demonstrated significant improvements in detecting abnormal access attempts compared to static 

policy-based approaches.Recent research has explored the application of federated learning to develop advanced threat 

detection mechanisms.  

 

A notable innovation is the use of attention-based Graph Neural Networks (GNNs) within federated frameworks for 

network traffic analysis. Jianping et al. [13] demonstrated how this approach enables collaborative analysis of network traffic 

patterns across organizations to identify anomalies indicative of potential intrusions. This approach represents a significant 

advancement in Intrusion Detection Systems (IDS), offering both enhanced accuracy and stronger data confidentiality 

guarantees. By decentralizing analysis while preserving data privacy, these federated models can detect sophisticated attack 

patterns that might evade detection in isolated environments. Generative models have also shown promise in federated security 

applications. Fan et al. [14] proposed a federated Generative Adversarial Network (GAN) framework for simulating attack 

scenarios and enhancing anomaly detection capabilities. Their approach enabled organizations to benefit from diverse attack 

patterns observed across multiple environments without directly sharing sensitive security data. 

 

2.1 Federated Learning Architecture 

Federated Learning (FL) represents a paradigm shift in machine learning, specifically designed to address privacy and 

scalability challenges in distributed systems. In FL, organizations or devices (remote training parties) train local models on 

their own data and share only model updates (gradients) with a central aggregator. This approach enables the construction of a 

comprehensive model without sharing raw data among participants. The decentralized nature of FL reduces the risks associated 

with centralized data storage, minimizing the impact of potential breaches or unauthorized access to sensitive information. 

Additionally, it enhances privacy protection by allowing models to train on local data without exposing the underlying 

information. This architecture is particularly valuable for developing intelligent access control systems that can adapt to 

emerging threats by leveraging collective insights from multiple organizations.  

 

Figure 1 illustrates the Federated Learning (FL) process, a decentralized machine learning approach where multiple 

client devices collectively train a global model without exposing sensitive data. Various devices (tablets, cars, phones, etc.) 

perform local model updates (Δw1) using only their own data. These updates are then transmitted to the central FL Server, 

which aggregates them into a global model through a mathematical formula shown at the top of the image. For k client devices, 

each contributing proportionally (nk/n) to the model, local updates converge at a single aggregation node [9]. The elegance of 

this approach lies in its privacy preservation—devices like smartphones and IoT sensors can participate in model calculations 

without revealing raw data. After validation, the updated global model is distributed back to client devices for subsequent 

training iterations. This system creates a continuous cycle of local updates and global aggregation, enabling collaboration 

among distributed devices while maintaining data privacy. 

 

 

3. Methodology 
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The implementation of access control in distributed systems presents significant challenges including complexity of 

implementation, inadequate authentication methods, and scalability issues [10-14]. Organizations face difficulties designing 

and enforcing sophisticated access control policies for diverse user roles and security requirements. Without detailed planning, 

policies may fail to mitigate risks adequately, leaving systems vulnerable to unauthorized access. Many systems rely on 

suboptimal authentication mechanisms that increase vulnerability to critical resource breaches, necessitating robust techniques 

such as Multi-Factor Authentication (MFA) that extend beyond credential-based verification. Traditional access control 

models often struggle to adapt as organizations grow, requiring frequent privilege adjustments to maintain the principle of least 

privilege, ensuring users possess only the minimum access necessary for their functions. To address these challenges, we 

propose a Federated Learning (FL) integrated framework comprising two principal components: an administrator-managed 

aggregator that centralizes model fusion by collecting and consolidating gradient updates from remote nodes into a global 

model without raw data transfer; and remote training parties that independently train local models on distributed systems, 

periodically sharing updates to enable collaborative network-wide learning.  

 

 
Fig 1: Federated Learning Architecture 

 

The architecture implements a secure aggregation protocol utilizing homomorphic encryption, specifically employing 

the Paillier cryptosystem with a 2048-bit key length to enable computations on encrypted gradients without decryption. This 

cryptographic foundation ensures that Δw_i (local model updates) remain confidential during transmission while still 

permitting mathematical operations necessary for gradient aggregation according to the formula w^(t+1) = w^t + 

η∑(n_k/n)Δw_k, where η represents the learning rate and n_k/n denotes the weighted contribution of each client k.The 

framework employs a stratified sampling approach for client selection during each federated round, ensuring representation 

across organizational units while mitigating potential bias in the global model. Communication efficiency is optimized through 

gradient compression techniques including Sparse Ternary Compression (STC) and Federated Dropout, reducing bandwidth 

requirements compared to conventional approaches. Model convergence is accelerated through adaptive optimization methods 

including FedAdagrad and FedYogi, which dynamically adjust learning rates based on historical gradient information across 

federated rounds. For access control policy optimization, the system utilizes a dual-phase training methodology. Initially, 

baseline models are trained on synthetic data generated through differential privacy-preserved generative adversarial networks 

(DP-GANs) with ε=3.0 privacy budget. Subsequently, these models are fine-tuned through federated transfer learning on actual 

organizational access patterns.  

 

This approach enables the extraction of complex temporal and contextual dependencies in access requests through 

attention-based recurrent neural networks with a multi-headed self-attention mechanism comprising 8 attention heads and 

hidden dimension size of 512.Security enhancements within this framework incorporate comprehensive privacy-preserving 

techniques and robust defense mechanisms. Beyond basic differential privacy and homomorphic encryption, the system 

implements secure multi-party computation (SMPC) protocols for distributed training, ensuring that intermediate computations 

remain confidential even from the aggregator. The Paillier cryptosystem is augmented with threshold cryptography (t,n)-

threshold scheme where t=⌊n/2⌋+1, requiring majority consensus for decryption operations. Additionally, we employ verifiable 

computation techniques to ensure the integrity of model updates, implementing zero-knowledge proofs to validate that client 

contributions adhere to predefined algorithmic constraints without revealing the actual data or model parameters. Defense 

against adversarial attacks is implemented through our RAB2-DEF (Robust Aggregation with Byzantine-resilient Bidirectional 

Defense) mechanism, which incorporates byzantine fault tolerance through a combination of coordinate-wise median and 

trimmed mean aggregation. The system can withstand up to f = ⌊(n-1)/3⌋ malicious clients while preserving model integrity. 

Outlier detection utilizes spectral analysis of gradient distributions coupled with autoencoders trained to identify anomalous 

update patterns. The framework further implements concept drift detection through Kullback-Leibler divergence monitoring 

between successive model distributions, automatically triggering retraining when distribution shifts exceed a predefined 

threshold τ = 0.15. 
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3.1 Federated AI Architecture for Cyber Defense 

The system encompasses three fundamental components—Access Control, Federated AI System, and Security 

Mechanisms—each contributing to efficient access control, data privacy preservation, and resilience against adversarial threats 

in distributed environments.The Access Control Module handles user authentication, enforces access policies, and executes 

real-time decisions regarding access permissions. This module interfaces with the Federated AI system, leveraging federated 

model insights to dynamically adapt policies, thereby enhancing decision-making accuracy and context-awareness when 

processing access requests. At the core of the architecture, the Federated AI System facilitates collaborative learning across the 

network. Client devices (IoT devices, laptops, etc.) train models locally and transmit encrypted updates to a centralized 

aggregator.  

 

This aggregator consolidates these updates into a global model stored in a model repository on the central server. The 

global model undergoes continuous refinement while preserving data localization and user privacy. Complementing these 

components, the Security Mechanisms layer implements comprehensive protective measures including encryption, differential 

privacy techniques, and adversarial defenses such as RAB2-DEF. These mechanisms safeguard sensitive data, secure 

communication channels, and fortify the system against malicious attacks including data poisoning and evasion attempts. The 

resultant architecture delivers a scalable, privacy-preserving, and resilient cybersecurity framework that balances distributed 

node collaboration with centralized control, addressing the evolving requirements of modern organizations. The 

implementation of this system employs state-of-the-art tools and technologies selected specifically for their capabilities in 

constructing a secure and efficient framework. The aggregator node processes model updates from remote training nodes and 

consolidates them into a global model, utilizing frameworks such as TFF or PySyft while maintaining data security. 

 

Fig 2: Federated AI Architecture for Cyber Defense 
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Remote training nodes, including edge devices like Raspberry Pi or laptops, perform local model training on 

decentralized datasets, ensuring sensitive information remains within the local environment. Secure communication between 

nodes and the aggregator is facilitated through protocols such as gRPC or MQTT. Privacy and security are paramount in 

federated learning systems, necessitating the integration of Differential Privacy and Homomorphic Encryption techniques to 

preserve data confidentiality during model training. The system further incorporates Graph Neural Networks (GNNs) and 

anomaly detection libraries to enable collaborative network anomaly detection. The architecture's modular design ensures 

seamless integration with existing cybersecurity tools and access control systems, while its scalability accommodates 

organizational growth requirements. Deployment begins with the installation of the aggregator node on a secure server 

environment, establishing connections to geographically distributed remote training nodes through secure channels. 

 

Access control policies are established through the implementation of Attribute Based Access Control (ABAC), 

which defines permission rules based on user roles and specific attributes. During this configuration phase, essential federated 

learning parameters—including privacy threshold values and constraints governing data sharing—are initialized to establish 

the system's operational boundaries. The training process involves remote nodes independently developing models on their 

local datasets, subsequently encrypting and transmitting gradient updates to the aggregator. Each aggregated update contributes 

to a global model that is distributed back to the nodes for further refinement. This methodology preserves the locality of 

sensitive information, thereby minimizing data breach risks. 

 

Fig 3: Deployment Architecture for Federated AI System 

 

Upon completion, the trained global model is integrated into the organization's access control infrastructure, enabling 

real-time authorization decisions while maintaining continuous updates that adapt to ecosystem changes and uphold privacy 

standards. The deployment architecture is organized into four distinct layers that form a comprehensive federated AI 

ecosystem for cybersecurity applications. At the foundation are End-User Devices, which initiate system interaction through 

client-side applications containing local data essential for machine learning model training. These devices—including 
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desktops, laptops, and mobile devices utilized by employees or system users—facilitate decentralized data processing while 

maintaining direct communication with remote training nodes. This architectural layer enhances privacy protection and 

minimizes data exposure risks by maintaining sensitive information within local environments. 

 

The Remote Training Nodes layer executes local machine learning model training by leveraging computational 

resources from edge devices such as Raspberry Pi units, laptops, or on-premises servers. These nodes receive specific training 

instructions for backward propagation and transmit encrypted gradient updates to the aggregator node. This layer's primary 

function is preserving data decentralization—a fundamental principle of federated learning. Communication between nodes is 

secured through robust protocols including gRPC or MQTT, ensuring efficient and protected data transmission. Serving as the 

central coordination mechanism, the Aggregator Node receives encrypted updates from remote training nodes and consolidates 

them into a unified global model. This methodology safeguards individual datasets while enabling collaborative intelligence 

development. The aggregator subsequently distributes the refined global model back to nodes for iterative improvement. 

Hosted either on secure cloud infrastructure or on-premises servers, this node ensures scalability, secure data handling 

capabilities, and real-time coordination across the network. The Access Control System layer implements dynamic access 

policies informed by federated learning insights.  

 

This layer incorporates a policy engine that evaluates user roles and attributes, alongside an access control interface 

that applies these policies in real-time operational environments. By integrating outcomes from the federated model, this layer 

delivers granular resource access control while maintaining compliance with organizational policies and regulatory 

frameworks. Dataset quality and preparation significantly influence the effectiveness of the Federated AI system. The 

framework utilizes both real-world and simulated datasets, including the UNSW-NB15 dataset from the University of New 

South Wales for network intrusion detection, and the CICIDS2017 dataset from the Canadian Institute for Cybersecurity for 

network traffic anomaly detection. These are supplemented by custom datasets collected from participating organizations that 

provide insights into access and behavioral patterns.Comprehensive preprocessing ensures dataset suitability for training, 

encompassing data cleaning procedures that eliminate duplicates, incomplete entries, and outliers. Numerical features undergo 

normalization while categorical features are encoded to maintain consistency. Automated tools such as FeatureTools extract 

relevant attributes including user roles, resource access logs, and network traffic patterns.  

 

The preprocessed datasets are subsequently partitioned into smaller subsets distributed across local nodes according to 

realistic decentralized data distributions. Throughout this process, gradient preprocessing utilizing the Paillier Cryptosystem 

ensures data privacy and prevents sensitive information exposure during collaborative operations. System evaluation employs 

metrics targeting performance, privacy preservation, and resource utilization efficiency. These include model accuracy 

measurements for access control decision precision, false positive and negative rate calculations to identify potential anomaly 

detection misclassifications, and privacy loss quantification through differential privacy epsilon values and compliance 

verification with data protection requirements. Communication overhead assessment determines network bandwidth 

requirements during training processes. Continuous monitoring maintains system reliability through anomaly detection, alert 

generation, and comprehensive audit logging. 

 

3.2 Experimental Evaluation 

In this section, we experimentally evaluate Federated AI, focusing on the experimental design metrics and the results 

obtained. [19,20] Thus, it seeks to evaluate the system as a means for validating that the system maintains secure, scalable, and 

privacy-preserving access control in these distributed environments.Several critical metrics for the Federated AI framework’s 

performance were assessed. The correctness of predictions by the federated model on enforcing access controls was evaluated 

by model accuracy. False Positive Rate (FPR) was the percent of legitimate actions that were mistakenly marked as 

unauthorized, and False Negative Rate (FNR) was measured as the percent of unauthorized actions that could not be identified 

as invalid.The system used Privacy Loss (ε), a quantification of data confidentiality based on differential privacy techniques, to 

secure robust privacy guarantees. We evaluated latency, the time required to update models and enforce policies, a key thing 

for real-time access control systems.  

 

We analyzed the communication overhead metric in federated training, showing how the framework controlled 

bandwidth usage. Finally, scalability was evaluated to investigate how well the system performed as the number of nodes 

participating increased. Together, these metrics served as one complete assessment of the system’s effectiveness. A 

comprehensive experimental environment was constructed to simulate authentic deployment conditions for the Federated AI 

framework. The hardware infrastructure featured a robust aggregator node implemented on an AWS EC2 instance equipped 

with 16 vCPUs, 64GB RAM, and 1TB SSD storage capacity. Remote training nodes were emulated using Raspberry Pi 4 

devices configured with 4GB RAM and 64GB storage. Framework development utilized TensorFlow Federated and PySyft 

frameworks with Python serving as the primary programming language. Node intercommunication was secured through 

protocols including gRPC and HTTPS to ensure protected data transmission. 
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Table 1: Hardware and Software Configuration 

Component Specification 

Aggregator Node AWS EC2 Instance (16 vCPUs, 64GB RAM, 1TB SSD) 

Remote Training Nodes Raspberry Pi 4 (4GB RAM, 64GB storage) 

Development Framework TensorFlow Federated, PySyft 

Programming Languages Python 

Communication Protocols gRPC, HTTPS 

 

The experimental methodology was structured into distinct phases for comprehensive evaluation. Initial baseline 

assessments established performance benchmarks for a centralized machine learning model across accuracy, latency, and 

privacy metrics. Access control simulation testing evaluated the framework's dynamic policy enforcement capabilities when 

processing both legitimate and unauthorized access attempts. Resilience evaluation incorporated adversarial techniques 

including data poisoning and model evasion within attack simulations. Scalability assessment involved incrementally 

increasing training node quantities to measure system performance under variable loads. To ensure real-world applicability, 

experiments utilized partitioned datasets such as UNSW-NB15, effectively simulating distributed environments typical of 

practical deployment scenarios. 

 

4. Results 
The findings indicate that the Federated AI framework attained accuracy levels comparable to centrally trained 

models, with centralized AI demonstrating 96.5% accuracy compared to the federated approach's 95.2% without privacy 

enhancements. Upon integrating differential privacy, accuracy experienced a modest decline to 93.7%, illustrating the inherent 

compromise between precision and privacy protection. Despite this trade-off, the substantial enhancement in data 

confidentiality justifies the marginal performance reduction. 

 
Table 2: Accuracy vs. Privacy Trade-Off 

Model Type Accuracy (%) Privacy Loss (ε) 

Centralized AI 96.5 High 

Federated AI (No Privacy) 95.2 Medium 

Federated AI (Differential Privacy) 93.7 Low 

 

Fig 4: Graphical Representation of Accuracy vs. Privacy Trade-Off  

 

Network resource utilization was evaluated across varying numbers of training nodes, revealing a linear relationship 

between communication overhead and node count. Bandwidth consumption measurements indicated 120MB usage with 10 

nodes, scaling to 1200MB with 100 nodes. Similarly, latency metrics showed an increase from 20ms with 10 nodes to 85ms 

with 100 nodes. These measurements confirm the framework's capability to efficiently manage network resources in a scalable 

manner across different deployment scales. 
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Table 3: Bandwidth Consumption vs. Number of Nodes 

Number of Nodes Bandwidth Consumption (MB) Latency (ms) 

10 120 20 

50 600 45 

100 1200 85 

 

The system was shown to be highly resilient against adversarial attacks. The accuracy drops for random data 

poisoning attacks for the RAB2-DEF defense mechanism when dropped without it was 15%, and with RAB2-DEF, it was 5%. 

Similarly, with defense mechanism, the accuracy drop decreased from 25% to 8% for the targeted label-flipping attacks. This 

demonstrated how robust security institutions should be developed to counter adversarial threats. 

 
Table 4: Accuracy Drop under Adversarial Attacks 

Attack Type Accuracy Drop (%) (Without RAB2-DEF) Accuracy Drop (%) (With RAB2-DEF) 

Random Poisoning 15 5 

Targeted Label Flipping 25 8 

 

 

Fig 5: Graphical Representation of Accuracy Drop under Adversarial Attacks 

 

Scalability assessment involved performance testing across varying node configurations. Training duration extended 

from 15 minutes with 10 nodes to 120 minutes with 100 nodes. Notably, model accuracy remained remarkably stable 

throughout this scaling, exhibiting only a minimal decrease from 95% to 93%. These results validate the system's capacity to 

scale effectively while maintaining consistent performance levels even as deployment size increases substantially. 

 
Table 4: Training Time vs. Number of Nodes 

Number of Nodes Training Time (Minutes) Model Accuracy (%) 

10 15 95 

50 50 94 

100 120 93 

 

Experiments validating privacy-preserving techniques incorporated differential privacy as a key methodology. Initial 

testing achieved 94.8% accuracy with basic privacy measures, though privacy loss remained significant. Upon implementing 

differential privacy with an ε value of 1.0, we observed a minor accuracy reduction to 92.3%, accompanied by a substantial 

decrease in privacy loss. These results demonstrate the framework's capacity to establish an effective equilibrium between 

privacy protection and performance optimization. 

 
Table 5: Privacy and Performance Trade-Off 

Technique Accuracy (%) Privacy Loss (ε) 

No Privacy Measures 94.8 High 

Differential privacy (ε=1.0) 92.3 Low 
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5. Discussion 
In this section, we critically evaluate the experimental results, examining both strengths and limitations of the 

Federated AI framework for distributed access control systems, while proposing future improvements for its implementation in 

distributed access control environments. 

 

5.1 Key Findings 
Experimental evaluation of the Federated AI framework demonstrated significant enhancements in access control 

management within distributed systems. By leveraging federated learning techniques, the framework exhibited dynamic 

responsiveness in access policy enforcement while maintaining accuracy levels comparable to centralized AI implementations. 

A principal advantage was its exceptional data privacy preservation, addressing critical concerns regarding data protection and 

regulatory compliance with frameworks such as GDPR. The system's robustness against adversarial attacks represented 

another noteworthy achievement, with RAB2-DEF's advanced defensive mechanisms enabling the framework to maintain 

resilience in hostile environments while preserving access control policy integrity. Additionally, the framework demonstrated 

efficient scalability as node participation increased, although with a linear growth in communication overhead. This expected 

increase can be optimized in large-scale deployments through future implementation of compression techniques or 

asynchronous update mechanisms. 

 

5.2 Limitations 
Despite its demonstrated efficacy, the framework exhibits several limitations requiring further refinement. A 

fundamental challenge involves balancing accuracy against privacy requirements. While differential privacy techniques 

effectively safeguard sensitive information, they introduce slight accuracy degradation in model performance. Applications 

demanding high precision necessitate careful calibration of these parameters, with privacy settings potentially adjusted 

according to specific use case requirements. 

 

Computational constraints of edge devices, particularly IoT nodes, present another significant limitation. These 

devices often lack sufficient processing capabilities for complex model training, resulting in heterogeneous contributions to the 

federated learning process. This imbalance can potentially degrade overall model performance, necessitating integration of 

lightweight training algorithms and hardware optimizations. Policy enforcement latency remains a critical concern in time-

sensitive decision-making contexts. Potential delays resulting from update propagation and synchronization processes may 

impact system responsiveness. Furthermore, while the framework demonstrates resilience against certain adversarial attacks, 

sophisticated attack vectors targeting aggregation mechanisms or communication protocols continue to present challenges 

requiring ongoing development of robust defensive capabilities. 

 

6. Conclusion 
In this research, we enhance access control capabilities in distributed systems through the implementation of a 

Federated AI framework grounded in federated learning principles. Our framework enables collaborative model training across 

organizational boundaries while ensuring data privacy compliance with regulations such as GDPR. Experimental evaluation 

demonstrates that the framework delivers substantial improvements in access control through dynamic, context-aware 

decision-making, strong privacy preservation mechanisms, and resilience against adversarial attacks. Its effective scalability 

across distributed environments makes it suitable for widespread adoption. These results confirm that Federated AI represents 

a transformative approach that integrates collaboration, privacy-preserving technologies, and enhanced security measures. By 

addressing contemporary challenges in distributed access control, our framework establishes a foundation for developing 

secure, efficient, and scalable solutions that are essential for creating robust security infrastructures across diverse 

organizational environments 

 

Although our framework demonstrates strong performance, several areas merit further development. Advanced 

privacy-preserving techniques, including Secure Multi-Party Computation (SMPC) and federated distillation, warrant 

investigation to optimize the balance between privacy protection and model accuracy. Communication protocols could be 

refined through model compression techniques and asynchronous update mechanisms to reduce latency and minimize 

communication overhead, enhancing system efficiency for large-scale deployments. Future research should focus on adapting 

the framework for resource-constrained environments such as IoT ecosystems by developing lightweight models and edge-

optimized algorithms. Demonstrating the framework's versatility would involve expanding its application to real-time systems, 

emerging domains like smart city infrastructure, and sophisticated threat detection scenarios. Additionally, strengthening 

robustness under adversarial conditions and establishing comprehensive governance protocols will be crucial to ensure 

Federated AI remains reliable, ethically sound, and widely adopted across diverse industries. 
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