AI-Assisted Address Validation Using Hybrid Rule-Based and ML Models

Authors

  • Kiran Kumar Pappula Independent Researcher, USA. Author
  • Guru Pramoud Rusum Independent Researcher, USA Author

DOI:

https://doi.org/10.63282/3050-9262.IJAIDSML-V5I4P110

Keywords:

Address Validation, Rule-Based Systems, Machine Learning, Data Quality, Postal Readiness, Document Delivery

Abstract

Effective validation of addresses is one of the most critical requirements for a wide range of applications, including mail processing, online purchasing satisfaction, first responder services, and regulatory compliance. Rules-based address validation systems, although accurate within certain defined parameters, may not be able to handle the inconsistencies in address properties that occur in the real world, including typographical errors, local variations, abbreviations, and unstructured forms. Conversely, more general yet non-interpretable pure Machine Learning (ML) models can be less domain general than adaptive nets and need large quantities of labelled data with which to train and achieve domain general validity. This paper presents a synergistic methodology for the hybrid address validation scheme, integrating rule-based preprocessing approaches with machine learning-based classification models to enhance their accuracy, adaptability, and robustness. The planned system recalls deterministic pattern recognition and syntactic normalization to clean/structure input data and then feed it through a classification and validation engine based on ML. This is a hybrid solution, which uses the deterministic accuracy of rule-based solutions with generalization capabilities in a supervised ML model, e.g., Random Forests and gradient boosting classifiers. We test the system on a large-scale real-data dataset consisting of noisy, incomplete submissions of addresses from various sources. In a comparative experiment on existing postal validation systems and standalone ML models, our hybrid model outperforms the important metrics of postal verification, such as verification accuracy, error identification rate, and validation class confidence, particularly in cases of ambiguous or partially structured input. The findings indicate that the addition of AI methods in address validation pipelines can minimize delivery failures and cost incurred in the operations, as well as provide a scalable implementation in various industries with different formatting requirements. The paper concludes by providing practical implications, limitations, and future directions, incorporating the additions of Natural Language Processing (NLP) methods and learning through user correction

References

[1] Winkler, W. E. (1990). String comparator metrics and enhanced decision rules in the Fellegi-Sunter model of record linkage.

[2] Ahmad, I. (2023). A Hybrid Rule-Based and Machine Learning System for Arabic Check Courtesy Amount Recognition. Sensors, 23(9), 4260. https://doi.org/10.3390/s23094260.

[3] Gupta, V., Gupta, M., Garg, J., & Garg, N. (2021, May). Improvement in semantic address matching using natural language processing. In 2021, the 2nd International Conference for Emerging Technology (INCET) (pp. 1-5). IEEE.

[4] Krishnamoorthy, V. (2021). Evolution of reading comprehension and question answering systems. Procedia Computer Science, 185, 231-238.

[5] Ojokoh, B., & Adebisi, E. (2018). A review of question answering systems. Journal of Web Engineering, 17(8), 717-758.

[6] Yassine, M., Beauchemin, D., Laviolette, F., & Lamontagne, L. (2021, June). Leveraging subword embeddings for multinational address parsing. In 2020, the 6th IEEE Congress on Information Science and Technology (CiSt) (pp. 353-360). IEEE.

[7] Engelbach, M., Klau, D., Drawehn, J., & Kintz, M. (2022). Combining Deep Learning and Reasoning for Address Detection in Unstructured Text Documents. arXiv:2202.03103.

[8] Engelbach, M., Klau, D., Drawehn, J., & Kintz, M. (2022). Combining Deep Learning and Reasoning for Address Detection in Unstructured Text Documents. arXiv preprint arXiv:2202.03103.

[9] Guermazi, Y., Sellami, S., & Boucelma, O. (2022, August). A Roberta-based approach for address validation. In European Conference on Advances in Databases and Information Systems (pp. 157-166). Cham: Springer International Publishing.

[10] Duarte, A. V., & Oliveira, A. L. (2023, September). Improving Address Matching Using Siamese Transformer Networks. In EPIA Conference on Artificial Intelligence (pp. 413-425). Cham: Springer Nature Switzerland.

[11] Beauchemin, D., & Yassine, M. (2023). Deepparse: An Extendable, and Fine-Tunable State-Of-The-Art Library for Parsing Multinational Street Addresses. arXiv preprint arXiv:2311.11846.

[12] Abid, N., ul Hasan, A., & Shafait, F. (2018, December). DeepParse: A trainable postal address parser. In 2018 Digital Image Computing: Techniques and Applications (DICTA) (pp. 1-8). IEEE.

[13] Munjas, I., & Batanović, V. (2021, November). US address classification based on text processing and machine learning. In 2021, 29th Telecommunications Forum (TELFOR) (pp. 1-4). IEEE.

[14] Mangalgi, S., Kumar, L., & Tallamraju, R. B. (2020). Deep Contextual Embeddings for Address Classification in E-commerce. ArXiv preprint arXiv:2007.03020.

[15] Zhang, C., Tang, J., Wang, T., & Li, S. (2023). Address Matching Based On Hierarchical Information. arXiv:2305.05874.

[16] Knauf, R., Gonzalez, A. J., & Abel, T. (2002). A framework for validation of rule-based systems. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 32(3), 281-295.

[17] Frommholz, I., Al-Khateeb, H. M., Potthast, M., Ghasem, Z., Shukla, M., & Short, E. (2016). On textual analysis and machine learning for cyberstalking detection. Datenbank-Spektrum, 16(2), 127-135.

[18] Luyckx, K., & Daelemans, W. (2005). Shallow text analysis and machine learning for authorship attribution. LOT Occasional Series, 4, 149-160.

[19] Wen, H., Liu, L., Zhang, J., Hu, J., & Huang, X. (2023). A hybrid machine learning model for landslide-oriented risk assessment of long-distance pipelines. Journal of Environmental Management, 342, 118177.

[20] Singh, R. P., Dhanda, N., & Agrawal, K. K. (2017, December). Evaluation of the address resolution protocol and essential security issues. In the 2017 International Conference on Intelligent Sustainable Systems (ICISS) (pp. 1088-1091). IEEE.

[21] Ahmad, I. (2023). A Hybrid Rule-Based and Machine Learning System for Arabic Check Courtesy Amount Recognition. Sensors, 23(9), 4260.

[22] Thirunagalingam, A. (2023). Improving Automated Data Annotation with Self-Supervised Learning: A Pathway to Robust AI Models Vol. 7, No. 7,(2023) ITAI. International Transactions in Artificial Intelligence, 7(7).

[23] Rusum, G. P., Pappula, K. K., & Anasuri, S. (2020). Constraint Solving at Scale: Optimizing Performance in Complex Parametric Assemblies. International Journal of Emerging Trends in Computer Science and Information Technology, 1(2), 47-55. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I2P106

[24] Rahul, N. (2020). Optimizing Claims Reserves and Payments with AI: Predictive Models for Financial Accuracy. International Journal of Emerging Trends in Computer Science and Information Technology, 1(3), 46-55. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I3P106

[25] Enjam, G. R. (2020). Ransomware Resilience and Recovery Planning for Insurance Infrastructure. International Journal of AI, BigData, Computational and Management Studies, 1(4), 29-37. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V1I4P104

[26] Pedda Muntala, P. S. R., & Karri, N. (2021). Leveraging Oracle Fusion ERP’s Embedded AI for Predictive Financial Forecasting. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(3), 74-82. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I3P108

[27] Rahul, N. (2021). Strengthening Fraud Prevention with AI in P&C Insurance: Enhancing Cyber Resilience. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1), 43-53. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P106

[28] Enjam, G. R. (2021). Data Privacy & Encryption Practices in Cloud-Based Guidewire Deployments. International Journal of AI, BigData, Computational and Management Studies, 2(3), 64-73. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I3P108

[29] Rusum, G. P. (2022). WebAssembly across Platforms: Running Native Apps in the Browser, Cloud, and Edge. International Journal of Emerging Trends in Computer Science and Information Technology, 3(1), 107-115. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I1P112

[30] Jangam, S. K. (2022). Self-Healing Autonomous Software Code Development. International Journal of Emerging Trends in Computer Science and Information Technology, 3(4), 42-52. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P105

[31] Anasuri, S. (2022). Adversarial Attacks and Defenses in Deep Neural Networks. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(4), 77-85. https://doi.org/10.63282/xs971f03

[32] Pedda Muntala, P. S. R. (2022). Anomaly Detection in Expense Management using Oracle AI Services. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(1), 87-94. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I1P109

[33] Rahul, N. (2022). Automating Claims, Policy, and Billing with AI in Guidewire: Streamlining Insurance Operations. International Journal of Emerging Research in Engineering and Technology, 3(4), 75-83. https://doi.org/10.63282/3050-922X.IJERET-V3I4P109

[34] Enjam, G. R. (2022). Energy-Efficient Load Balancing in Distributed Insurance Systems Using AI-Optimized Switching Techniques. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(4), 68-76. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I4P108

[35] Rusum, G. P., & Anasuri, S. (2023). Composable Enterprise Architecture: A New Paradigm for Modular Software Design. International Journal of Emerging Research in Engineering and Technology, 4(1), 99-111. https://doi.org/10.63282/3050-922X.IJERET-V4I1P111

[36] Jangam, S. K., & Pedda Muntala, P. S. R. (2023). Challenges and Solutions for Managing Errors in Distributed Batch Processing Systems and Data Pipelines. International Journal of Emerging Research in Engineering and Technology, 4(4), 65-79. https://doi.org/10.63282/3050-922X.IJERET-V4I4P107

[37] Anasuri, S. (2023). Secure Software Supply Chains in Open-Source Ecosystems. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 62-74. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P108

[38] Pedda Muntala, P. S. R., & Karri, N. (2023). Leveraging Oracle Digital Assistant (ODA) to Automate ERP Transactions and Improve User Productivity. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(4), 97-104. https://doi.org/10.63282/3050-9262.IJAIDSML-V4I4P111

[39] Rahul, N. (2023). Transforming Underwriting with AI: Evolving Risk Assessment and Policy Pricing in P&C Insurance. International Journal of AI, BigData, Computational and Management Studies, 4(3), 92-101. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P110

[40] Enjam, G. R. (2023). Modernizing Legacy Insurance Systems with Microservices on Guidewire Cloud Platform. International Journal of Emerging Research in Engineering and Technology, 4(4), 90-100. https://doi.org/10.63282/3050-922X.IJERET-V4I4P109

[41] Rahul, N. (2020). Vehicle and Property Loss Assessment with AI: Automating Damage Estimations in Claims. International Journal of Emerging Research in Engineering and Technology, 1(4), 38-46. https://doi.org/10.63282/3050-922X.IJERET-V1I4P105

[42] Enjam, G. R., & Chandragowda, S. C. (2020). Role-Based Access and Encryption in Multi-Tenant Insurance Architectures. International Journal of Emerging Trends in Computer Science and Information Technology, 1(4), 58-66. https://doi.org/10.63282/3050-9246.IJETCSIT-V1I4P107

[43] Pedda Muntala, P. S. R. (2021). Prescriptive AI in Procurement: Using Oracle AI to Recommend Optimal Supplier Decisions. International Journal of AI, BigData, Computational and Management Studies, 2(1), 76-87. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V2I1P108

[44] Rahul, N. (2021). AI-Enhanced API Integrations: Advancing Guidewire Ecosystems with Real-Time Data. International Journal of Emerging Research in Engineering and Technology, 2(1), 57-66. https://doi.org/10.63282/3050-922X.IJERET-V2I1P107

[45] Enjam, G. R., Chandragowda, S. C., & Tekale, K. M. (2021). Loss Ratio Optimization using Data-Driven Portfolio Segmentation. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 2(1), 54-62. https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P107

[46] Rusum, G. P., & Pappula, K. K. (2022). Federated Learning in Practice: Building Collaborative Models While Preserving Privacy. International Journal of Emerging Research in Engineering and Technology, 3(2), 79-88. https://doi.org/10.63282/3050-922X.IJERET-V3I2P109

[47] Jangam, S. K., & Pedda Muntala, P. S. R. (2022). Role of Artificial Intelligence and Machine Learning in IoT Device Security. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(1), 77-86. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I1P108

[48] Anasuri, S. (2022). Next-Gen DNS and Security Challenges in IoT Ecosystems. International Journal of Emerging Research in Engineering and Technology, 3(2), 89-98. https://doi.org/10.63282/3050-922X.IJERET-V3I2P110

[49] Pedda Muntala, P. S. R. (2022). Detecting and Preventing Fraud in Oracle Cloud ERP Financials with Machine Learning. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(4), 57-67. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I4P107

[50] Rahul, N. (2022). Enhancing Claims Processing with AI: Boosting Operational Efficiency in P&C Insurance. International Journal of Emerging Trends in Computer Science and Information Technology, 3(4), 77-86. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P108

[51] Enjam, G. R., & Tekale, K. M. (2022). Predictive Analytics for Claims Lifecycle Optimization in Cloud-Native Platforms. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(1), 95-104. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I1P110

[52] Rusum, G. P., & Pappula, K. K. (2023). Low-Code and No-Code Evolution: Empowering Domain Experts with Declarative AI Interfaces. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(2), 105-112. https://doi.org/10.63282/3050-9262.IJAIDSML-V4I2P112

[53] Jangam, S. K., Karri, N., & Pedda Muntala, P. S. R. (2023). Develop and Adapt a Salesforce User Experience Design Strategy that Aligns with Business Objectives. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 53-61. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P107

[54] Anasuri, S. (2023). Confidential Computing Using Trusted Execution Environments. International Journal of AI, BigData, Computational and Management Studies, 4(2), 97-110. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I2P111

[55] Pedda Muntala, P. S. R., & Jangam, S. K. (2023). Context-Aware AI Assistants in Oracle Fusion ERP for Real-Time Decision Support. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 75-84. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P109

[56] Rahul, N. (2023). Personalizing Policies with AI: Improving Customer Experience and Risk Assessment. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 85-94. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P110

[57] Enjam, G. R. (2023). AI Governance in Regulated Cloud-Native Insurance Platforms. International Journal of AI, BigData, Computational and Management Studies, 4(3), 102-111. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P111

[58] Pedda Muntala, P. S. R., & Jangam, S. K. (2021). Real-time Decision-Making in Fusion ERP Using Streaming Data and AI. International Journal of Emerging Research in Engineering and Technology, 2(2), 55-63. https://doi.org/10.63282/3050-922X.IJERET-V2I2P108

[59] Rusum, G. P. (2022). Security-as-Code: Embedding Policy-Driven Security in CI/CD Workflows. International Journal of AI, BigData, Computational and Management Studies, 3(2), 81-88. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I2P108

[60] Jangam, S. K., Karri, N., & Pedda Muntala, P. S. R. (2022). Advanced API Security Techniques and Service Management. International Journal of Emerging Research in Engineering and Technology, 3(4), 63-74. https://doi.org/10.63282/3050-922X.IJERET-V3I4P108

[61] Anasuri, S. (2022). Zero-Trust Architectures for Multi-Cloud Environments. International Journal of Emerging Trends in Computer Science and Information Technology, 3(4), 64-76. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I4P107

[62] Pedda Muntala, P. S. R., & Karri, N. (2022). Using Oracle Fusion Analytics Warehouse (FAW) and ML to Improve KPI Visibility and Business Outcomes. International Journal of AI, BigData, Computational and Management Studies, 3(1), 79-88. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I1P109

[63] Rahul, N. (2022). Optimizing Rating Engines through AI and Machine Learning: Revolutionizing Pricing Precision. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(3), 93-101. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I3P110

[64] Enjam, G. R. (2022). Secure Data Masking Strategies for Cloud-Native Insurance Systems. International Journal of Emerging Trends in Computer Science and Information Technology, 3(2), 87-94. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I2P109

[65] Rusum, G. P. (2023). Large Language Models in IDEs: Context-Aware Coding, Refactoring, and Documentation. International Journal of Emerging Trends in Computer Science and Information Technology, 4(2), 101-110. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I2P110

[66] Jangam, S. K. (2023). Importance of Encrypting Data in Transit and at Rest Using TLS and Other Security Protocols and API Security Best Practices. International Journal of AI, BigData, Computational and Management Studies, 4(3), 82-91. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V4I3P109

[67] Anasuri, S., & Pappula, K. K. (2023). Green HPC: Carbon-Aware Scheduling in Cloud Data Centers. International Journal of Emerging Research in Engineering and Technology, 4(2), 106-114. https://doi.org/10.63282/3050-922X.IJERET-V4I2P111

[68] Reddy Pedda Muntala , P. S. (2023). Process Automation in Oracle Fusion Cloud Using AI Agents. International Journal of Emerging Research in Engineering and Technology, 4(4), 112-119. https://doi.org/10.63282/3050-922X.IJERET-V4I4P111

[69] Enjam, G. R. (2023). Optimizing PostgreSQL for High-Volume Insurance Transactions & Secure Backup and Restore Strategies for Databases. International Journal of Emerging Trends in Computer Science and Information Technology, 4(1), 104-111. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I1P112

[70] Jangam, S. K. (2022). Role of AI and ML in Enhancing Self-Healing Capabilities, Including Predictive Analysis and Automated Recovery. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 3(4), 47-56. https://doi.org/10.63282/3050-9262.IJAIDSML-V3I4P106

[71] Anasuri, S., Rusum, G. P., & Pappula, kiran K. (2022). Blockchain-Based Identity Management in Decentralized Applications. International Journal of AI, BigData, Computational and Management Studies, 3(3), 70-81. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I3P109

[72] Pedda Muntala, P. S. R. (2022). Enhancing Financial Close with ML: Oracle Fusion Cloud Financials Case Study. International Journal of AI, BigData, Computational and Management Studies, 3(3), 62-69. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I3P108

[73] Rusum, G. P. (2023). Secure Software Supply Chains: Managing Dependencies in an AI-Augmented Dev World. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(3), 85-97. https://doi.org/10.63282/3050-9262.IJAIDSML-V4I3P110

[74] Jangam, S. K., & Karri, N. (2023). Robust Error Handling, Logging, and Monitoring Mechanisms to Effectively Detect and Troubleshoot Integration Issues in MuleSoft and Salesforce Integrations. International Journal of Emerging Research in Engineering and Technology, 4(4), 80-89. https://doi.org/10.63282/3050-922X.IJERET-V4I4P108

[75] Anasuri, S. (2023). Synthetic Identity Detection Using Graph Neural Networks. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(4), 87-96. https://doi.org/10.63282/3050-9262.IJAIDSML-V4I4P110

[76] Reddy Pedda Muntala, P. S., & Karri, N. (2023). Voice-Enabled ERP: Integrating Oracle Digital Assistant with Fusion ERP for Hands-Free Operations. International Journal of Emerging Trends in Computer Science and Information Technology, 4(2), 111-120. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I2P111

[77] Enjam, G. R., Tekale, K. M., & Chandragowda, S. C. (2023). Zero-Downtime CI/CD Production Deployments for Insurance SaaS Using Blue/Green Deployments. International Journal of Emerging Research in Engineering and Technology, 4(3), 98-106. https://doi.org/10.63282/3050-922X.IJERET-V4I3P111

[78] Jangam, S. K., & Karri, N. (2022). Potential of AI and ML to Enhance Error Detection, Prediction, and Automated Remediation in Batch Processing. International Journal of AI, BigData, Computational and Management Studies, 3(4), 70-81. https://doi.org/10.63282/3050-9416.IJAIBDCMS-V3I4P108

[79] Rusum, G. P., & Pappula, kiran K. . (2022). Event-Driven Architecture Patterns for Real-Time, Reactive Systems. International Journal of Emerging Research in Engineering and Technology, 3(3), 108-116. https://doi.org/10.63282/3050-922X.IJERET-V3I3P111

[80] Pedda Muntala, P. S. R. (2022). Natural Language Querying in Oracle Fusion Analytics: A Step toward Conversational BI. International Journal of Emerging Trends in Computer Science and Information Technology, 3(3), 81-89. https://doi.org/10.63282/3050-9246.IJETCSIT-V3I3P109

[81] Jangam, S. K. (2023). Data Architecture Models for Enterprise Applications and Their Implications for Data Integration and Analytics. International Journal of Emerging Trends in Computer Science and Information Technology, 4(3), 91-100. https://doi.org/10.63282/3050-9246.IJETCSIT-V4I3P110

[82] Anasuri, S., Rusum, G. P., & Pappula, K. K. (2023). AI-Driven Software Design Patterns: Automation in System Architecture. International Journal of Artificial Intelligence, Data Science, and Machine Learning, 4(1), 78-88. https://doi.org/10.63282/3050-9262.IJAIDSML-V4I1P109

[83] Pedda Muntala, P. S. R., & Karri, N. (2023). Managing Machine Learning Lifecycle in Oracle Cloud Infrastructure for ERP-Related Use Cases. International Journal of Emerging Research in Engineering and Technology, 4(3), 87-97. https://doi.org/10.63282/3050-922X.IJERET-V4I3P110

Published

2024-12-30

Issue

Section

Articles

How to Cite

1.
Pappula KK, Rusum GP. AI-Assisted Address Validation Using Hybrid Rule-Based and ML Models. IJAIDSML [Internet]. 2024 Dec. 30 [cited 2025 Oct. 30];5(4):91-104. Available from: https://ijaidsml.org/index.php/ijaidsml/article/view/270