

 International Journal of Artificial Intelligence, Data Science, and Machine Learning

 Grace Horizon Publication | Volume 4, Issue 2, 40-45, 2023

 ISSN: 3050-9262 | https://doi.org/10.63282/3050-9262.IJAIDSML-V4I2P105

Original Article

Apex Design Patterns: Practical Insights for Developing

Resilient and Scalable Applications

Laxman Vattam

Independent Researcher, Washington, USA.

Abstract - Design patterns in Apex represent established best practices and reliable solutions for common design

challenges in software development. These patterns provide a structured approach to organizing code, improving

efficiency, maintainability, and scalability in applications. By implementing these principles, developers can streamline

the development process while ensuring a solid framework for future enhancements and adaptations. This article

examines the role of design patterns within the Salesforce ecosystem, offering insights into their purpose, significance,

and practical implementation.

Keywords - Salesforce, Apex Design Pattern, Singleton, Strategy, Decorator, Facade, Bulk State Transition.

1. Introduction
Efficiency and scalability are fundamental in Salesforce development, and design patterns serve as essential tools in

achieving these objectives. These patterns offer well-established solutions to recurring challenges, enabling developers to build

robust and well-structured Salesforce applications. In software development, design patterns are reusable solutions that address

common architectural and coding challenges. They act as blueprints that guide developers in implementing best practices, leading

to the creation of maintainable, efficient, and scalable applications. Within the Salesforce ecosystem, these patterns play a crucial

role in optimizing the development process while improving the overall quality of applications. By leveraging established design

patterns, Salesforce developers can address specific challenges without the need to devise new solutions from scratch. This

approach not only accelerates development but also minimizes the likelihood of errors. Given that Salesforce applications

continually evolve, maintaining a well-structured and easily comprehensible codebase is vital. Design patterns facilitate code

maintainability by enhancing clarity and organization, making it easier for developers to understand, modify, and extend

applications as requirements change. Additionally, Salesforce applications must often scale to accommodate expanding datasets,

increasing user demands, and evolving business needs. Design patterns support scalability by ensuring that applications are

architected to handle growth efficiently. Moreover, these patterns promote consistency in problem-solving approaches, fostering a
structured and streamlined development process that enhances productivity and code reliability.

2. Categories of Design Patterns
Design patterns are generally classified into three primary categories, each addressing different aspects of software design:

2.1 Creational Patterns
Creational patterns focus on the process of object creation, ensuring that objects are instantiated in a controlled and

efficient manner. These patterns promote flexibility and reusability by abstracting the specific instantiation details, allowing for

more adaptable and maintainable code.

Some widely used creational patterns include:

 Singleton Pattern – Ensures that a class has only one instance and provides a global access point to it.

 Factory Pattern – Encapsulates object creation logic to create instances based on input parameters.

 Abstract Factory Pattern – Provides an interface for creating related objects without specifying their concrete classes.

 Builder Pattern – Simplifies complex object construction by breaking it into step-by-step procedures.

 Prototype Pattern – Creates new objects by copying existing ones rather than instantiating new instances directly.

2.2 Structural Patterns
Structural patterns focus on the composition of classes and objects to form larger, more efficient structures. They define

relationships between components, enabling developers to extend functionality without modifying existing code, thereby

promoting scalability and maintainability.

https://doi.org/10.63282/30509262/IJAIDSML-V4I2P105

Laxman Vattam / IJAIDSML, 4(2), 40-45, 2023

41

Common structural patterns include:

 Adapter Pattern – Bridges incompatibilities between different interfaces, allowing them to work together.

 Decorator Pattern – Dynamically enhances object functionality without altering its structure.

 Composite Pattern – Treats individual objects and groups of objects uniformly, enabling hierarchical structures.

 Proxy Pattern – Controls access to an object, improving security and performance.

 Bridge Pattern – Separates an abstraction from its implementation, increasing flexibility and reducing dependencies.

2.3 Behavioral Patterns
Behavioral patterns define how objects interact and manage communication between them to achieve desired

functionality. These patterns help distribute responsibilities effectively, ensuring better organization and reducing tight coupling in

a system.

Some key behavioral patterns include:

 Observer Pattern – Establishes a subscription-based mechanism where objects react to state changes in other objects.

 Strategy Pattern – Enables the selection of an algorithm at runtime by defining a family of interchangeable behaviors.

 Command Pattern – Encapsulates requests as objects, allowing users to parameterize and queue actions.

 State Pattern – Allows an object to alter its behavior when its internal state changes dynamically.

 Chain of Responsibility Pattern – Passes requests along a chain of handlers, where each handler processes or forwards

the request.

These design patterns provide well-structured, reusable solutions to common development challenges, contributing to

more efficient, scalable, and maintainable Salesforce applications.

2.4 Advantages of Utilizing Apex Design Patterns
Implementing design patterns in Apex development provides numerous benefits, enhancing the efficiency,

maintainability, and scalability of Salesforce applications. These patterns establish a structured approach that optimizes

development processes while ensuring long-term sustainability.

 Encourages Best Practices: Incorporating design patterns promotes adherence to coding best practices. This not only

enhances code quality but also serves as an educational tool for new developers, helping them adopt effective

programming techniques.

 Promotes Code Reusability: One of the key advantages of design patterns is their ability to facilitate the reuse of well-

established solutions. Developers can apply the same pattern across multiple scenarios, resulting in quicker development

cycles and a standardized approach to problem-solving.

 Enhances Maintainability: By introducing a systematic structure, design patterns make code easier to understand and

manage. When modifications or updates are required, developers can efficiently locate and update specific components

without disrupting the entire system.

 Provides Flexibility: Although design patterns introduce structure, they also allow for adaptability. Developers can

modify and tailor these patterns to suit specific business needs, ensuring solutions are both robust and customized for

particular project requirements.

 Future-Proofs the Codebase: As technology evolves, software systems must adapt. Design patterns provide a flexible

framework that accommodates changes, ensuring that applications remain functional, relevant, and easy to upgrade over

time.

 Supports Scalability: Given Salesforce’s multi-tenant architecture, scalability is a critical concern. Design patterns

inherently promote solutions that accommodate increasing data volumes, user growth, and evolving business requirements

without compromising performance.

 Optimizes Performance: Many Apex design patterns are designed to address common inefficiencies, ensuring that

applications run smoothly. By following these optimized solutions, developers can maximize resource utilization while

minimizing performance bottlenecks.

 Reduces Errors and Bugs: By leveraging established, time-tested solutions, the likelihood of introducing errors is

significantly reduced. Since these patterns have been refined over time, they help prevent common pitfalls and improve

code reliability.

 Improves Cost Efficiency: The structured nature of design patterns leads to reduced development time, fewer errors, and

lower maintenance efforts. As a result, organizations benefit from cost savings by avoiding prolonged development cycles

and frequent debugging.

Laxman Vattam / IJAIDSML, 4(2), 40-45, 2023

42

3. Type of Apex Design Patterns
Here are some common patterns.

3.1 Singleton Pattern:
The Singleton pattern falls under the creational design patterns category. It ensures that only one instance of a class is

created and provides a global access point to it. This approach helps reduce memory consumption, avoid redundant object

instantiations, and enhance overall application efficiency.

3.3.1 Key Objective:

The primary goal of the Singleton pattern is to restrict a class to a single instance while making that instance accessible

throughout the application lifecycle. This ensures consistent data management and prevents unnecessary reloading of information.

3.2 Use Cases in Salesforce:

 Managing Configuration Settings:

The Singleton pattern is widely used to handle application-level settings, such as API keys, authentication credentials, and

custom configurations.
It ensures that configuration data is loaded once and shared across the system, eliminating redundant queries and

improving performance.

 Tracking Governor Limits:

Since Salesforce imposes governor limits on resource usage, Singleton helps centralize and monitor these limits, ensuring

that operations remain within acceptable constraints.

 Encapsulating Global Utility Functions:
Common functions like data formatting, encryption, or logging can be stored in a Singleton class, providing a centralized

and reusable solution across multiple components.

3.3 Problem Scenario:
Imagine a Salesforce application used by a large organization with multiple departments, each requiring distinct email settings. If

these configurations are hardcoded within multiple classes and triggers, the system may experience:

 Code duplication, leading to inconsistencies and inefficiencies.

 Difficulties in updating settings, as changes need to be manually implemented across various components.

 Reduced maintainability, making future modifications complex and error prone.

.

3.4 Solution using Singleton Pattern in Apex:
To resolve these challenges, a Singleton-based Email Settings class can be created. This class ensures that email

notification settings are managed centrally, providing a single access point for consistent configuration.

4. How This Solution Works
 Ensures a Single Instance: The get Instance() method ensures that only one instance of Email Settings is created during

execution.

 Centralized Configuration Management: Instead of defining settings in multiple locations, all components retrieve

settings through Email Settings. Get Instance().

 Enhances Maintainability: Updates to the settings are made in one place, reducing complexity and eliminating

inconsistencies.

Laxman Vattam / IJAIDSML, 4(2), 40-45, 2023

43

4.1 Strategy pattern
The Strategy pattern involves encapsulating interchangeable algorithms and behaviors within distinct concrete classes that

share a common interface. This design enables the application to dynamically select and switch between these options at runtime,

promoting flexibility and adaptability.

Step 1: Create an interface for the algorithm:

Step 2: Create different variations:

Step 3: Run dynamic validation:

5. Factory pattern
The Factory Design Pattern is a widely adopted creational pattern that enables object creation without exposing the

instantiation logic to the client. Instead of directly instantiating objects, the pattern centralizes the object creation process within a

dedicated factory class. This approach enhances maintainability, encapsulates complexity, and promotes scalability by allowing

modifications to object creation without altering client code. This pattern establishes an interface for creating objects while

allowing subclasses to determine which specific class should be instantiated. By delegating object creation to a factory, the system
maintains loose coupling, making it easier to introduce new object types with minimal modifications.

Laxman Vattam / IJAIDSML, 4(2), 40-45, 2023

44

5.1 Key Components of the Factory Pattern
The Factory Design Pattern is composed of the following core elements:

 Creator (Factory Class): An abstract class or interface that defines a factory method. This method returns an instance of

the Product type.

 ConcreteCreator: A specific implementation of the Creator, which overrides the factory method to return an appropriate

Product instance.

 Product (Abstract Type): Defines the interface for objects that will be created by the factory method.

 ConcreteProduct: A class that implements the Product interface, representing the actual objects instantiated by the
factory.

Step 1: Create Product Interface

Step 2: Implement the Shape Interface

Step 3: Create Creator interface

Step 4: Create ConcreteCreator that implements Shape

Laxman Vattam / IJAIDSML, 4(2), 40-45, 2023

45

Step 5: Test the logic

Step 6: Output:

Rectangle

Square

6. Conclusion
Leveraging Apex Design Patterns in Salesforce is essential for developing efficient, maintainable, and scalable

applications. These patterns provide a structured approach to organizing code, reducing bugs, and accelerating the delivery of new

features. While incorporating design patterns requires an initial investment in learning and tooling, their long-term benefits far

outweigh the effort. At first glance, design patterns may appear complex, but they are fundamentally rooted in object-oriented

programming principles that developers naturally strive to follow. The real challenge is not just understanding these patterns but

consistently applying them in real-world scenarios. The next time you develop a new feature, take a moment to consider whether a

design pattern could simplify implementation and strengthen your application's architecture.

References
[1] Salesforce, “Apex Design Best Practices”

[2] Available: https://developer.salesforce.com/ja/wiki/apex_code_best_practices

[3] ApexHours, “Apex Design Patterns,”

[4] Available: https://www.apexhours.com/apex-design-patterns/

[5] Medium, “Apex Design Patterns,”

[6] Available: https://medium.com/@sfdcbrewery/apex-design-patterns-sfdc-brewery-salesforce-developer-interview-

preparation- series-2c5296a9ed0f

[7] Salesforce Ben, “3 Apex Design Patterns for yor Salesforce Development Team”

[8] Available: https://www.salesforceben.com/3-apex-design-patterns-for-your-salesforce-development-team/

[9] FreeCodeCamp, “The three Types of Design Patterns All Developers Should Know,”

[10] Available: https://www.freecodecamp.org/news/the-basic-design-patterns-all-developers-need-to-know/

[11] WIKI, “Separation of concerns,”

[12] Available: https://en.wikipedia.org/wiki/Separation_of_concerns

[13] Trailead, “Understand Separation of Concerns,”
[14] Available: https://trailhead.salesforce.com/content/learn/modules/apex_patterns_sl/apex_patterns_sl_soc

https://en.wikipedia.org/wiki/Separation_of_concerns
https://trailhead.salesforce.com/content/learn/modules/apex_patterns_sl/apex_patterns_sl_soc

	[11] WIKI, “Separation of concerns,”
	[13] Trailead, “Understand Separation of Concerns,”

