Advancements and Challenges in Using AI and ML to Improve API Testing Efficiency, Coverage, and Effectiveness
DOI:
https://doi.org/10.63282/3050-9262.IJAIDSML-V5I2P111Keywords:
Machine learning, API testing, test automation, test prioritization, anomaly detection, reinforcement learningAbstract
The proliferation of microservices and API-centered software designs has increased the complexity and breadth of the testing needed in order to achieve reliable, high-performance systems exponentially. Classical API testing techniques, such as scripted automation or simply manual validation, lack the scalability, speed, and coverage required to succeed in the contemporary development context. To overcome these shortcomings, the increasing use of artificial intelligence (AI) and machine learning (ML) is being used within the API testing lifecycle. This paper discusses the recent development of API testing using AI/ML and its techniques, including intelligent generation of test cases using natural language processing (NLP), predictive bug detection with anomaly detection models, adaptive testing with reinforcement learning and test suite optimization with previous defect analysis. We provide actual examples of cases used in business to prove the measurable improvement of testing efficiency, test coverage and defect detection rates. The use of ML to test priority and the use of NLP to generate tests automatically has been particularly promising in this area, and has already been demonstrated to have a large potential to save manual effort and improve the quality of tests. But there are still issues, especially when it comes to model interpretability, compatibility with CI/CD pipelines, data privacy and the adjustments of AI models to large API ecosystems. The future direction of how to make AI-enhanced testing more explainable, adaptive, and accessible to development teams of any size is also summarized in this paper
References
[1] Jorgensen, A., & Whittaker, J. A. (2000, May). An api testing method. In Proceedings of the International Conference on Software Testing Analysis & Review (STAREAST 2000).
[2] Ehsan, A., Abuhaliqa, M. A. M., Catal, C., & Mishra, D. (2022). RESTful API testing methodologies: Rationale, challenges, and solution directions. Applied Sciences, 12(9), 4369.
[3] Lima, R., da Cruz, A. M. R., & Ribeiro, J. (2020, June). Artificial intelligence applied to software testing: A literature review. In 2020, 15th Iberian Conference on Information Systems and Technologies (CISTI) (pp. 1-6). IEEE.
[4] Islam, M., Khan, F., Alam, S., & Hasan, M. (2023, October). Artificial intelligence in software testing: A systematic review. In TENCON 2023-2023 IEEE Region 10 Conference (TENCON) (pp. 524-529). IEEE.
[5] Panichella, A., et al. (2015). How developers test Android applications. Proceedings of the 2015 IEEE/ACM 37th International Conference on Software Engineering, 582–592.
[6] Pham, P., Nguyen, V., & Nguyen, T. (2022, October). A review of AI-augmented end-to-end test automation tools. In Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering (pp. 1-4).
[7] Campos, J. C., Fayollas, C., Gonçalves, M., Martinie, C., Navarre, D., Palanque, P., & Pinto, M. (2017). A more intelligent test case generation approach through task models manipulation. Proceedings of the ACM on human-computer interaction, 1(EICS), 1-20.
[8] Li, L., Lin, Y. L., Zheng, N. N., Wang, F. Y., Liu, Y., Cao, D., ... & Huang, W. L. (2018). Artificial intelligence test: A case study of intelligent vehicles. Artificial Intelligence Review, 50, 441-465.
[9] Gupta, H. P., Rao, S. V., & Venkatesh, T. (2013, June). Analysis of the redundancy in coverage of a heterogeneous wireless sensor network. In 2013 IEEE International Conference on Communications (ICC) (pp. 1904-1909). IEEE.
[10] Lee, R., Mengshoel, O. J., Saksena, A., Gardner, R. W., Genin, D., Silbermann, J., ... & Kochenderfer, M. J. (2020). Adaptive stress testing: Finding likely failure events with reinforcement learning. Journal of Artificial Intelligence Research, 69, 1165-1201.
[11] Moghadam, M. H., Saadatmand, M., Borg, M., Bohlin, M., & Lisper, B. (2021). An autonomous performance testing framework using self-adaptive fuzzy reinforcement learning. Software quality journal, 1-33.
[12] Mascheroni, M. A., & Irrazábal, E. (2018). Continuous testing and solutions for testing problems in continuous delivery: A systematic literature review. Computación y Sistemas, 22(3), 1009-1038.
[13] Wang, C., Pastore, F., Goknil, A., & Briand, L. C. (2020). Automatic generation of acceptance test cases from use case specifications: an NLP-based approach. IEEE Transactions on Software Engineering, 48(2), 585-616.
[14] Biffl, S., & Halling, M. (2003). Investigating the defect detection effectiveness and cost benefit of nominal inspection teams. IEEE Transactions on Software Engineering, 29(5), 385-397.
[15] Zhang, Man; Arcuri, Andrea. (2022). Open Problems in Fuzzing RESTful APIs: A Comparison of Tools. arXiv preprint arXiv:2205.05325.
[16] Amershi, S., et al. (2019). Software Engineering for Machine Learning: A Case Study. IEEE/ACM International Conference on Software Engineering (ICSE), 291–300.
[17] Whang, S. E., & Lee, J. G. (2020). Data Collection and Quality Challenges for Deep Learning. Proceedings of the VLDB Endowment, 13(12), 3429-3432.
[18] MUSTYALA, A. (2022). CI/CD Pipelines in Kubernetes: Accelerating Software Development and Deployment. EPH-International Journal of Science And Engineering, 8(3), 1-11.
[19] Chamola, V., Hassija, V., Sulthana, A. R., Ghosh, D., Dhingra, D., & Sikdar, B. (2023). A review of trustworthy and explainable artificial intelligence (XAI). IEE Access, 11, 78994-79015.
[20] Gheibi, O., Weyns, D., & Quin, F. (2021). Applying machine learning in self-adaptive systems: A systematic literature review. ACM Transactions on Autonomous and Adaptive Systems (TAAS), 15(3), 1-37.
[21] Rusum, G. P., Pappula, K. K., & Anasuri, S. (2020). Constraint Solving at Scale: Optimizing Performance in Complex Parametric Assemblies. International Journal of Emerging Trends in Computer Science and Information Technology, 1(2), 47-55. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I2P106
[22] Pappula, K. K., & Anasuri, S. (2020). A Domain-Specific Language for Automating Feature-Based Part Creation in Parametric CAD. International Journal of Emerging Research in Engineering and Technology, 1(3), 35-44. https://doi.org/10.63282/3050-922X.IJERET-V1I3P105
[23] Rahul, N. (2020). Optimizing Claims Reserves and Payments with AI: Predictive Models for Financial Accuracy. International Journal of Emerging Trends in Computer Science and Information Technology, 1(3), 46-55. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I3P106
[24] Enjam, G. R. (2020). Ransomware Resilience and Recovery Planning for Insurance Infrastructure. International Journal of AI, BigData, Computational and Management Studies, 1(4), 29-37. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V1I4P104
[25] Pappula, K. K., Anasuri, S., & Rusum, G. P. (2021). Building Observability into Full-Stack Systems: Metrics That Matter. International Journal of Emerging Research in Engineering and Technology, 2(4), 48-58. https://doi.org/10.63282/3050-922X.IJERET-V2I4P106
[26] Pedda Muntala, P. S. R., & Karri, N. (2021). Leveraging Oracle Fusion ERP’s Embedded AI for Predictive Financial Forecasting. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(3), 74-82. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I3P108
[27] Rahul, N. (2021). Strengthening Fraud Prevention with AI in P&C Insurance: Enhancing Cyber Resilience. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1), 43-53. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P106
[28] Enjam, G. R. (2021). Data Privacy & Encryption Practices in Cloud-Based Guidewire Deployments. International Journal of AI, BigData, Computational and Management Studies, 2(3), 64-73. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I3P108
[29] Rusum, G. P. (2022). WebAssembly across Platforms: Running Native Apps in the Browser, Cloud, and Edge. International Journal of Emerging Trends in Computer Science and Information Technology, 3(1), 107-115. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I1P112
[30] Pappula, K. K. (2022). Architectural Evolution: Transitioning from Monoliths to Service-Oriented Systems. International Journal of Emerging Research in Engineering and Technology, 3(4), 53-62. https://doi.org/10.63282/3050-922X.IJERET-V3I4P107
[31] Anasuri, S. (2022). Adversarial Attacks and Defenses in Deep Neural Networks. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(4), 77-85. https://doi.org/10.63282/xs971f03
[32] Pedda Muntala, P. S. R. (2022). Anomaly Detection in Expense Management using Oracle AI Services. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(1), 87-94. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I1P109
[33] Rahul, N. (2022). Automating Claims, Policy, and Billing with AI in Guidewire: Streamlining Insurance Operations. International Journal of Emerging Research in Engineering and Technology, 3(4), 75-83. https://doi.org/10.63282/3050-922X.IJERET-V3I4P109
[34] Enjam, G. R. (2022). Energy-Efficient Load Balancing in Distributed Insurance Systems Using AI-Optimized Switching Techniques. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(4), 68-76. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I4P108
[35] Rusum, G. P., & Anasuri, S. (2023). Composable Enterprise Architecture: A New Paradigm for Modular Software Design. International Journal of Emerging Research in Engineering and Technology, 4(1), 99-111. https://doi.org/10.63282/3050-922X.IJERET-V4I1P111
[36] Pappula, K. K. (2023). Reinforcement Learning for Intelligent Batching in Production Pipelines. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(4), 76-86. https://doi.org/10.63282/3050-9262.IJAIDSML-V4I4P109
[37] Anasuri, S. (2023). Secure Software Supply Chains in Open-Source Ecosystems. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 62-74. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P108
[38] Pedda Muntala, P. S. R., & Karri, N. (2023). Leveraging Oracle Digital Assistant (ODA) to Automate ERP Transactions and Improve User Productivity. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(4), 97-104. https://doi.org/10.63282/3050-9262.IJAIDSML-V4I4P111
[39] Rahul, N. (2023). Transforming Underwriting with AI: Evolving Risk Assessment and Policy Pricing in P&C Insurance. International Journal of AI, BigData, Computational and Management Studies, 4(3), 92-101. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P110
[40] Enjam, G. R. (2023). Modernizing Legacy Insurance Systems with Microservices on Guidewire Cloud Platform. International Journal of Emerging Research in Engineering and Technology, 4(4), 90-100. https://doi.org/10.63282/3050-922X.IJERET-V4I4P109
[41] Pappula, K. K. (2020). Browser-Based Parametric Modeling: Bridging Web Technologies with CAD Kernels. International Journal of Emerging Trends in Computer Science and Information Technology, 1(3), 56-67. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I3P107
[42] Rahul, N. (2020). Vehicle and Property Loss Assessment with AI: Automating Damage Estimations in Claims. International Journal of Emerging Research in Engineering and Technology, 1(4), 38-46. https://doi.org/10.63282/3050-922X.IJERET-V1I4P105
[43] Enjam, G. R., & Chandragowda, S. C. (2020). Role-Based Access and Encryption in Multi-Tenant Insurance Architectures. International Journal of Emerging Trends in Computer Science and Information Technology, 1(4), 58-66. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I4P107
[44] Pappula, K. K. (2021). Modern CI/CD in Full-Stack Environments: Lessons from Source Control Migrations. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(4), 51-59. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I4P106
[45] Pedda Muntala, P. S. R. (2021). Prescriptive AI in Procurement: Using Oracle AI to Recommend Optimal Supplier Decisions. International Journal of AI, BigData, Computational and Management Studies, 2(1), 76-87. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I1P108
[46] Rahul, N. (2021). AI-Enhanced API Integrations: Advancing Guidewire Ecosystems with Real-Time Data. International Journal of Emerging Research in Engineering and Technology, 2(1), 57-66. https://doi.org/10.63282/3050-922X.IJERET-V2I1P107
[47] Enjam, G. R., Chandragowda, S. C., & Tekale, K. M. (2021). Loss Ratio Optimization using Data-Driven Portfolio Segmentation. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1), 54-62. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P107
[48] Rusum, G. P., & Pappula, K. K. (2022). Federated Learning in Practice: Building Collaborative Models While Preserving Privacy. International Journal of Emerging Research in Engineering and Technology, 3(2), 79-88. https://doi.org/10.63282/3050-922X.IJERET-V3I2P109
[49] Pappula, K. K. (2022). Modular Monoliths in Practice: A Middle Ground for Growing Product Teams. International Journal of Emerging Trends in Computer Science and Information Technology, 3(4), 53-63. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P106
[50] Anasuri, S. (2022). Next-Gen DNS and Security Challenges in IoT Ecosystems. International Journal of Emerging Research in Engineering and Technology, 3(2), 89-98. https://doi.org/10.63282/3050-922X.IJERET-V3I2P110
[51] Pedda Muntala, P. S. R. (2022). Detecting and Preventing Fraud in Oracle Cloud ERP Financials with Machine Learning. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(4), 57-67. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I4P107
[52] Rahul, N. (2022). Enhancing Claims Processing with AI: Boosting Operational Efficiency in P&C Insurance. International Journal of Emerging Trends in Computer Science and Information Technology, 3(4), 77-86. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P108
[53] Enjam, G. R., & Tekale, K. M. (2022). Predictive Analytics for Claims Lifecycle Optimization in Cloud-Native Platforms. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(1), 95-104. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I1P110
[54] Rusum, G. P., & Pappula, K. K. (2023). Low-Code and No-Code Evolution: Empowering Domain Experts with Declarative AI Interfaces. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(2), 105-112. https://doi.org/10.63282/3050-9262.IJAIDSML-V4I2P112
[55] Pappula, K. K., & Rusum, G. P. (2023). Multi-Modal AI for Structured Data Extraction from Documents. International Journal of Emerging Research in Engineering and Technology, 4(3), 75-86. https://doi.org/10.63282/3050-922X.IJERET-V4I3P109
[56] Anasuri, S. (2023). Confidential Computing Using Trusted Execution Environments. International Journal of AI, BigData, Computational and Management Studies, 4(2), 97-110. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I2P111
[57] Pedda Muntala, P. S. R., & Jangam, S. K. (2023). Context-Aware AI Assistants in Oracle Fusion ERP for Real-Time Decision Support. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 75-84. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P109
[58] Rahul, N. (2023). Personalizing Policies with AI: Improving Customer Experience and Risk Assessment. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 85-94. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P110
[59] Enjam, G. R. (2023). AI Governance in Regulated Cloud-Native Insurance Platforms. International Journal of AI, BigData, Computational and Management Studies, 4(3), 102-111. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P111
[60] Pappula, K. K., & Anasuri, S. (2021). API Composition at Scale: GraphQL Federation vs. REST Aggregation. International Journal of Emerging Trends in Computer Science and Information Technology, 2(2), 54-64. https://doi.org/10.63282/3050-9246.IJETCSIT-V2I2P107
[61] Pedda Muntala, P. S. R., & Jangam, S. K. (2021). Real-time Decision-Making in Fusion ERP Using Streaming Data and AI. International Journal of Emerging Research in Engineering and Technology, 2(2), 55-63. https://doi.org/10.63282/3050-922X.IJERET-V2I2P108
[62] Rusum, G. P. (2022). Security-as-Code: Embedding Policy-Driven Security in CI/CD Workflows. International Journal of AI, BigData, Computational and Management Studies, 3(2), 81-88. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I2P108
[63] Anasuri, S. (2022). Zero-Trust Architectures for Multi-Cloud Environments. International Journal of Emerging Trends in Computer Science and Information Technology, 3(4), 64-76. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P107
[64] Pedda Muntala, P. S. R., & Karri, N. (2022). Using Oracle Fusion Analytics Warehouse (FAW) and ML to Improve KPI Visibility and Business Outcomes. International Journal of AI, BigData, Computational and Management Studies, 3(1), 79-88. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I1P109
[65] Rusum, G. P. (2023). Large Language Models in IDEs: Context-Aware Coding, Refactoring, and Documentation. International Journal of Emerging Trends in Computer Science and Information Technology, 4(2), 101-110. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I2P110
[66] Anasuri, S., & Pappula, K. K. (2023). Green HPC: Carbon-Aware Scheduling in Cloud Data Centers. International Journal of Emerging Research in Engineering and Technology, 4(2), 106-114. https://doi.org/10.63282/3050-922X.IJERET-V4I2P111
[67] Reddy Pedda Muntala, P. S., & Karri, N. (2023). Voice-Enabled ERP: Integrating Oracle Digital Assistant with Fusion ERP for Hands-Free Operations. International Journal of Emerging Trends in Computer Science and Information Technology, 4(2), 111-120. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I2P111
[68] Enjam, G. R. (2023). Optimizing PostgreSQL for High-Volume Insurance Transactions & Secure Backup and Restore Strategies for Databases. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 104-111. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P112