Quantum Computing in Artificial Intelligence: Exploring the Intersection of Quantum Algorithms and Machine Learning Models

Authors

  • Manivannan Software Engineer, SourceTech Inc, India Author

DOI:

https://doi.org/10.63282/3050-9262.IJAIDSML-V2I1P103

Keywords:

Quantum Machine Learning, Quantum Computing, Quantum Neural Networks, Quantum Support Vector Machines, Quantum Principal Component Analysis, Quantum Boltzmann Machines, Hybrid Quantum-Classical Models, Superposition, Quantum Gates, Financial Forecasting

Abstract

Quantum computing, with its unique properties and potential to solve complex problems more efficiently than classical computers, has emerged as a promising field in the realm of computational science. The intersection of quantum computing and artificial intelligence (AI) presents a fertile ground for innovation, particularly in the development of quantum algorithms that can enhance machine learning models. This paper explores the theoretical foundations, current research, and potential applications of quantum computing in AI. We delve into the mathematical underpinnings of quantum algorithms, their integration with machine learning models, and the practical challenges and opportunities that lie ahead. Through a detailed analysis of existing research and the presentation of novel algorithms, this paper aims to provide a comprehensive overview of the current state and future prospects of quantum-enhanced AI

References

[1] Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., & Lloyd, S. (2017). Quantum machine learning. Nature, 549(7671), 195–202. https://doi.org/10.1038/nature23474

[2] Ciliberto, C., Herbster, M., Ialongo, A. D., Pontil, M., Rocchetto, A., Severini, S., & Wossnig, L. (2018). Quantum machine learning: A classical perspective. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 474(2209), 20170551. https://doi.org/10.1098/rspa.2017.0551

[3] Dunjko, V., & Briegel, H. J. (2018). Machine learning & artificial intelligence in the quantum domain: A review of recent progress. Reports on Progress in Physics, 81(7), 074001. https://doi.org/10.1088/1361-6633/aab406

[4] Gao, X., & Duan, L. M. (2018). Efficient representation of quantum many-body states with deep neural networks. Nature Communications, 8, 662. https://doi.org/10.1038/s41467-017-00705-2

[5] Havlíček, V., Córcoles, A. D., Temme, K., Harrow, A. W., Kandala, A., Chow, J. M., & Gambetta, J. M. (2019). Supervised learning with quantum-enhanced feature spaces. Nature, 567(7747), 209–212. https://doi.org/10.1038/s41586-019-0980-2

[6] Lloyd, S., Mohseni, M., & Rebentrost, P. (2014). Quantum principal component analysis. Nature Physics, 10(9), 631–633. https://doi.org/10.1038/nphys3029

[7] Mitarai, K., Negoro, M., Kitagawa, M., & Fujii, K. (2018). Quantum circuit learning. Physical Review A, 98(3), 032309. https://doi.org/10.1103/PhysRevA.98.032309

[8] Perdomo-Ortiz, A., Benedetti, M., Realpe-Gómez, J., & Biswas, R. (2018). Opportunities and challenges for quantum-assisted machine learning in near-term quantum computers. Quantum Science and Technology, 3(3), 030502. https://doi.org/10.1088/2058-9565/aab859

[9] Rebentrost, P., Mohseni, M., & Lloyd, S. (2014). Quantum support vector machine for big data classification. Physical Review Letters, 113(13), 130503. https://doi.org/10.1103/PhysRevLett.113.130503

[10] Schuld, M., Sinayskiy, I., & Petruccione, F. (2015). An introduction to quantum machine learning. Contemporary Physics, 56(2), 172–185. https://doi.org/10.1080/00107514.2014.964942

[11] Tacchino, F., Macchiavello, C., Gerace, D., & Bajoni, D. (2019). An artificial neuron implemented on an actual quantum processor. npj Quantum Information, 5, 26. https://doi.org/10.1038/s41534-019-0140-4

[12] Wiebe, N., Kapoor, A., & Svore, K. M. (2014). Quantum nearest-neighbor algorithms for machine learning. Quantum Information & Computation, 15(3-4), 0318–0358. https://arxiv.org/abs/1401.2142

[13] Wittek, P. (2014). Quantum machine learning: What quantum computing means to data mining. Academic Press. https://www.elsevier.com/books/quantum-machine-learning/wittek/978-0-12-800953-6

[14] Zhao, Z., Wang, J., & Liu, S. (2019). Quantum analog Hopfield neural network. IEEE Transactions on Neural Networks and Learning Systems, 30(3), 822–833. https://doi.org/10.1109/TNNLS.2018.2856276

[15] Benedetti, M., Lloyd, E., Sack, S., & Fiorentini, M. (2019). Parameterized quantum circuits as machine learning models. Quantum Science and Technology, 4(4), 043001. https://doi.org/10.1088/2058-9565/ab4eb5

[16] Cao, Y., Guerreschi, G. G., & Aspuru-Guzik, A. (2015). Quantum neuron: An elementary building block for machine learning on quantum computers. arXiv preprint arXiv:1508.06992. https://arxiv.org/abs/1508.06992

[17] Farhi, E., & Neven, H. (2018). Classification with quantum neural networks on near term processors. arXiv preprint arXiv:1802.06002. https://arxiv.org/abs/1802.06002

[18] Kerenidis, I., Landman, J., Luongo, A., & Prakash, A. (2019). q-means: A quantum algorithm for unsupervised machine learning. Advances in Neural Information Processing Systems, 32, 4136–4146. https://arxiv.org/abs/1812.03584

[19] Lloyd, S., & Weedbrook, C. (2018). Quantum generative adversarial learning. Physical Review Letters, 121(4), 040502. https://doi.org/10.1103/PhysRevLett.121.040

Published

2021-03-28

Issue

Section

Articles

How to Cite

1.
Manivannan. Quantum Computing in Artificial Intelligence: Exploring the Intersection of Quantum Algorithms and Machine Learning Models. IJAIDSML [Internet]. 2021 Mar. 28 [cited 2025 Sep. 15];2(1):18-25. Available from: https://ijaidsml.org/index.php/ijaidsml/article/view/23